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Elastic energy of polyhedral bilayer vesicles

Christoph A. Haselwandter and Rob Phillips
Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125

In recent experiments [M. Dubois, B. Demé, T. Gulik-Krzywicki, J.-C. Dedieu, C. Vautrin, S.
Désert, E. Perez, and T. Zemb, Nature (London) 411, 672 (2001)] the spontaneous formation of
hollow bilayer vesicles with polyhedral symmetry has been observed. On the basis of the experi-
mental phenomenology it was suggested [M. Dubois, V. Lizunov, A. Meister, T. Gulik-Krzywicki,
J. M. Verbavatz, E. Perez, J. Zimmerberg, and T. Zemb, Proc. Natl. Acad. Sci. U.S.A. 101, 15082
(2004)] that the mechanism for the formation of bilayer polyhedra is minimization of elastic bending
energy. Motivated by these experiments, we study the elastic bending energy of polyhedral bilayer
vesicles. In agreement with experiments, and provided that excess amphiphiles exhibiting sponta-
neous curvature are present in sufficient quantity, we find that polyhedral bilayer vesicles can indeed
be energetically favorable compared to spherical bilayer vesicles. Consistent with experimental ob-
servations we also find that the bending energy associated with the vertices of bilayer polyhedra can
be locally reduced through the formation of pores. However, the stabilization of polyhedral bilayer
vesicles over spherical bilayer vesicles relies crucially on molecular segregation of excess amphiphiles
along the ridges rather than the vertices of bilayer polyhedra. Furthermore, our analysis implies
that, contrary to what has been suggested on the basis of experiments, the icosahedron does not
minimize elastic bending energy among arbitrary polyhedral shapes and sizes. Instead, we find that,
for large polyhedron sizes, the snub dodecahedron and the snub cube both have lower total bending
energies than the icosahedron.

PACS numbers: 87.16.dm, 68.60.Bs

I. INTRODUCTION

The self-assembly of complex two-dimensional objects
from simple constituent units plays an important role
throughout condensed matter physics, materials science,
and molecular biology. Of particular importance for bi-
ology is the self-assembly of amphiphilic molecules into
flexible bilayers [1–3] which provide the structural ba-
sis for cell membranes. The physical properties of am-
phiphilic bilayers are often studied using artificial bilayer
vesicles [1–4] of controlled molecular composition. In
many settings [1–5] the shape of such bilayer vesicles is
characterized by a constant or smoothly varying curva-
ture and minimizes the elastic energy of the vesicle. In
experiment as well as theory [2, 4, 5], characteristic se-
quences of distinct vesicle shapes are obtained as a func-
tion of geometric parameters, such as the vesicle surface
area at fixed vesicle volume, and elastic parameters, such
as the bilayer spontaneous curvature. This has led to a
general framework for the description and prediction of
smooth vesicle shapes [2, 4] in which elasticity theory is
combined with variational and perturbative methods for
energy minimization.

In recent experiments [6–10], however, facetted bilayer
vesicles with shapes reminiscent of polyhedra have been
observed. Polyhedra are characterized by flat faces con-
nected by ridges and vertices with high local curvature,
and are generally not regarded as being energetically fa-
vorable shapes of bilayer vesicles. In these experiments,
two types of oppositely charged, single-tailed amphiphiles
were used [6, 7], with a slight excess of one amphiphile
species over the other. Consistent with the classic view
of bilayer vesicles [1–4], the amphiphiles were found to

self-organize into spherical bilayer vesicles at high tem-
peratures. However, provided that the number of excess,
unpaired amphiphiles was tuned to some optimal range
[6–10], cooling the system below the chain melting tem-
perature yielded the spontaneous formation of polyhedral
bilayer vesicles. The bilayer polyhedra were reported to
be stable over weeks, and to be consistently reproduced
upon thermal cycling. Furthermore, it was suggested
[6, 7] that the observed polyhedral shapes had icosahe-
dral symmetry, although some uncertainty regarding the
polyhedral symmetry remained. Finally, the vertices of
polyhedral bilayer vesicles were found to exhibit pores [6–
8], which was put forward [6] as a mechanism for avoiding
the large elastic bending energy associated with closed
vertices of bilayer polyhedra.

On the basis of the experimental phenomenology it was
suggested [6, 7] that minimization of elastic bending en-
ergy determines the shape of bilayer polyhedra. In a
previous article [11] we took these intriguing experimen-
tal observations as our starting point and investigated
the minimal bending energies of bilayer polyhedra. We
found that, while polyhedral vesicles can be energetically
favorable compared to spherical vesicles for the bilayer
composition used in the aforementioned experiments [6–
10], the snub dodecahedron and the snub cube generally
have lower elastic bending energies than the icosahedron.
The purpose of the present article is to provide a more
comprehensive discussion of the bending energies of bi-
layer polyhedra for various experimental scenarios, and
allowing for different models of the elastic contributions
to the free energy of bilayer polyhedra. Our overall aim is
thereby to provide basic estimates of the relative bending
energies associated with different polyhedral symmetries,
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and to contrast these polyhedral bending energies with
the elastic bending energy of spherical bilayer vesicles.
The disagreement between experiment and theory con-
cerning the most favorable polyhedral symmetry suggests
that either the mechanism governing the shape of bilayer
polyhedra is not solely minimization of elastic bending
energy, or the dominant shape of the facetted bilayer vesi-
cles observed in experiments does not correspond to the
icosahedron.
To predict polyhedral shapes with minimal energy, a

number of methodologies based on computer simulations
have been developed over recent years [12–16]. Here we
use a complementary method, in which we first derive
general expressions for the contributions to the elastic
bending energy of bilayer polyhedra due to the ridges,
closed vertices, and vertex pores observed experimen-
tally [6–8]. Particularly simple expressions of ridge, ver-
tex, and pore energies are obtained from the Helfrich-
Canham-Evans free energy of bending [17–19]. We as-
sess the validity of these phenomenological expressions,
which only involve a few parameters, by making com-
parisons to solutions of the two-dimensional equations of
elasticity obtained previously for the ridges and vertices
of polyhedra in certain limiting cases [20–25]. On this
basis we then survey total polyhedral bending energies
for a variety of different symmetry classes of polyhedra
[26–28], which are characterized by distinct values of the
geometric parameters entering our expressions of ridge,
vertex, and pore energies.
The organization of this article is as follows. Section II

provides a brief review of the experimental phenomenol-
ogy of bilayer polyhedra and of the contributions to their
free energy. In Sec. III we derive general expressions for
the elastic bending energies associated with ridges, closed
vertices, and vertex pores from the Helfrich-Canham-
Evans free energy of bending. Comparisons to the corre-
sponding solutions obtained previously in limiting cases
of the equations of elasticity are made in Sec. IV. Sec-
tion V analyzes the elastic bending energy associated
with pores of bilayer polyhedra. In Sec. VI we calculate
total bending energies of bilayer polyhedra for various
polyhedral symmetry classes. A discussion of our results
is provided in Sec. VII, and a summary and conclusions
can be found in Sec. VIII.

II. EXPERIMENTAL PHENOMENOLOGY OF

BILAYER POLYHEDRA

The bilayer polyhedra observed in experiments [6–10]
were composed of two different types of amphiphiles:
myristic acid and cetyltrimethylammonium hydroxide
(CTAOH). Myristic acid carries a single negative charge
while CTAOH is positively charged, and the hydrophobic
parts of both amphiphile species consist of a single hy-
drocarbon chain. In a salt-free aqueous solution dilute in
amphiphiles, the two amphiphile species were observed to
self-assemble into bilayers [29]. The bilayers had a thick-

ness of approximately 4 nm, and the inter-amphiphile
spacing was found [6, 29] to be around 0.4–0.6 nm. While
above the chain melting temperature the bending rigid-
ity of the bilayers formed by myristic acid and CTAOH
falls within the range 1–10 kBT , cooling the system to
room temperature yielded very stiff bilayers with rigidi-
ties greater than 100 kBT [7]. In small-angle neutron
scattering experiments it was indeed found [29] that bi-
layers were nearly flat over a spatial length scale of more
than 1 µm.

In earlier work, a mesoscopic model [30] was used
to further investigate the intriguing mechanical prop-
erties of the catanionic bilayers summarized above. In
this model, electrostatic interactions are described by
a standard Ising Hamiltonian, while a spring network
accounts for the formation of hydrogen bonds between
amphiphiles. The behavior of bilayers obtained with
this model is consistent with a simple picture [6, 7, 29]
of catanionic bilayers in which oppositely charged am-
phiphiles pair up to form zwitterionic amphiphiles with
zero net charge and two hydrophobic tails, thereby ex-
pelling excess amphiphiles from flat bilayers. Due to
their molecular shape, such unpaired excess amphiphiles
are expected to exhibit spontaneous curvature. It was
estimated [7] from the monolayer chain length of myris-
tic acid that the induced spontaneous curvature of excess
anionic amphiphiles is equal to around 0.3 nm−1.

At high temperatures, mixtures of myristic acid and
CTAOH were found to self-assemble into spherical bi-
layer vesicles [7]. As the system is cooled below the
chain-melting temperature, the behavior of these vesi-
cles can be characterized [6–10, 29] by the fraction of
the anionic amphiphile component over total amphiphile
content, which we will denote by rI . Using electron and
light microscopy it was found that, if rI 6= 0.5, spheri-
cal bilayer vesicles may facet to form polyhedral shapes
or break up to form flat bilayer disks. Both of these
aggregate shapes may coexist with spherical bilayer vesi-
cles. While the diameter of bilayer disks was observed
[29] to vary from 30 nm to 3 µm, the diameters of bilayer
polyhedra were reported [6–10] to fall within a character-
istic range of 1–2 µm. Bilayer polyhedra are estimated
[6] to contain around 107 catanionic pairs and an excess
of myristic acid corresponding to around 106 single am-
phiphiles.

Electron and fluorescence microscopy studies have sug-
gested [6–10] that bilayer polyhedra exhibit pores at their
vertices. By bleaching fluorescent molecules inside bi-
layer polyhedra and measuring fluorescence recovery af-
ter photobleaching, the pore diameter was estimated [8]
to be equal to around 40 nm. However, in the same
set of experiments it was also found that some of the ob-
served polyhedral vertices were in fact closed. Finally, on
the basis of electron and confocal microscopy a classifica-
tion of the symmetry of bilayer polyhedra was attempted.
Some features of the observed polyhedral shapes, includ-
ing their hexagonal cross section and five-fold vertex ge-
ometry, were found to be consistent with an icosahedral
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symmetry, but there was also considerable heterogeneity
in the observed polyhedral shapes [6–10].

Following Ref. [7], we distinguish between three ba-
sic types of contributions to the free energy of bilayer
polyhedra. First, there are elastic contributions to the
free energy associated with the energy required to bend
amphiphile bilayers along the ridges and closed vertices
of polyhedra, and to bend amphiphile monolayers along
the edges of polyhedral pores. For a given polyhedral
symmetry and size, the total energetic cost associated
with these terms depends on the elastic parameters char-
acterizing the bilayer and on the geometric parameters
defining the polyhedral shape. The total elastic energy
of bilayer polyhedra is to be compared with the elastic
energy associated with bilayer vesicles exhibiting a con-
stant or smoothly varying curvature. In particular, if
no constraints on the vesicle surface area or the vesicle
volume are imposed, and the bilayer composition is ho-
mogeneous, the classic framework for the description of
smooth vesicle shapes implies [4] that spherical bilayer
vesicles minimize bending energy.

A second class of contributions to the free energy of
bilayer polyhedra arises from the entropic cost of seg-
regating excess amphiphiles along polyhedral ridges and
vertices. These entropic terms make the formation of bi-
layer polyhedra with defined amphiphile domains unfa-
vorable compared to homogeneous bilayer vesicles. How-
ever, considering the experimental observation [7] of seg-
regated domains of excess amphiphiles along polyhedral
ridges and vertices, entropic contributions do not seem
to be dominant. Indeed, the picture of heterogeneous
bilayers presented in Refs. [6, 7, 29, 30] suggests that ex-
cess amphiphiles are segregated during the cooling down
process, leading to the separation of amphiphile bilayers
into distinct domains which do not mix at low temper-
atures. Here, we will not be concerned with the precise
mechanism leading to the segregation of amphiphile do-
mains, and assume that bilayers formed by myristic acid
and CTAOH do indeed spontaneously expel excess am-
phiphiles during the cooling down process.

Third, we need to consider electrostatic contributions
to the free energy of bilayer polyhedra. On the one hand,
segregated excess amphiphiles carry charges of equal sign
and, hence, repel each other. Thus, in addition to en-
tropic effects, the mechanism leading to amphiphile seg-
regation must overcome electrostatic repulsion between
excess amphiphiles. On the other hand, the finite sur-
face charge density observed along the ridges and vertices
of bilayer polyhedra [7] induces screening clouds in the
surrounding solution. Different membrane shapes lead
to different shapes of the screening clouds which, as dis-
cussed further in Sec. VIC, can affect the energetic cost
associated with polyhedral ridges and pores. However,
electrostatic contributions to the bending rigidity of am-
phiphilic bilayers are expected [31–34] to be of the order
of 1–10 kBT and, hence, at least one order of magnitude
smaller than the experimental values [7] of the bending
rigidity of bilayer polyhedra. This suggests [30] that the

electrostatic energies associated with deformations of the
screening cloud are small compared to the membrane
bending energy. Thus, we will follow here Ref. [7] and
assume that the shape of bilayer polyhedra is governed
by minimization of elastic bending energy.

III. BENDING ENERGIES OF BILAYER

POLYHEDRA

In this section we derive simple phenomenological ex-
pressions for the bending energies associated with the
ridges, closed vertices, and vertex pores of bilayer poly-
hedra. Our starting point is the Helfrich-Canham-Evans
free energy of bending [1–4, 17–19], namely,

G =
Kb

2

∫

dS

(

1

R1
+

1

R2
−H0

)2

, (1)

where Kb is the bilayer bending rigidity, R1 and R2 are
the two principal radii of curvature, and H0 is the bilayer
spontaneous curvature. In situations where we consider
amphiphile monolayers instead of amphiphile bilayers,
Kb in Eq. (1) is replaced by the monolayer bending rigid-
ity K⋆

b , and H0 is replaced by the monolayer spontaneous
curvature H⋆

0 .

A. Ridge energy

Figures 1(a,b) show two models of an amphiphile bi-
layer bending along the ridge of a polyhedron with di-
hedral angle αi. For simplicity we take R2 → ∞ in
Eq. (1) for both models. The elastic energy of ridges
which do not necessarily satisfy this assumption will be
discussed in Sec. IV. Moreover, we focus here on the
most straightforward case of symmetric bilayer leaflets
and take H0 = 0 nm−1 in Eq. (1). The richer case
in which there is segregation of excess amphiphiles and,
hence, the possibility of an inhomogeneous composition
of the membrane leaflets, will be considered in Sec. III D.
Our first model in Fig. 1(a) is inspired by the electron

micrographs of bilayer polyhedra in Refs. [6–8]. We as-
sume that, along a ridge, a bilayer bends over an angle
π− αi around a cylinder of radius R1, where the index i
denotes the particular polyhedral ridge under considera-
tion. From Eq. (1) one then finds the ridge energy

Gr =
Kb

2

li
d
(π − αi)

2
, (2)

where li is the ridge length and d = R1 (π − αi) is the
arc length subtended by the ridge.
Our second model, illustrated in Fig. 1(b), allows bilay-

ers to bend sharply along ridges and thereby provides a
more faithful representation of the polyhedral geometry.
We discretize the system [35] using an inter-amphiphile
spacing b and note that, for a curve embedded in two-
dimensional space, the bond vector connecting adjacent
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a

b

FIG. 1: (Color online) Side view of a ridge with dihedral
angle αi bending (a) over an arc length d of a cylinder with
radius R1 and (b) over an arc length comparable to the small-
scale cutoff b. The red and blue amphiphile species represent
myristic acid and CTAOH, which are negatively and posi-
tively charged, respectively. The arrows in panel (b) denote
bond vectors connecting adjacent amphiphiles.

amphiphiles is t̂ = (cosφ, sinφ), where φ = φ(u) is the
angle between t̂ and the abscissa at some segment u along
the curve. Using the relation

1

R1
=

1

b

∣

∣

∣

∣

dt̂

du

∣

∣

∣

∣

(3)

one then obtains from Eq. (1) a simple expression of the
ridge energy,

Gr =
Kb

2b2

∫

dl

∫

d(bu)

(

dφ

du

)2

. (4)

If the ridge bends “sharply,” we take

(

dφ

du

)2

= (π − αi)
2δ(2u) , (5)

where the factor of two in the argument of the Dirac
delta function arises because we assume that the ridge
in Fig. 1(b) bends over a length 2b so that a single am-
phiphile is located at the tip of the ridge, thereby reduc-
ing the density in Eq. (4). The ridge energy in Eq. (3)
then becomes

Gr =
Kb

4
(π − αi)

2 li
b
. (6)

Setting d = 2b, Eqs. (2) and (6) both yield

G(h)
r =

K̄b

2
(π − αi)

2li , (7)

where the rescaled bilayer bending rigidity K̄b = Kb/(2b)
and the superscript (h) indicates that this expression of

FIG. 2: (Color online) Illustration of a polyhedral vertex with
face angle βj . As in Fig. 1(b), the arrows represent bond vec-
tors connecting adjacent amphiphiles, but now with the bond
vectors being parallel rather than perpendicular to ridges.

the ridge energy applies to homogeneous membranes. An
expression similar [36] to Eq. (7) was used in Ref. [7]
to describe the elastic bending energy associated with
polyhedral ridges. The scale of the ridge energy in Eq. (7)
is set by our assumption d = 2b which, on the basis of the
scattering measurements in Refs. [6, 29], gives d ≈ 1 nm.
The choice d = 2b ≈ 1 nm for the arc length, and the
resulting estimates of the energy density, are confirmed in
Sec. IV by comparing Eq. (7) to an expression of the ridge
energy which allows for both principal radii of curvature
to be finite.

B. Vertex energy

A phenomenological but straightforward expression for
the elastic bending energy associated with closed bilayer
vertices is obtained following similar steps as in Sec. III A.
As indicated in Fig. 2, one can regard vertices as points
at which the bond vectors parallel to ridges change di-
rection to become parallel to neighboring ridges, which
is complementary to the model of ridges illustrated in
Fig. 1(b). We decompose the total vertex energy Gv into

a sum of q terms G
(j)
v with j = 1, . . . , q, where q denotes

the number of ridges meeting at a vertex. Retracing the
steps leading to the ridge energy in Eq. (7) one finds

G(j)
v =

Kb

2b2

∫

dS

(

dφ

du

)2

=
Kb

2
(π − βj)

2
, (8)

where βj denotes the face angle subtended at a given
vertex by two neighboring ridges, and, similarly as in
Sec. III A, we took the ridge length across a vertex to be
equal to 2b and set

(

dφ

du

)2

= (π − βj)
2
δ (2u) . (9)

The total vertex energy is then given by

G(h)
v =

q
∑

j=1

G(j)
v , (10)

where the superscript (h) again indicates that this ex-
pression applies to homogeneous membranes.
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b

FIG. 3: (Color online) Schematic illustrations of two models
of vertex pores for an amphiphile monolayer thickness m and
an amphiphile headgroup thickness h. (a) Cross section of
half of a pore around the tip of a cone (inset) with apex angle
π − 2θ and radius r. (b) Side view (left panel) and top-down
view (right panel) of a pore with radius r composed of straight
edges of length sj along each face which bend through an angle
γj from one face to a neighboring face.

C. Pore energy

Calculations of the elastic bending energy associated
with toroidal pores in planar bilayers can be found in
Refs. [7, 8, 37], and a generalization to arbitrary pore
shapes is provided in Ref. [38]. Based on this previous
work, we devised two complementary models of vertex

pores. Our first model [see Fig. 3(a)] is again inspired
by the experimental images in Refs. [6–8] which suggest
that the vertices of bilayer polyhedra locally resemble
cones. Accordingly, we approximate the vertex of a given
polyhedron by a cone with apex angle π − 2θ, where
θ = π/2−arccos (1− Ω/2π) for a solid angle Ω subtended
by the polyhedron vertex. We then use the Helfrich-
Canham-Evans free energy of bending in Eq. (1) with the
monolayer bending rigidity and spontaneous curvature
to calculate the bending energy of a pore around the tip
of a cone, leading to an approximate expression for the
bending energy of polyhedral pores.
From Fig. 3(a) we read off the principal radii of curva-

ture, R1 and R2, and the area element, dS, of a conical
pore with semi-circular cross section:

R1 = m− h , (11)

R2 = −

(

r +m cos θ

cos(|ω| ± θ)
−m+ h

)

, (12)

dS = 2πR1 [−R2 cos(|ω| ± θ)] dω , (13)

for 0 ≤ ω ≤ π/2 and −π/2 ≤ ω ≤ 0, respectively, where
m denotes the monolayer thickness, h the thickness of
the amphiphile headgroup, and r is the pore radius. Note
from Fig. 3(a) that only pore radii r ≥ rm, where rm =
m(1 − cos θ) is defined as the value of r for which the
separation between opposite sides of the pore is equal to
zero, have physical significance. For bilayer polyhedra,
we have [7] the representative values m ≈ 2 nm and h ≈
0.5 nm.
Following the steps outlined in Appendix A, one finds

that Eqs. (11)–(13), together with Eq. (1), give

G(c)
p (r, θ) = πK⋆

b [W (ξ, θ) +W (ξ,−θ) + 2T (ξ, θ,H0)] ,

(14)

where we have defined

ξ ≡
r +m cos θ

m− h
> 1 (15)

and

W (ξ, θ) =
2ξ2

(ξ2 − 1)1/2

(

arctan

(

ξ2 − 1
)1/2

tan
(

θ
2 + π

4

)

ξ − 1
− arctan

(

ξ2 − 1
)1/2

tan θ
2

ξ − 1

)

, (16)

T (ξ, θ,H⋆
0 ) = −4 cos θ −H⋆

0 (m− h) (πξ − 4 cos θ) +H⋆
0
2(m− h)2

(π

2
ξ − cos θ

)

. (17)

The superscript (c) in Eq. (14) indicates that this ex-
pression of the pore energy applies to conical pores. For
θ = 0, the above result for the bending energy of a coni-
cal pore reduces to the corresponding expression obtained

previously for planar bilayers [7, 8, 37].

Our second model of vertex pores [see Fig. 3(b)] al-
lows for a more faithful representation of the polyhedral
geometry. We assume that, along each face, the vertex
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pore consists of a straight edge with a semi-circular cross
section [see Fig. 3(b), left panel], which bends through
an angle γj across a ridge from one face to a neighboring
face [see Fig. 3(b), right panel]. Accordingly, we split
the energy cost associated with such a polygonal pore

into a term G
(1)
p corresponding to the elastic bending en-

ergy of a straight edge along a polyhedral face, and a

term G
(2)
p corresponding to the energy cost of bending

the edge of the pore from one face to a neighboring face.
For a straight edge of length sj, the version of Eq. (1)
appropriate for a monolayer gives

G(1)
p =

K⋆
b

2
π(m− h)sj

(

1

m− h
−H⋆

0

)2

, (18)

where from Fig. 3(b) we have that sj = 2r sin
βj

2 .

The contribution G
(2)
p stems from bending the pore

about the vertical axis in the left panel of Fig. 3(b) by
some angle γj . According to the right panel of Fig. 3(b)
we have

γj =
1

2
(2π − βj − βj+1) . (19)

Retracing the steps which led to the ridge energy in
Eq. (7), but now for the horizontal amphiphile compo-
nent as indicated in the left panel of Fig. 3(b), one finds

G(2)
p = K̄⋆

b (m− h)
(

π − γj + H̄⋆
0

)2
, (20)

where the rescaled monolayer bending rigidity K̄⋆
b =

K⋆
b /(2b) and the dimensionless spontaneous curvature

H̄⋆
0 = 2bH⋆

0 . The total pore energy is then given by

G(p)
p =

q
∑

j=1

(

G(1)
p +G(2)

p

)

, (21)

where the superscript (p) signifies that Eq. (21) applies to
a polygonal pore. Our expressions of conical and polyg-
onal pore energies in Eqs. (14) and (21) will be discussed
further in Sec. V.

D. Segregation of excess amphiphiles

The experimental phenomenology of polyhedral bilayer
vesicles suggests [6, 7] that the two amphiphile species
constituting bilayer polyhedra pair up to form flat bi-
layers and thereby expel excess (unpaired) amphiphiles
from polyhedral faces. As already noted in Sec. II, seg-
regated excess amphiphiles exhibit a spontaneous curva-
ture H⋆

0 ≈ 0.3 nm−1 [7], thus favoring a curved mem-
brane shape. It has indeed been observed [6–8] that
excess amphiphiles seed pores into bilayers and localize
along the ridges of bilayer polyhedra. As far as the effect
of excess amphiphiles on pore energies is concerned, we
therefore follow Ref. [7] and assume that vertex pores are
composed of excess amphiphiles, leading to a finite value

FIG. 4: (Color online) Side view of a ridge with dihedral angle
αi and perfect segregation of excess amphiphiles in the outer
bilayer leaflet. Note that, compared to Fig. 1, the neutral
plane of bending is shifted from the mid-plane of the bilayer
to the amphiphile head-tail interface of the inner membrane
leaflet.

of H⋆
0 in Eqs. (14) and (21) if sufficiently many excess

amphiphiles are present.
How does segregation of excess amphiphiles modify the

ridge energy in Eq. (7) and the vertex energy in Eq. (10)?
To address this question, we will consider a particularly
favorable scenario for the formation of polyhedral ridges
and vertices in heterogeneous bilayers, and thereby ob-
tain a lower bound on the elastic energies associated with
ridges and pores in the presence of molecular segrega-
tion. Assuming perfect segregation, excess amphiphiles
are concentrated along the outer membrane leaflets along
ridges and closed vertices so as to induce an anisotropic
spontaneous curvature commensurate with the dihedral
and vertex angles associated with a given polyhedral ge-
ometry. As illustrated in Fig. 4 for a ridge with dihedral
angle αi, this leaves us with the inner membrane leaflet
which, in the absence of some additional amphiphile
species with “inverted-wedge shape” [1–3], must be bent
in order to cover the hydrophobic tails of the excess am-
phiphiles localized in the outer membrane leaflet along
ridges and closed bilayer vertices.
For perfectly segregated ridges and vertices, we de-

scribe the bending of the inner membrane leaflet in a
similar way as in the case of the bilayer ridges and ver-
tices considered in Secs. III A and III B, but with the neu-
tral plane of bending shifted from the mid-plane of the
bilayer to the amphiphile head-tail interface of the inner
amphiphile leaflet (see Fig. 4). Thus, following analogous
steps as in Secs. III A and III B, we obtain the modified
ridge and vertex energies

G(s)
r =

K̄⋆
b

2
(π − αi)

2li , (22)

G(s)
v =

K⋆
b

2

q
∑

j=1

(π − βj)
2
, (23)

where the superscript (s) indicates that in these ex-
pressions we assume perfect segregation of excess am-
phiphiles. Thus, provided that the optimal amount of
excess amphiphiles is present [6, 7], the ridge and vertex
energies are lowered by a factor K⋆

b /Kb. Experiments
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[6, 7] and simulations [30] suggest that K⋆
b /Kb / 10−2.

Since the segregation of excess amphiphiles, and their fit
to dihedral and vertex angles, will generally be less than
perfect, we regard the simple phenomenological expres-
sions in Eqs. (22) and (23) as lower bounds on the ridge
and vertex energies in heterogeneous bilayers.
The heuristic picture of amphiphile segregation devel-

oped above allows us to estimate the amount of excess
amphiphiles present for a given polyhedral shape and
size. In particular, we define the fraction of anionic am-
phiphile content, which is the amphiphile species in ex-
cess for bilayer polyhedra [6–10], over total amphiphile
content as

rI =
1

2
+

NR +NP

NT
, (24)

whereNR denotes the total number of excess amphiphiles
segregated along ridges, NP denotes the total number of
excess amphiphiles segregated at vertex pores, NT de-
notes the total number of amphiphiles contained in the
polyhedron shell, and, consistent with the estimates in
Sec. II, we have taken NR + NP ≪ NT . In agreement
with typical experimental observations [6–8], Eq. (24) as-
sumes that bilayer polyhedra exhibit pores at their ver-
tices.
In order to estimate NR we need to determine how

many excess amphiphiles must be segregated at a given
polyhedral ridge so that the bilayer is bent by an appro-
priate dihedral angle. Assuming perfect segregation of
excess amphiphiles in the outer leaflet, we estimate that
ni = (π − αi)/(bH

⋆
0 ) excess amphiphiles must be seg-

regated per inter-amphiphile spacing along the ridge in
order to induce an angle π − αi in the outer membrane
leaflet. Thus,

NR =
∑

i

lini , (25)

where the sum is to be taken over all the ridges of a given
polyhedral shape.
A particularly simple estimate of NP is obtained by as-

suming that pores have a (flat) toroidal shape and radius
r, which gives a pore surface area of 2π2m(m+ r) nm2.
One therefore finds that

NP = V
2π2m(m+ r)

b2
, (26)

where V denotes the number of vertices of a given poly-
hedral shape and b2 is the surface area per amphiphile.
Similarly, a rough estimate of the total number of am-
phiphiles contained in the polyhedron shell is given by

NT =
8πR2

p

b2
, (27)

in which we have implicitly defined [21] the polyhedron
radius Rp so that the polyhedron area is equal to 4πR2

p

for a given edge length and polyhedral symmetry. Com-
bining Eqs. (25)–(27) we can evaluate the ideal value of rI

in Eq. (24) obtained from our simple description of am-
phiphile segregation and make comparisons to the corre-
sponding experimental estimates, a point we will return
to in Sec. VI.

IV. ASYMPTOTIC EXPRESSIONS OF VERTEX

AND RIDGE ENERGIES

The solution of the two-dimensional equations of elas-
ticity [39] is a formidable challenge, and has only been
achieved for the ridges and vertices of polyhedra in cer-
tain limiting cases [20–25] corresponding to a diverging
Föppl-von Kármán number. The Föppl-von Kármán
number is a dimensionless quantity characterizing the
competition between bending and stretching deforma-
tions and, for spherical shells, is defined as [21]

Γ =
Y R2

p

Kb
, (28)

where Y is the two-dimensional Young’s modulus. In
the following we will use the available asymptotic solu-
tions of the equations of elasticity for polyhedral ridges
and vertices to assess the validity of the phenomenolog-
ical expressions of ridge and vertex energies obtained in
Secs. III A and III B.

A. Vertex energy

In a series of papers [20–22, 40, 41], the energetic cost
of introducing five-fold disclinations in hexagonal lattices
has been investigated. It was found [20] that for a flat,
circular sheet of radius R, the stretching energy diverges
linearly with the area of the sheet: E(R) = A0Y R2,
where A0 is a constant. However, if the sheet is allowed
to buckle out of the plane, it is, for large enough sys-
tem sizes, energetically favorable to form a cone with a
central region which is “flattened out,” thus avoiding the
curvature singularity at the tip of the cone. The bend-
ing energy associated with the cone section is found to be
E(R) = B0Kb log (R/Rb), where B0 is a constant and Rb

is the buckling radius at which it becomes energetically
favorable for the lattice to bend out of the plane.

The above results have been used to estimate [21, 22]
the elastic energy of icosahedral vertices by noting that
spherical shells can be discretized using an icosadeltahe-
dral triangulation, which consists of a hexagonal lattice
exhibiting twelve five-fold disclinations. Regarding the
twelve disclination sites as independent, the vertex en-
ergy of icosadeltahedral triangulations of the sphere is
found to be given by

E(Γ)

Kb
≈







B0

2
Γ
Γb

for Γ < Γb,

B0

2

[

1 + log
(

Γ
Γb

)]

for Γ > Γb,
(29)
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TABLE I: Vertex energy G
(h)
v in Eq. (10) for homogeneous bi-

layers, vertex energy G
(s)
v in Eq. (23) for perfectly segregated

bilayers, conical pore energy G
(c)
p in Eq. (14) for the mini-

mum pore radius r = rm, and polygonal pore energy G
(p)
p in

Eq. (21) for r = 0 in units of monolayer bending modulus K⋆
b

for the five Platonic solids with m = 2 nm and h = 0.5 nm [7].

The ranges of G
(c)
p and G

(p)
p are obtained with H⋆

0 = 0 nm−1

and H⋆
0 = 0.3 nm−1, respectively.

Platonic solid G
(h)
v G

(s)
v G

(c)
p (r = rm) G

(p)
p (r = 0)

Tetrahedron 6.6Kb

K⋆
b

6.6 10–15 4.9–8.2

Cube 3.7Kb

K⋆
b

3.7 8.9–11 11–16

Octahedron 8.8Kb

K⋆
b

8.8 9.1–12 6.6–11

Dodecahedron 2.4Kb

K⋆
b

2.4 7.6–8.3 16–21

Icosahedron 11Kb

K⋆
b

11 7.9–8.9 8.2–14

for each disclination [21, 22], where Γb ≡ Y R2
b/Kb is the

critical Föppl-von Kármán number for buckling to oc-
cur, we have neglected constant contributions due to the
spherical background curvature, and the parameter A0

has been eliminated by energy minimization with respect
to Rb. Good fits [21, 22] to the results of simulations are
obtained with B0 ≈ 1.30 and Γb ≈ 130.

The energy in Eq. (29) corresponds, for large enough Γ,
to the elastic energy associated with the vertex of the
icosahedron and can, in this limit, be compared to the
more general but heuristic vertex energy in Eq. (10) with
values of the geometric parameters appropriate for icosa-
hedral vertices. To this end, we note that the lowest
energy states of icosadeltahedral triangulations of the
sphere are found to resemble icosahedra for Γ ' 107

[21, 22], which corresponds to a vertex energy greater
than 8Kb with, for instance, a value 12Kb for Γ = 1010.
As shown in Table I, this estimate compares quite favor-
ably with the value Gv ≈ 11Kb implied by Eq. (10) for
the icosahedron. In the estimates obtained from Eq. (29),
the contribution due to stretching, which is not consid-
ered in Eq. (10), is approximately equal to 0.65Kb. Thus,
the energetic cost associated with bending deformations
is seen to dominate over the energetic cost associated
with stretching deformations in this regime of Γ. For
comparison, we note that for bilayer polyhedra it has
been estimated [7] that Γ ≈ 106, which, according to
Eq. (29), would leave us with a vertex energy of approx-
imately 6.5Kb.

Note from Table I that the bending energies asso-
ciated with (closed) conical and polygonal pores take
similar values for all Platonic solids, with the competi-
tion between pores and closed, homogeneous bilayer ver-
tices governed by the ratio Kb/K

⋆
b . Using the estimate

Kb/K
⋆
b ' 102 suggested by experiments [6, 7] and sim-

ulations [30], we find that closed bilayer vertices will be
unstable to the formation of pores. However, Table I
also implies that the vertex energy obtained for perfectly

segregated bilayers is comparable to the bending energy
associated with pores, suggesting that, if the optimal
amount of excess amphiphiles is present at polyhedral
vertices, closed bilayer vertices may be metastable.

B. Ridge energy

According to computer simulations [21, 22], the total
energy of icosadeltahedral triangulations of the sphere
is dominated by vertex energies for Γ / 107, and only
in the regime of very large Γ, where the overall shape
becomes increasingly icosahedral, do the contributions of
ridges to the overall elastic energy become significant. It
was shown by Lobkovsky and Witten [21–24] that, for
Γ → ∞, the ridge energy is given by

G(LW )
r ≈ 1.24Kb

(

π − αi

2

)7/3(
Y l2i
Kb

)1/6

. (30)

Allowing the broad ranges 102 kBT / Kb / 104 kBT and
10 kBT/nm

2 / Y / 103 kBT/nm
2 for bilayer polyhedra

[42], this implies

0.1Kb(π − αi)
7/3l

1/3
i / G(LW )

r / 0.4Kb(π − αi)
7/3l

1/3
i ,
(31)

which should be compared to Eq. (7). The ridge energies
in Eqs. (7) and (31) yield similar results for a unit ridge
length, thus confirming the assumption d = 2b made in
Sec. III A. However, the estimate of the ridge energy due
to Lobkovsky and Witten has a stronger dependence on
the dihedral angle, but increases more slowly with Rp. In
addition to the ridge energy in Eq. (7), we will therefore
also consider Eq. (31) when calculating the total elastic
energy of bilayer polyhedra in Sec. VI.

V. ANALYSIS OF PORE ENERGIES

In Sec. III C we obtained Eqs. (14) and (21) as the elas-
tic bending energies associated with conical and polygo-
nal pores. The purpose of the present section is to discuss
how these pore energies vary with the elastic and geomet-
ric parameters characterizing polyhedral bilayer vesicles.

A. Conical pores

Figures 5(a,b) show plots of the conical pore energy in
Eq. (14) as a function of the pore radius for θ = 0 and
θ = 0.4π, respectively. The angle θ = 0 corresponds to
a flat bilayer, while θ = 0.4π roughly corresponds to the
vertex geometry of the tetrahedron. A notable feature of

the curves in Fig. 5 is that G
(c)
p exhibits a minimum as

a function of r. This optimal pore radius arises due to
the competition between the standard edge tension of a
straight bilayer edge [2] acting along the rim of the pore,
which leads to an energy cost increasing linearly with r,
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FIG. 5: (Color online) Total bending energy of a conical pore
in Eq. (14), rim contribution in Eq. (32), and loop contri-
bution in Eq. (33) versus pore radius r for [7] m = 2 nm,
h = 0.5 nm, and H⋆

0 = 0 nm−1, with (a) θ = 0 and (b)
θ = 0.4π.

and the bending energy associated with closing the pore,
which is expected to be large for small pore radii. We
can see this more clearly by returning to the Helfrich-
Canham-Evans free energy of bending in Eq. (1). For
simplicity we set H⋆

0 = 0 nm−1, in which case the “rim
contribution” corresponds to the integral over 1/R1 and
is given by

R = −πK⋆
b

∫ π/2

−π/2

dω cos(|ω| ∓ θ)
R2

R1

= πK⋆
b (πξ − 2 cos θ) , (32)

with ξ ∝ r, where the principal radii of curvature R1

and R2 are defined in Eqs. (11) and (12), respectively.
Similarly, the “loop contribution” is associated with the
integral over 1/R2 and evaluates to

L = −πK⋆
b

∫ π/2

−π/2

dω cos(|ω| ∓ θ)
R1

R2

= πK⋆
b [−πξ − 2 cos θ +W (ξ,−θ) +W (ξ, θ)] .

(33)

Neglecting terms which are constant in r, the sum of R

and L is equal to G
(c)
p in Eq. (14) for H⋆

0 = 0 nm−1.
Figure 5(a) shows that, in the case θ = 0, the rim and

pore contributions to G
(c)
p do indeed behave as expected,

with R increasing linearly with the pore circumference
2πr, and L decreasing with increasing r. The sum of R
and L exhibits a minimum as a function of r. As illus-
trated in Fig. 5(b), these characteristic features persist
for θ > 0, with the small r regime (0 < r / 2 nm) domi-
nated by the nonlinear behavior of the loop contribution
to the bending energy, and the large r regime (r ' 2 nm)
dominated by the linear behavior of the rim contribution.
Considering that the optimal pore radius typically found
from Eq. (14) is of the order of one nanometer, which is
close to the smallest length scales down to which a de-
scription of bilayer pores in terms of continuum elasticity

a
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FIG. 6: (Color online) Bending energy of a conical pore in
Eq. (14) versus pore radius r for [7] m = 2 nm, h = 0.5 nm,
and (a) θ = 0 and (b) θ = 0.4π for the indicated values of the
monolayer spontaneous curvature H⋆

0 .

theory can be expected to apply [43], it is questionable
[44] whether the optimal pore radius exhibited by conical
pores is of physical significance.
Figure 6 compares the pore energies obtained with

θ = 0 and θ > 0 for a number of different values of H⋆
0 .

For the range of spontaneous curvatures considered [7],
the pore energy is seen to decrease with increasing mono-
layer spontaneous curvature. However, for values of the
spontaneous curvature much larger (H⋆

0 ' 0.8 nm) than
those in Fig. 6, the rim curvature no longer suffices to re-
lax the spontaneous curvature and the pore energy rises
again with increasing H⋆

0 . Moreover, from Figs. 5 and 6
we observe the general trend that the conical pore en-
ergy is increased relative to the pore energy of a planar
bilayer, by up to approximately 13 K⋆

b for the parameter
values used in Figs. 5 and 6, with a larger increase in the
pore energy corresponding to a smaller apex angle.

What is the physical origin of the increase in G
(c)
p for

θ > 0? Comparing panels (a) and (b) in Figs. 5 and 6
we note that the fractional difference between the pore
energies for θ > 0 and θ = 0 is large for small pore radii,
but decreases as the pore radius increases. Indeed, the

ratio G
(c)
p (θ > 0, r)/G

(c)
p (θ = 0, r) approaches one as r

tends to infinity. In order to understand this behavior
on a qualitative level, note that rm = 0 for θ = 0, but
rm > 0 for θ > 0. In the latter case, if r = rm, the
inner sections of the pore “almost” touch, and the loop
contribution to the bending energy is large. For θ = 0,
however, there is still a pore of finite diameter at r = rm,
leading to a correspondingly smaller loop contribution to

the bending energy. As r becomes large, G
(c)
p (θ > 0, r)

andG
(c)
p (0, r) are both increasingly dominated by the rim

contribution to the bending energy, and, thus, their ratio
as a function of the pore radius approaches one.
Finally, we use our expression of the pore energy in

Eq. (14) to evaluate the edge tension, λ, associated with
a conical pore:

λ ≡
∂G

(c)
p

∂(2πr)
=

1

2π(m− h)

∂G
(c)
p

∂ξ
. (34)
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FIG. 7: (Color online) Edge tension λ in Eq. (34) for a conical
pore versus pore radius r for m = 2 nm and (a) θ = 0 and
h = 0.5 nm with K⋆

b = 10kBT , (b) θ = 0 and h = 0.5 nm with
K⋆

b = 20kBT , (c) θ = 0.4π and h = 0.5 nm withK⋆
b = 10kBT ,

and (d) θ = 0 and h = 0.8 nm with K⋆
b = 10kBT using

H⋆
0 = 0 nm−1 for the green (upper) curves, H⋆

0 = 0.15 nm−1

for the blue (middle) curves, and H⋆
0 = 0.3 nm−1 for the red

(lower) curves in each panel. The shaded regions of the plots
correspond to typical measured values [2] of the edge tension
of amphiphile bilayers.

Figure 7 shows plots of the edge tension in Eq. (34) as
a function of the pore radius and compares the calcu-
lated estimates to representative values of λ measured
in experiments [2]. Experimental estimates of the edge
tension typically rely [2] on measurement of the maxi-
mum disk size formed by lipid bilayers, or on measure-
ment of the pore radius in bilayers under tension. Our
theoretical estimates of the edge tension vary depending
on the choice for the numerical values of H⋆

0 and K⋆
b ,

but are found to be in broad agreement with experimen-
tal measurements. A notable discrepancy between theo-
retical and experimental results is that the edge tension
in Eq. (34) depends on r and can even become nega-
tive due to the non-monotonic behavior of the calculated
pore energy, while experiments typically report a single
(positive) value of the edge tension. This value could be
viewed as the asymptotic edge tension obtained in the
limit of large r, where the pore energy increases linearly
with r and the edge tension is therefore constant. More-
over, we find that the edge tension varies only little with
θ [see Figs. 7(a,c)]. This suggests that a non-zero θ has
the primary effect of shifting up the curve for the pore

energy, and only marginally distorts the variation of G
(c)
p
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FIG. 8: (Color online) Elastic bending energy of a polyg-
onal pore in Eq. (21) versus pore radius r for the icosahe-
dron, and ratio of conical and polygonal pore energies (inset),
for [7] m = 2 nm and h = 0.5 nm, using H⋆

0 = 0 nm−1

for the green curves (upper curves in the large-r regime),
H⋆

0 = 0.15 nm−1 for the blue curves (middle curves in the
large-r regime), and H⋆

0 = 0.3 nm−1 for the red curves (lower
curves in the large-r regime). The polygonal pore energy
is calculated by noting that, for the icosahedron, five ridges
meet at each vertex with the face angle βj = π/3. The cor-
responding conical pore energy is obtained using the vertex
angle Ω = 2π−5 arcsin(2/3) ≈ 2.6 for the icosahedron, which
gives θ ≈ 0.2π. The horizontal black line in the inset denotes
the ratio of the circumference of conical and polygonal pores,
which is equal to π/

(

5 sin π

6

)

≈ 1.3 for the icosahedron.

with r, which is also apparent from Figs. 5 and 6. How-
ever, changing the (relative) values of m and h does have
a pronounced effect on the numerical values of the pore
energy as well as on the edge tension [see Figs. 7(a,d)].

B. Polygonal pores

Figure 8 shows plots of the polygonal pore energy G
(p)
p

in Eq. (21) as a function of the pore radius r for the ver-
tex geometry of the icosahedron. A notable discrepancy
between the polygonal pore energy and the conical pore

energy in Eq. (14) is that G
(p)
p always increases linearly

with r and, hence, does not lead to an optimal pore ra-
dius for which the bending energy takes a minimal value.
However, Eq. (21) gives a similar range of the pore energy
as the corresponding expression for the bending energy
of a conical pore. In particular, the asymptotic value of

the ratio G
(c)
p /G

(p)
p is equal to the ratio of the pore cir-

cumferences in the two models, as indicated in the inset
of Fig. 8. Finally, we note from Fig. 8 and Eqs. (18)
and (20) that for small pore radii r / 2 nm the contri-

bution G
(1)
p to the polygonal pore energy dominates over

the contribution G
(2)
p , and vice versa. As a result, for
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the parameter values in Fig. 8, the polygonal pore en-
ergy increases with increasing spontaneous curvature for
small pore radii, but decreases with increasing sponta-
neous curvature for large pore radii.

VI. POLYHEDRAL BENDING ENERGIES

In this section we evaluate the total bending energy
of bilayer polyhedra as a function of the polyhedron ra-
dius Rp. As in Secs. III and IV, the polyhedron radius
is defined [21] through A = 4πR2

p, where A is the poly-
hedron area, which is in turn proportional to the polyhe-
dron ridge length with a proportionality constant char-
acteristic of the polyhedral geometry. The total bend-
ing energies associated with different polyhedral shapes
are compared for a fixed area rather than a fixed vol-
ume since, as discussed from a theoretical perspective in
Sec. IVA and also observed in experiments [6–8], closed
bilayer vertices are expected to break up to form pores,
thus allowing adjustment of the polyhedron volume for a
given number of amphiphiles or fixed surface area. Fol-
lowing Secs. III and IV, polyhedral bending energies in-
volve contributions due to ridges and vertices. The vertex
part of the polyhedron bending energy is independent of
the polyhedron size, and will generally favor bilayer poly-
hedra which only involve a few vertices. The ridge part of
the polyhedron bending energy, however, increases with
the polyhedron ridge length and, hence, with the poly-
hedron radius.
Since ridges impose an energetic cost one expects that,

for a fixed area and dihedral angle, the faces of bilayer
polyhedra relax to form regular polygons. While there
are infinitely many regular convex polygons, there are
only five regular convex polyhedra—the Platonic solids,
which are vertex-transitive, edge-transitive, and face-
transitive [26–28]. Thus, all vertices, ridges, and faces of
any given Platonic solid share the same geometric prop-
erties relating, for instance, to the values of face and
dihedral angles. A natural generalization of the Pla-
tonic solids are the semiregular polyhedra, which are
vertex-transitive and have regular (but not necessarily
congruent) polygons as faces. Apart from the Platonic
solids, the semiregular convex polyhedra encompass the
13 Archimedean solids and the two (infinitely large) fam-
ilies of prisms and antiprisms. Relaxing the constraint of
vertex-transitivity, one obtains the class of convex poly-
hedra with regular polygons as faces. In addition to
the Platonic solids, Archimedean solids, prisms, and an-
tiprisms, this class includes the 92 Johnson solids. It
has been shown [45, 46] that this list exhausts all convex
polyhedra with regular faces.
Thus, counting prisms and antiprisms as one solid

each, there are exactly 112 convex polyhedra with regu-
lar polygons as faces, and we will focus here on this set
of polyhedra. As representative examples of convex poly-
hedra with non-regular polygons as faces we will, how-
ever, also consider the bending energies of the Catalan

solids, which are the duals of the Archimedean solids and,
as such, are also highly symmetric. Figure 9 shows ex-
amples of polyhedra belonging to the different symme-
try classes [26–28, 47] we are concerned with here. In
particular, Sec. VIA presents results pertaining to the
bending energy of homogeneous bilayer polyhedra, and
Sec. VIB focuses on the bending energy of bilayer polyhe-
dra exhibiting segregation of excess amphiphiles. Finally,
Sec. VIC discusses to what extent our results regarding
the minimal bending energies of bilayer polyhedra can
be expected to be valid for ridge, vertex, and pore ener-
gies which deviate from the elastic models developed in
Secs. III and IV.

A. Homogeneous polyhedra

Figure 10 shows the bending energies of the convex
polyhedra with regular faces as a function of the polyhe-
dron radius Rp. To begin, consider homogeneous poly-
hedra with closed bilayer vertices [see Fig. 10(a)]. We
calculate the relevant bending energies using the expres-

sion G
(h)
r in Eq. (7) for the ridge energy and G

(h)
v in

Eq. (10) for the vertex energy, together with the geomet-
ric parameters characterizing the convex polyhedra with
regular polygons as faces [26–28, 47]. From Fig. 10(a) one
finds that spherical bilayer vesicles have a lower bending
energy than any of the polyhedral symmetries consid-
ered. Moreover, in agreement with a previous study [7],
we find that the icosahedron [see Fig. 9(a)] minimizes
bending energy among the Platonic solids. However, as
shown in Fig. 10(a), the icosahedron does not minimize
bending energy if one allows for more general polyhedral
symmetries.
As noted above, closed bilayer vertices may break up

to form (closed) pores, and the relevant energy curves are
displayed in Fig. 10(b). These curves are again obtained

with the ridge energy G
(h)
r in Eq. (7), but now this ex-

pression is combined with the polygonal pore energy G
(p)
p

in Eq. (21) for r = 0. Although the details of the results
in Fig. 10(b) are quantitatively different from those in
Fig. 10(a), we again find that in general the sphere is
energetically favorable over the convex polyhedra with
regular faces, and that the icosahedron does not mini-
mize elastic bending energy among arbitrary polyhedral
shapes. Increasing the pore radius does not change these
conclusions.
In Figs. 10(c,d) we plot polyhedral bending energy as a

function of Rp using the ridge energy G
(LW )
r in Eq. (31)

and the pore energy G
(p)
p in Eq. (21) with r = 0. As al-

ready mentioned above, simulations suggest [21, 22] that,

at least for the icosahedron, G
(LW )
r gives a good descrip-

tion of the ridge energy for Γ ' 107. Using the some-
what less stringent criterion Γ > 106, this then implies
Rp ' 400 nm for the upper bound Y/Kb = 10 nm−2 [see
Fig. 10(c)]. We also find with this modified expression
of the ridge energy that spherical bilayer vesicles have
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FIG. 9: (Color online) Image and net representations of (a)
the icosahedron, (b) the snub dodecahedron, (c) the snub
cube, (d) the great rhombicosidodecahedron, (e) the trian-
gular prism, (f) the square antiprism, (g) the gyroelongated
pentagonal birotunda, and (h) the pentagonal hexecontahe-
dron. Polyhedron (a) is a Platonic solid, polyhedra (b), (c),
and (d) are Archimedean solids, polyhedron (e) is a prism,
polyhedron (f) an antiprism, polyhedron (g) a Johnson solid,
and polyhedron (h) a Catalan solid. The Catalan solid in (h)
is the dual of the Archimedean solid in (b), and the polyhedra
in (b), (c), (g), and (h) are chiral.
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FIG. 10: (Color online) Total bending energies of the convex
polyhedra with regular faces, normalized by the bending en-
ergy of the icosahedron, Gi, for homogeneous bilayers with (a)

the vertex energy G
(h)
v in Eq. (10) and the ridge energy G

(h)
r

in Eq. (7), (b) the polygonal pore energy G
(p)
p in Eq. (21)

with r = 0 and the ridge energy G
(h)
r in Eq. (7), (c) the

polygonal pore energy G
(p)
p in Eq. (21) with r = 0 and the

upper bound Y/Kb = 10 nm−2 on the ridge energy G
(LW )
r in

Eq. (31), and (d) the polygonal pore energy G
(p)
p in Eq. (21)

with r = 0 and the lower bound Y/Kb = 10−3 nm−2 on the

ridge energy G
(LW )
r in Eq. (31). We use the parameter val-

ues [6, 7, 30] m = 2 nm, h = 0.5 nm, K⋆
b = Kb/100, and

H⋆
0 = 0 nm−1. The bold black curve denotes the bending en-

ergy of the sphere, and the colored (gray) curves denote the
bending energies of bilayer polyhedra, where the bold curve
minimizing polyhedral bending energy in the large-Rp regime
corresponds to the snub dodecahedron.

lower bending energy than any polyhedral shape consid-
ered, and that the icosahedron does not represent the
polyhedral shape with minimal bending energy. Apply-
ing the lower bound Y/Kb = 10−3 nm−2 has the effect of
shifting the curves for the ridge energy to larger polyhe-
dron radii, and does not modify these conclusions. The
corresponding results are shown in Fig. 10(d).

What is the polyhedral shape that minimizes the elas-
tic bending energy among the convex polyhedra with reg-
ular faces? As apparent from Fig. 10, the answer to this
question will generally depend on the polyhedron size
and the particular expression of the polyhedron energy
considered. Indeed, in the limit Rp → ∞ the icosahe-
dron only represents the 34th-lowest energy shape for the
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FIG. 11: (Color online) Ridge energies of the 13 Catalan
solids, normalized by the ridge energy of the icosahedron, Gi,

with (a) the ridge energy G
(h)
r in Eq. (7), and (b) the up-

per bound Y/Kb = 10 nm−2 on the ridge energy G
(LW )
r in

Eq. (31).

ridge energy G
(h)
r in Eq. (7), but the third-lowest energy

shape for G
(LW )
r in Eq. (31). However, for large enough

polyhedron sizes, the snub dodecahedron [see Fig. 9(b)]
minimizes polyhedral bending energy for all ridge en-
ergies considered in Fig. 10. Moreover, independently
of the particular expression of the polyhedral bending
energy used, the snub cube [see Fig. 9(c)] also has a
lower elastic bending energy than the icosahedron in this
limit. For the scenarios considered in panels (a), (b), and
(c) of Fig. 10, this asymptotic behavior already mani-
fests itself for the typical polyhedron size Rp ≈ 500 nm
observed in experiments [6–10], while the lower bound
Y/Kb = 10−3 nm−2 in Fig. 10(d) only applies to polyhe-
dron sizes much larger than the observed size of bilayer
polyhedra.
In Fig. 11 we compare the total ridge energies of the

13 Catalan solids to the total ridge energy of the icosa-
hedron as a function of the polyhedron radius. Panel

(a) of Fig. 11 is obtained using the ridge energy G
(h)
r in

Eq. (7), whereas panel (b) corresponds to the ridge en-

ergy G
(LW )
r in Eq. (31) with the upper or, analogously,

the lower bound on Y/Kb. Comparison of Fig. 11 with
the large-Rp regime in Fig. 10 shows that, as already an-
ticipated on intuitive grounds, the total ridge energies of
the Catalan solids are indeed much larger than those of
the convex polyhedra with regular polygons as faces.

B. Heterogeneous polyhedra

Perhaps the most basic result of the above analysis of
the elastic bending energies of homogeneous bilayer vesi-
cles is that, independently of the particular expression of
the polyhedral bending energy considered, spherical bi-
layer vesicles allow (much) lower bending energies than
bilayer polyhedra. However, according to the experimen-
tal observations in Refs. [6–8], pores are seeded into bi-
layers via molecular segregation if there is a slight excess

of one amphiphile species over the other. Thus, pores can
have a role beyond reducing the elastic bending energy
associated with the vertices of bilayer polyhedra. How do
the total bending energies of bilayer polyhedra compare
to the bending energies of spherical bilayer vesicles hav-
ing an equal (or greater) number of pores? This question
is addressed most conveniently by eliminating the ver-
tex energies altogether, and only comparing polyhedral
ridge energies to the total elastic energy associated with
spherical bilayer vesicles.

Allowing molecular segregation at pores only, and set-
ting the pore radius equal to zero, we again find that
the sphere is energetically favorable over any polyhedral
shape for physically relevant values of the polyhedron
radius [see Figs. 12(a,b)]. This conclusion holds for the

ridge energy G
(h)
r in Eq. (7) [see Fig. 12(a)] as well as

for the ridge energy G
(LW )
r in Eq. (31) [see Fig. 12(b)].

Furthermore, Figs. 12(a,b) imply that, even if there is no
energetic cost associated with the vertices of polyhedral
bilayer vesicles, spherical bilayer vesicles are still energet-
ically favorable. The latter point is particularly relevant
considering that, in analogy to pores forming in planar
membranes [38], the conical and polygonal pore geome-
tries we have considered here may not represent general
minima of polyhedral pore energies.

Figures 12(c,d) and 12(e,f) show the bending energy of
bilayer polyhedra with molecular segregation at pores of
radius r = 20 nm and r = 40 nm, respectively, using the

ridge energiesG
(h)
r in Eq. (7) and G

(LW )
r in Eq. (31). The

plots in Figs. 12(c,d) thereby correspond to the typical
polyhedra (Rp ≈ 500 nm) and pore (r ≈ 20 nm) sizes re-
ported in Refs. [6–10]. We note that the polyhedral ridge
length decreases with increasing r, leading to a reduction
in the polyhedral ridge energy. Hence, we expect that the
total polyhedral ridge energy decreases with increasing r
and, indeed, approaches zero as 2r approaches the ridge
length. This is borne out by the results in Fig. 12. How-
ever, the results in Fig. 12 also suggest that, for bilayer
polyhedra which only exhibit molecular segregation at
vertices, the regime for which polyhedral bending ener-
gies are smaller than the bending energy of the sphere is,
at best, very narrow. Thus, molecular segregation of ex-
cess amphiphiles at polyhedral vertices is not expected to
be sufficient to stabilize polyhedral bilayer vesicles over
spherical bilayer vesicles, even in the somewhat artificial
limit of molecular segregation at pores which are very
large in relation to the total polyhedron size.

Figure 13 shows the elastic bending energies of the con-
vex polyhedra with regular faces obtained with the ridge

energy G
(s)
r in Eq. (22) for perfect molecular segrega-

tion along ridges. First, consider the case in which there
is molecular segregation at ridges, but not at pores [see

Fig. 13(a)]. Using the pore energy G
(p)
p in Eq. (21) with

r = 0, we find a pronounced regime for which polyhedral
bilayer vesicles are energetically favorable over spherical
bilayer vesicles (Rp / 400 nm). For small Rp there is
a narrow regime for which the icosahedron is the poly-
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FIG. 12: (Color online) Total bending energies of the con-
vex polyhedra with regular faces, normalized by the bending
energy of the icosahedron, Gi, with segregation of excess am-
phiphiles at vertices but not at ridges. The energy curves are

obtained with the ridge energy G
(h)
r in Eq. (7) [panels (a), (c),

and (e)] and the upper bound Y/Kb = 10 nm−2 on the ridge

energy G
(LW )
r in Eq. (31) [panels (b), (d), and (f)] with pores

of radius (a,b) r = 0, (c,d) r = 20 nm, and (e,f) r = 40 nm
at each vertex. The bold black curve denotes the bending en-
ergy of the sphere, and the colored (gray) curves denote the
bending energies of bilayer polyhedra, where the bold curve
minimizing polyhedral bending energy in the large-Rp regime
corresponds to the snub dodecahedron.

hedral shape with minimal bending energy, while there
are more prominent regimes at larger polyhedron sizes
for which the snub cube and the snub dodecahedron are
the polyhedral shapes minimizing bending energy. Thus,
molecular segregation along ridges is found to be crucial
for the stabilization of polyhedral bilayer vesicles over
spherical bilayer vesicles.
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FIG. 13: (Color online) Total bending energies of the con-
vex polyhedra with regular faces, normalized by the bending
energy of the icosahedron, Gi, with segregation of excess am-
phiphiles at ridges but not pores [panel (a)], and at ridges
and pores [panels (b)–(f)]. For panel (a) we use the pore en-

ergy G
(p)
p in Eq. (21) with r = 0 and the ridge energy G

(s)
r

in Eq. (22) with the parameter values [6, 7, 30] m = 2 nm,
h = 0.5 nm, K⋆

b = Kb/100, and H⋆
0 = 0 nm−1. The re-

maining panels are obtained using only the ridge energy G
(s)
r

in Eq. (22) with pores of radius (b) r = 0, (c) r = 1 nm,
(d) r = 5 nm, (e) r = 20 nm, and (f) r = 40 nm. The
bold black curve denotes the bending energy of the sphere,
and the colored (gray) curves denote the bending energies of
bilayer polyhedra, where the bold curve minimizing polyhe-
dral bending energy in the large-Rp regime corresponds to the
snub dodecahedron.

Allowing molecular segregation at pores as well as
ridges, one obtains [48] the bending energies shown in
Figs. 13(b–f). We find a pronounced regime Rp / 600 nm
for which polyhedral bilayer vesicles are energetically fa-
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FIG. 14: (Color online) Theoretical estimates of the optimal
amphiphile imbalance rI , defined in Eq. (24), for the convex
polyhedra with regular faces as a function of the polyhedron
radius Rp with [7] m = 2 nm for (a) r = 0 nm and (b)
r = 20 nm.

vorable compared to spherical bilayer vesicles if the same
number of pores is seeded into all vesicles. The poly-
hedral shape which generally minimizes elastic bending
energy for the typical polyhedron size Rp ≈ 500 nm and
pore size r ≈ 20 nm observed in experiments [6–10] is
the snub dodecahedron. Moreover, for large pore radii a
sequence of polyhedral shapes with minimal bending en-
ergy is obtained as a function of pore radius. The most
notable of these polyhedral shapes is the great rhom-
bicosidodecahedron [see Fig. 9(c)], which surpasses the
snub dodecahedron in bending energy at Rp ≈ 300 nm
[Fig. 13(e)] or at Rp ≈ 600 nm [Fig. 13(f)].
As discussed in Sec. III D, the model of perfect molec-

ular segregation used for Figs. 12 and 13 allows us to ob-
tain a phenomenological estimate of the optimal amount
of excess amphiphiles for a given polyhedral shape and
size. Figure 14 shows plots of the ratio of the am-
phiphile species in excess to the total amphiphile con-
tent as a function of the polyhedron radius Rp for the
convex polyhedra with regular polygons as faces. For
the typical polyhedron radius Rp ≈ 500 nm and pore ra-
dius r ≈ 20 nm observed in experiments [6–10] we find
rI ≈ 0.51 as the optimal imbalance in the concentrations
of the two amphiphile species. The corresponding ex-
perimental estimate is rI ≈ 0.57 [6, 7]. We expect that
in experiments not all excess amphiphiles are segregated
along the ridges and vertices of polyhedra as a result of,
for instance, entropic mixing within bilayer polyhedra or
the formation of micelles [7]. Thus, our theoretical esti-
mate of rI is in reasonable accord with the experimental
results given the level of approximation involved in mak-
ing such estimates.

C. Generalized ridge energy

In Secs. VIA and VIB we found that, for large
enough polyhedron sizes, the snub dodecahedron mini-
mizes bending energy among the convex polyhedra with

regular polygons as faces. This result was obtained with
the heuristic expressions of the ridge energy in Eqs. (7)
and (22), and also with the limiting expression of the
ridge energy in Eq. (31). Does this conclusion regarding
the polyhedral shape with minimal bending energy also
hold for more general expressions of the ridge energy? To
address this question, consider ridge energies of the form

Gr ∝ (π − αi)
plqi , (35)

with p = 2 and q = 1 corresponding to Eqs. (7) and (22),
and p = 7/3 and q = 1/3 corresponding to Eq. (31).
As before, we seek the minimum energy shape among
the convex polyhedra with regular faces, but now as a
function of p and q. Numerically one finds that, if q is
chosen small (q / 0.2) or large (q ' 1.6) enough, one can
have p ' 2 with the snub dodecahedron no longer being
the minimum energy shape.
What physical scenarios could lead to a ridge energy

with values of p and q so that the snub dodecahedron does
not correspond to the most favorable polyhedral shape?
As discussed in Secs. III and IV, the available expressions
of the ridge energy obtained from elasticity theory firmly
lie within the regime for which the snub dodecahedron
minimizes elastic bending energy for large polyhedron
sizes. However, segregation of excess amphiphiles im-
plies that bilayer polyhedra are locally charged. Hence,
electrostatic interactions could, in principle, affect the
symmetry of bilayer polyhedra [6, 7] and modify the ridge
energy [50–52]. In Appendix B we provide a simple exam-
ple of how electrostatic interactions could lead to an ex-
pression of the ridge energy which is qualitatively differ-
ent from the elastic ridge energies considered in Secs. III
and IV, resulting in a polyhedron other than the snub
dodecahedron as the energetically most favorable poly-
hedral shape for large vesicle sizes.

VII. DISCUSSION

In agreement with expectations based on the classic
framework for describing and predicting vesicle shape [1–
4], our calculations imply that vesicles with smooth cur-
vature are favorable over polyhedral vesicles for bilayers
of uniform composition. However, allowing for molecu-
lar segregation of excess amphiphiles with high sponta-
neous curvature we find, consistent with the experimental
phenomenology of bilayer polyhedra [6–10], that polyhe-
dral bilayer vesicles can have lower elastic bending energy
than spherical bilayer vesicles. Furthermore, on the basis
of our calculations we expect bilayer vertices to be unsta-
ble to the formation of (closed) pores. Again, this result
is in agreement with experimental observations [6–8], and
suggests that bilayer polyhedra are permeable.
According to our theoretical analysis, the mechanism

lowering the bending energy of polyhedral bilayer vesicles
below the bending energy of spherical bilayer vesicles is
segregation of excess amphiphiles along the ridges of bi-
layer polyhedra as observed in Ref. [7]. Segregation at
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pores, which was originally suggested in Ref. [6] as a po-
tential mechanism stabilizing polyhedral vesicle shapes,
is not sufficient to produce polyhedra with bending ener-
gies which are favorable compared to the sphere for the
typical size of bilayer polyhedra observed in experiments
[6–10]. Moreover, independent of the particular expres-
sions of ridge, vertex, and pore energies used, we find
that the icosahedron does not minimize bending energy
among arbitrary polyhedral shapes. In fact, for large
enough polyhedron sizes, the snub dodecahedron is the
polyhedral shape minimizing bending energy among the
convex polyhedra with regular faces, and the snub cube
also has a lower bending energy than the icosahedron in
this limit. This result can be understood on a qualitative
level as arising from a trade-off between reduction of the
total ridge energy via a decrease in the total ridge length,
and an accompanying decrease in the dihedral angles as-
sociated with ridges, which in turn leads to an increase
in the density of the ridge energy.

What sets the characteristic range of polyhedron sizes
observed in experiments [6–10]? As noted above, molecu-
lar segregation along ridges is crucial for the stabilization
of bilayer polyhedra. For molecular segregation to signif-
icantly lower the elastic bending energy of bilayer poly-
hedra, there must be a sufficient number of excess am-
phiphiles to line polyhedral ridges [49]. However, while
the polyhedral ridge length increases linearly with the
polyhedron radius Rp, the number of excess amphiphiles
increases quadratically with Rp. In contrast, the bending
energy of spherical bilayer vesicles is, to a first approx-
imation, independent of Rp. Thus, we speculate that
the characteristic range of polyhedron sizes observed in
experiments roughly corresponds to the maximum poly-
hedron size which still gives a lower total bending energy
than the sphere. Following this simple heuristic argu-
ment, one obtains from Fig. 13 the characteristic polyhe-
dron size Rp ≈ 400–600 nm, which lies at the lower end
of the range of polyhedron sizes reported in Refs. [6–10].

Our comparisons between the total elastic bending en-
ergies of polyhedral and spherical bilayer vesicles relied
crucially on the ridge energies in Eqs. (7), (22), and (31),
respectively. The first two of these expressions involve
the parameter d corresponding to the arc length sus-
pended by a ridge. We fixed this parameter, and an
analogous parameter appearing in the vertex energy in
Eq. (10), by assuming that ridges bend over a spatial
scale corresponding to only two inter-amphiphile spac-
ings. Such molecularly sharp ridges are consistent with
a polyhedral vesicle shape. Also, with this choice of
d, Eqs. (7) and (22) are in broad agreement with the
ridge energy in Eq. (31) obtained [21–24] for a diverging
Föppl-von Kármán number. However, one might ques-
tion the validity of the Helfrich-Canham-Evans free en-
ergy of bending for ridge and vertex geometries exhibiting
large local curvature. Atomistic simulations [30, 43, 53]
would potentially allow the systematic investigation of
the limitations of the simple continuum models of poly-
hedral ridges and vertices used here.

A more gradual bending of the amphiphile bilayer
along ridges than assumed in Eqs. (7), (22), and (31)
would reduce the density of ridge energies. This, in turn,
could potentially stabilize facetted vesicles for polyhe-
dron sizes larger than the maximum polyhedron radii im-
plied by our analysis. Experimental results obtained on
the basis of electron and light microscopy indeed suggest
[6–10] that larger sizes of facetted vesicles may be stable,
and that these vesicles exhibit ridges and vertices which
bend more gradually than in the case of truly polyhedral
vesicles. However, the quantitative description of such
facetted vesicles calls for interacting ridge and vertex and
geometries, which we did not consider in our simple elas-
tic models of polyhedral ridges and vertices. Moreover,
a more comprehensive understanding of the characteris-
tic range of polyhedron sizes will, among other things,
necessitate a quantitative description of the formation of
bilayer polyhedra from spherical bilayer vesicles [6–10]
during the cooling down process. Such a description of
kinetic effects [30, 53] will also be necessary to predict the
distribution of the symmetries and sizes of polyhedral
bilayer vesicles, and may shed light on the mechanism
leading to the segregation of excess amphiphiles.

Our investigation of the elastic energy of polyhedral
bilayer vesicles was motivated by the proposal [7] that
the shape of bilayer polyhedra is governed by minimiza-
tion of elastic bending energy. The resulting expressions
of the total polyhedral bending energy are obtained from
simple models based on continuum elasticity theory, and
do not consider the details of molecular interactions be-
tween amphiphiles. An approach complementary to the
one developed here would therefore account for specific
molecular structures [54] of amphiphile bilayers. In par-
ticular, as far as the symmetry of polyhedral bilayer vesi-
cles is concerned, an intriguing possibility is that opti-
mal tilt angles between amphiphiles, which have been
reported for a variety of lipid species [55], might influ-
ence the packing of amphiphiles along polyhedral ver-
tices and ridges and, hence, affect the preferred vertex
and ridge geometries. While such a detailed molecular
study of the structure of bilayer polyhedra is beyond the
scope of the present article, we note that a molecular-
level approach is expected to suggest models of molecu-
lar segregation superior to the simple models of perfect
segregation of excess amphiphiles employed here (see, for
instance, Fig. 4), and permit a more realistic representa-
tion of the amphiphile species used in experimental in-
vestigations of bilayer polyhedra [6–10].

It is instructive to compare the results presented here
to recent theoretical studies carried out in the contexts
of two-dimensional superconductors with vortices [12],
viral capsids [13, 14], and the buckling of ionic shells
[15], which all employed approaches complementary to
ours. In agreement with our analysis, these studies sug-
gest that the elastic energies of chiral shapes such as the
snub dodecahedron and the snub cube can be favorable
compared to the icosahedron [12–14] and that, even if
the icosahedral shape is imposed, the minimum energy
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structure may still be chiral [15]. In our analysis we fol-
lowed the experimental phenomenology of bilayer poly-
hedra [6–10] and focused on contributions to the elastic
bending energy captured by the mean curvature. Thus,
we neglected other contributions to the free energy of bi-
layer polyhedra stemming, for instance, from the Gaus-
sian curvature, electrostatic interactions, or entropy loss
due to molecular segregation. These other contributions
to the free energy, as well as kinetic effects [30, 53] and
the detailed molecular structure of amphiphile bilayers
[54, 55] at polyhedral vertices and ridges, could poten-
tially modify the preferred vesicle shape and polyhedral
symmetry.

VIII. SUMMARY AND CONCLUSIONS

In this article we explored the total elastic bending en-
ergies of polyhedral bilayer vesicles [6–10]. Due to current
experimental uncertainties regarding the physical prop-
erties of bilayer polyhedra, we did not attempt to make
accurate estimates of the absolute values of the elastic
bending energy of polyhedral bilayer vesicles. Instead,
we made general predictions pertaining to the most fa-
vorable polyhedral symmetries, and to the competition
between polyhedral and spherical bilayer vesicles. Our
results only rely on broad assumptions concerning the
mechanical properties of bilayer polyhedra, and the ap-
plicability of the Helfrich-Canham-Evans free energy of
bending [17–19] at the ridges and vertices of bilayer poly-
hedra. We assessed the validity of these phenomenolog-
ical expressions of ridge and vertex energies by making
comparisons to solutions of the two-dimensional equa-
tions of elasticity obtained previously [20–25] for polyhe-
dral ridges and vertices in certain limiting cases.

In agreement with experiments on polyhedral bilayer
vesicles [6–10], we find that bilayer polyhedra can indeed
be energetically favorable compared to spherical bilayer
vesicles if one allows for molecular segregation of excess
amphiphiles along the ridges of bilayer polyhedra. Fur-
thermore, our calculations suggest that closed bilayer ver-
tices may break up to form pores, which is also consistent
with experimental observations [6–8]. However, our anal-
ysis implies that, contrary to what has been suggested on
the basis of experiments [6, 7], the icosahedron does not
represent the polyhedral shape with minimal bending en-
ergy among arbitrary polyhedral shapes and sizes. Using
a variety of different expressions of polyhedral bending
energy we find that, for large polyhedron sizes, the snub
dodecahedron and the snub cube have lower total bend-
ing energies than the icosahedron. Our results suggest re-
visiting the symmetry of polyhedral bilayer vesicles, and
the possible mechanisms governing their formation, in
greater experimental detail.
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Appendix A: Evaluation of conical pore energy

Substituting Eqs. (11)–(13) into the Helfrich-Canham-
Evans free energy of bending in Eq. (1) one obtains an
integral over ω with the integrand composed of a sum
of terms proportional to cos (|ω| ± θ) /R2, cos (|ω| ± θ),
and cos (|ω| ± θ)R2. The integrals corresponding to the
latter two terms can be evaluated by elementary meth-
ods. To evaluate the terms with integrands of the form
cos (|ω| ± θ) /R2 we note that

−
(m− h) cos(|ω| ± θ)

R2
=

cos2(|ω| ± θ)

ξ − cos(|ω| ± θ)
(A1)

and complete the square in the numerator on the right
hand side of the above expression. We then use the re-
sults [56]

∫

dx

ξ − cosx
=

2

(ξ2 − 1)
1/2

arctan

(

ξ2 − 1
)1/2

tan x
2

ξ − 1
,

(A2)

valid for ξ2 > 1, and

∫

dx
cosx

ξ − cosx
= −x+ ξ

∫

dx

ξ − cosx
, (A3)

valid for ξ − cosx 6= 0, to arrive at Eq. (14).

Appendix B: Electrostatic ridge energy

Betterton and Brenner [50] analyzed the effect of elec-
trostatics on the stability of planar membranes of fixed
area. Assuming that the surface charge density is con-
stant, the total charge contained in the screening cloud
surrounding the membrane in solution is also constant.
However, the volume of the screening cloud depends on
the membrane geometry. In particular, formation of
pores increases the volume accessible to counterions, thus
leading to an increase in entropy compared to planar
membranes. The gain in free energy due to pore forma-
tion can be quantified [50] by noting that, for r ≪ λD,
where r is the pore radius and λD is the Debye length,
the screening cloud gains a volume 2πλDr2 through pore
formation. Similarly, for r ≫ λD, the volume change is
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FIG. 15: (Color online) Image and net representations of the
gyroelongated square dipyramid.

π2λ2
Dr. Approximating the strength of the electrostatic

field in the screening cloud by E = σ/ǫ0D, where σ is the
surface charge density, ǫ0 is the electric constant, and D
is the dielectric constant, one therefore expects an energy
decrease of

U =

{

πσ2

ǫ0D
λDr2 for r ≪ λD ,

π2σ2

2ǫ0D
λ2
Dr for r ≫ λD ,

(B1)

in which we have set the energy density of the electro-
static field equal to 1

2ǫ0DE2.
The heuristic estimates in Eq. (B1) are confirmed [50]

by solving the Debye-Hückel equation for a pore in a
charged membrane. The electrostatic contributions to
the free energy in Eq. (B1) are in competition with the
energy penalty imposed by line tension along the pore
edge. As shown in Sec. V, the elastic pore energy is ap-
proximately linear in the pore radius beyond r ≈ 2 nm.
Thus, in principle there could be a regime for which pores
of a finite radius are stable due to the competition be-
tween elastic and electrostatic contributions to the free
energy, although attaining such a regime would require
[50] delicate adjustment of the various elastic and elec-
trostatic parameters.

Based on the picture [50] outline above, we can ob-
tain a heuristic expression of the electrostatic ridge en-
ergy. Describing a ridge as a bilayer bending by an angle
π − αi around a cylinder of radius R1 with charged am-
phiphiles in the outer membrane leaflet only (see Fig. 4),
the volume of the screening cloud associated with a ridge
of length li is approximately given by

π − αi

2

(

λ2
D + 2R1λD

)

li , (B2)

where we have followed the experimental observations in
Refs. [6, 7] and assumed that λD ≫ m. Thus, one finds
that the electrostatic energy is decreased by

U =
σ2

4ǫ0D

∑

i

(

λ2
D + 2R1λD

)

(π − αi)li (B3)

through the formation of a ridge. In contrast to elastic
ridge energies, the polyhedral shape with the most favor-
able electrostatic ridge energy maximizes, for R1 ≪ λD,
∑

i(π − αi)li within this heuristic picture. Among the
convex polyhedra with regular polygons as faces, this is
achieved by the gyroelongated square dipyramid shown
in Fig. 15, while the snub dodecahedron produces a some-
what smaller value of

∑

i(π − αi)li than the icosahe-
dron. However, based on the experimental phenomenol-
ogy of bilayer polyhedra, electrostatic contributions to
the free energy are expected [7] to be negligible compared
to elastic contributions. Furthermore, it is questionable
whether the assumption of a constant overall charge holds
for bilayer polyhedra, and whether the mean-field pic-
ture invoked here represents a good approximation of
the energetics governing the narrow counterion clouds
surrounding polyhedral ridges.
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