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Abstract

The second self-diffusion and viscosity virial coefficients of the Lennard-Jones (LJ) fluid were

calculated by a detailed evaluation of the velocity and shear-stress autocorrelation functions using

equilibrium molecular dynamics simulations at low and moderate densities. Accurate calculation

of these coefficients requires corresponding transport coefficient values with low degrees of uncer-

tainty. These were obtained via very long simulations by increasing the number of particles and by

using the knowledge of correlation functions in the Green-Kubo method in conjunction with their

corresponding generalized Einstein relations. The values of the self-diffusion and shear viscosity

coefficients have been evaluated for systems with reduced densities between 0.0005 and 0.05, and

reduced temperatures from 0.7 to 30.0. This provides a new insight into the transport coefficients

beyond what can be offered by the Rainwater-Friend theory, which has not been developed for the

self-diffusion coefficient.
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I. INTRODUCTION

Transport coefficients, which are important to many applications, particularly the opti-

mization of chemical processes, depend on temperature and density as well as on the type

of fluid. Hence, accurately predicting these coefficients for even simple fluids over a wide

range of densities and temperatures has been a matter of much consideration within the

field of nonequilibrium statistical mechanics, dating from the Enskog’s early work [1, 2]. At

present, there are several approaches to the study of transport coefficients; some of them

are as follows: the Chapman-Enskog solution of the Boltzmann equation in the kinetic the-

ory for low densities (zero-density limit), the Rainwater-Friend (RF) and modified Enskog

theory for moderate densities, and the corresponding states correlation function theory for

high densities [3–12]. The time correlation function theory can also be used to calculate the

transport coefficients at all densities and temperatures [13].

The second transport virial coefficient may be evaluated as the first density correction

of its corresponding transport coefficient. In the 1980s, Rainwater and Friend introduced

a theoretical model for the calculation of second transport virial coefficients containing

the effects of two-body collisional transfer and both three-monomer and monomer-dimer

collisions [7, 8]. This theory is supported by the fact that a real fluid differs from a hard

sphere mainly in the temperature dependence of the collision frequency and pressure of

the fluid. Rainwater and Friend presented the second viscosity and thermal conductivity

virial coefficients for the Lennard-Jones (LJ) potential model [7, 8]. Najafi and co-workers

employed the more accurate potential of HFD-type (Hartree-Fock-Dispersion) for noble gases

and Behnejad et al. used an accurate and realistic Morse-Spline-Van der Waals (MSV)

potential model to improve upon the theoretical results produced by the Rainwater and

Friend model for real fluids [9–12, 14–16].

The major difficulty in comparing the theoretical results of model fluids with the exper-

imental results is the differences between the model and real Hamiltonians [17]. For this

reason, computer simulations of model fluids can be used for assessing theories. In this

work, the second virial coefficients of the viscosity and self-diffusion coefficients have been

calculated by equilibrium molecular dynamics (EMD) simulations for LJ fluids. The results

of the viscosity coefficients have been compared using the Rainwater-Friend theory [8]. To

date, the Rainwater-Friend theory has not been extended to the self-diffusion coefficient.
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The application of EMD to the calculation of transport properties is well known, but

the correct evaluation of the correlation functions used to obtain second transport virial

coefficients is a troublesome task. While experimental data generated by Teske and Vogel

show that the effect of the second viscosity virial coefficient at densities lower than 0.002 is

only 1%, the statistical uncertainties in the simulation results found by Meier et al., who

simulated a LJ model fluid in extensive ranges of temperature and density, are more than 10%

for the viscosity and 1% for the self-diffusion coefficients at low densities [18–22]. Meier and

co-workers stated that reliable results for the second transport virial coefficients could not

be given with any reasonable degree of precision. Nevertheless, these researchers explored

a possible means of estimating the second self-diffusion virial coefficient as a function of

temperature. In addition, at low densities, the density dependence of transport coefficients

must be determined by interpolation. To our knowledge, this has not been investigated, so

we extended our investigation to the densities as low as 0.0005. As Alder and Wainwright

pointed out, the study of autocorrelation functions at low densities made difficult by the fact

that the system must be so large that a molecule undergoes many collisions before a sound

wave travels across the whole system [23]. Since the correlation functions decay very slowly

at low densities, the uncertainty of the values for long correlation times has been discussed in

detail. Furthermore, we increased the length of the simulation to 50 times that of previous

studies to decrease the likelihood of statistical error, and we increased the number of particles

to 2048 to improve the accuracy of the self-diffusion coefficient, which is a single-particle

property [20, 21]. The latter is particularly useful because it can decrease the artificial effects

of periodic boundary conditions (PBC) on the velocity autocorrelation functions for long

correlation times. In addition, a detailed analysis on autocorrelation functions has been

performed to evaluate the decay time values, the artificial effects from PBC, and the decay

behavior at long correlation time. Finally, the self-diffusion coefficients were calculated

using the Einstein approach, in which some of the parameters were determined according

to velocity autocorrelation functions, while the shear viscosity coefficients were obtained

directly by evaluating shear-stress correlation functions using the Green-Kubo approach [13].

This paper is organized as follows: The next section provides a theoretical background

for transport coefficients and presents the details of the simulation. Section III evaluates

the behavior of autocorrelation functions. Sections IV and V present the methods and the

results for the calculated second self-diffusion and viscosity virial coefficients, respectively.
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II. THEORY AND SIMULATION DETAILS

In contrast to thermodynamic properties, transport coefficients cannot be evaluated as a

power series of density so that a logarithmic term appears in the series such as the following:

X(ρ, T ) = X0(T )
[

1 +BX ρ+ CX ρ2lnρ+DX ρ2 + · · ·
]

, (1)

whereX isDρ, the self-diffusion coefficient, or η, the shear viscosity coefficient [24]. It should

be noted that D is multiplied by ρ to remove the singularity of the self-diffusion coefficients

in zero density limit, and, in this paper, Dρ is referred to as self-diffusion for simplicity [1, 3].

BD and Bη are the second self-diffusion and shear viscosity virial coefficients, while CX and

DX are higher-order virial transport coefficients. (Dρ)0 and η0 are the zero density limits

of the self-diffusion and viscosity coefficients, which can be obtained by the kinetic theory

from the Chapman-Enskog solution of the Boltzmann equation [3].

Evaluation of the second transport virial coefficients requires their corresponding trans-

port coefficients at the low and moderate densities along the desired isotherms. Therefore,

180 state points were selected on the phase diagram of a LJ model fluid with reduced density

ranging from 0.0005 to 0.05, and reduced temperatures ranging from 0.7 to 30.0. Reduced

quantities are defined as follows: reduced temperature, T ∗ = kT/ε; reduced shear viscos-

ity coefficient, η∗ = ησ2/
√
mε; reduced self-diffusion coefficient, D∗ = D

√

m/ε/σ; reduced

time, t∗ = t
√

ε/m/σ; reduced density, ρ∗ = ρσ3, where k is the Boltzmann constant, m is

the mass of a particle, and ε and σ are the energy and length scaling parameters for LJ

potential as follows:

VLJ = 4ε

{

(σ

r

)12

−
(σ

r

)6
}

. (2)

One of the methods for calculating transport coefficients, which is applicable to all den-

sities and temperatures, is the time correlation function approach, which is a result of the

Onsager hypothesis [13, 25]. Using this method, which is based on linear response theory,

the self-diffusion coefficient can be calculated using the Green-Kubo integral equation or

equivalently via its corresponding Einstein relation:

D =
1

3N

N
∑

i=0

∫

∞

0

〈vi(t) · vi(t0)〉 dt, (3)

D = lim
t→∞

1

6N

N
∑

i=1

d

dt

〈

[ri(t)− ri(t0)]
2
〉

, (4)
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where N is the number of particles, ri and vi are the position and velocity vectors of

particle i, respectively, and t is time [26]. The angular brackets indicate ensemble averaging

over short sub-trajectories of the system with time origin, t0. In both relations, averaging

is over all particles to reduce likelihood of statistical error. Similarly, the shear viscosity

coefficients can be calculated using the Green-Kubo integral equation or equivalently using

its corresponding Einstein relation as follows:

η =
V

kT

∫

∞

0

〈ταβ(t)ταβ(t0)〉 dt, (5)

η =
V

2kT
lim
t→∞

d

dt

〈[

m

V

N
∑

i=1

[vi,α(t)ri,β(t)− vi,α(t0)ri,β(t0)]

]2〉

, (6)

where, V stands for the volume of the primary cell, ταβ denotes an off-diagonal element of

the stress tensor, vi,α and ri,β are the Cartesian components of the velocity and position for

particle i (α, β = x, y, z;α 6= β). In order to decrease likelihood of statistical error, averaging

is performed over all independent tensor elements e.g., τxy, τxz, τyz; ταβ is related to phase

space variables of simulated system as follows:

ταβ = − 1

V

N
∑

i=1

mvi,αvi,β −
1

V

N−1
∑

i=1

N
∑

j=i+1

rij,αfij,β, (7)

in which fij,β is β component of the force vector and rij,α is the α component of the distance

vector between particles i and j [27]. The instant positions and velocities of particles can

be obtained by EMD simulations; the accuracy depends on the integration algorithm and

simulation parameters. In this work, we used optimized simulation parameters to decrease

the rate of computational error and improve the required statistical precision for evaluating

the second virial transport coefficients. The systems were equilibrated 5×106 and simulated

1 × 108 time-steps for the low density, and 1 × 106 and 5 × 107 for the moderate density

states by the DL POLY molecular dynamics parallel simulation package in NVE ensemble

with 2048 LJ particles in the primary cell under the cubic periodic boundary conditions and

sampled at every 50th time-step for the positions and velocities of all particles as well as at

the every time-step for the independent off-diagonal elements of the stress tensor [28]. The

time-step length (∆t∗) and the potential cutoff radius parameters were selected as 0.0023

and 6.75 in the reduced units, respectively. The Lennard-Jones potential model was used to

compare the simulated results to the values of the second viscosity virial coefficients from
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the Rainwater-Friend theory [8]. NVE is the intrinsic ensemble of EMD, so it produces

much realistic phase space trajectories at longer time periods. However, using this ensemble

leads to small differences between the simulated and the desired temperatures, but these

can be accounted for by applying a proper temperature correction. Equilibrium status of

the systems was checked by comparing the averaged configuration energy, temperature and

pressure values in two different intervals from the initial and final parts of the simulated

trajectories. Moreover, the results of this examination confirm the stability of the velocity-

Verlet integrator for a LJ system even for very long simulations.

III. EVALUATION OF THE AUTOCORRELATION FUNCTIONS

The self-diffusion coefficient is related to the velocity autocorrelation function integral

as in Eq. (3) and the shear viscosity is related to the off-diagonal elements of the stress

tensor correlation function as in Eq. (5). Hence, the study of these functions is useful

for the more accurate calculation of the corresponding transport coefficients. First, the

presence or absence of the long-time tail for correlation functions was examined to assess

the accumulation of computational errors at long times.

Velocity autocorrelation function (VACF), 〈v(t) · v(t0)〉, shows how the present velocity

of a particle is related to its previous value and how that effects its subsequent velocities.

According to the Boltzmann-Enskog theory and the macroscopic Langevin relation, VACF

decays exponentially, but Alder and Wainwright found a power decay at the long correlation

time using EMD simulations of 500 hard spheres particles at a reduced density of 0.47 and

found that VACF decays as t−d/2 in the long term, where d is the dimension of the simulated

system [23, 29, 30]. Recently, Isobe revisited the 2D long-time tail problem with 1 × 106

particles and performed a large-scale, long-time, statistically accurate EMD simulation and

found that, in moderately dense fluids, VACF decays slightly faster than ∼ 1/t [31]. This

is in accordance with the prediction of the self-consistent mode-coupling theory in the long-

time limit, ∼ 1/t
√
lnt [32, 33]. At long correlation times, the power decay of VACF, rather

than the exponential decay, is related to the domination of the transverse hydrodynamic

mode to the longitudinal mode in the dissipation of particle momentum over long periods

of time.

Nevertheless, the longitudinal hydrodynamics mode in the momentum dissipation, which
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propagates through the periodic boundary conditions, can reflect the artificial correlations at

long time and should be considered in the study of very slow decaying correlation functions,

such as those used in the present project. The maximum value of time, tmax, in which the

error from the artificial effect of PBC on the correlations is not important, can be related

to the length of the simulation cell by tmax = L/cs = 1/cs(N/ρ)1/3, where cs is the speed of

sound. Here, we used the following equation to calculate cs from EMD simulation as follows:

cs =

√

1

ρmκs

, (8)

where, m is the atomic mass, and κs is the adiabatic compressibility, which is calculated for

LJ systems as follows:

κ∗

s =
κsε

σ3
=

[

7P ∗ − 16ρ∗T ∗

3
− 8ρ∗U∗

c − N

ρ∗T ∗

〈

(δP ∗)2
〉

]

−1

(9)

where, U∗

c is the reduced internal energy per atom [34]. Table I shows adiabatic compress-

ibility, the speed of sound, and tmax values for systems with particle numbers from 108 to

4000, simulated for the duration of t∗ = 1×108 at T ∗ = 1.2 and ρ∗ = 0.001. It is worthwhile

to note that the number of particles has no significant effect on κ∗

s , so tmax increases as the

cubic root of the number of atoms does.

In the other hand, common numerical calculation errors and errors from approximations

in the integration algorithms can accumulate over longer correlation times, and their effects

become intensified. Averaging over numerous statistical samples can reduce these errors.

Furthermore, to improve the statistical precision, every simulated trajectory can be divided

into many sub-trajectories, or time windows, in which the correlation functions decay to

zero [35]. The time interval between two successive time windows, t∗o, and the time interval

between two successive sampling from the simulated trajectory, t∗s , can be optimized to

save CPU time. For the system with 1372 particles at a reduced density of 0.05 and a

reduced temperature of 1.0 simulated for the duration of t∗ = 14000, Figure 1 shows that

the curves of VACFs for t∗s = ∆t∗ (square symbol) and t∗s = 500∆t∗ (circle symbol) are

the same. Furthermore, these results indicate an unspecified deviation from exponential

decay over long periods of time. This seems due to the finite size effects, so, according to

Alder and Wainwright and, more recently, Naitoh et al., we applied a correction on VACF

by adding a constant correction term, 1/(N − 1), to the results of simulation with 1372

particles [23, 36]. This is based on the theory of conservation of momentum: whenever
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one particle has a velocity v, the average velocity of other particles should be −v/(N − 1).

Subsequently, the corrected results (represented by a diamond symbol) are compatible with

the results (represented by a triangle symbol) from the simulation of a system with 2048

particles at the same density and temperature. Figure 1 shows that both correlations from

the simulation of 2048 particles during t∗ = 4.6×103 and corrected correlations obtained from

the simulation of 1372 particles demonstrate a power decay. This long-time tail, however,

seems to disappear when the length of the simulation is extended from t∗ = 4.6 × 103 to

t∗ = 1.4× 105. Thus, for systems with 2048 particles at various densities and temperatures,

such as the one in the present work, the long-time tail has not been found to have correlation

time values less than t∗max. Similarly, the effect of t∗o on shear-stress correlations has been

examined for the system with a reduced density of 0.01 and a reduced temperature of 5.0

with sampling performed at every step and a simulation of t∗ = 2.3 × 105 in duration.

Figure 2 demonstrates that there are no significant differences for the correlation values

when t∗o is less than 500∆t∗. In addition, a comparison of Figure 1 to Figure 2 indicates that

the uncertainty in the velocity autocorrelation values is in the order of 10−4 while for the

normalized shear-stress correlations, the uncertainty is in the order of 10−3. Thus, it can be

concluded that the self-diffusion coefficients can be obtained much accurately.

IV. CALCULATION OF SECOND SELF-DIFFUSION VIRIAL COEFFICIENTS

In order to calculate the self-diffusion coefficients precisely, we used both the knowledge

obtained from Green-Kubo evaluation of VACF and the Einstein approach. The Einstein

approach is preferred because the velocity-Verlet integrator computes the positions more

accurate than the velocities, and the evaluation of VACF is useful because it gives the

lowest physically infinite time in Eq. (4) [27]. This mixed method can avoid the errors

that would arise on the mean-squared displacement (MSD) curves if a linear regime were

to be used. Moreover, the self-diffusion coefficient is a single-particle property, so it can

be averaged out over all particles to increase statistical accuracy. In practice, at each state

point, we calculated the values of D∗ρ∗ as a function of the correlation time by measuring

the instant slope of MSD for all particles, and then we averaged the values beyond decay

time in the VACF curves. Figure 3 shows the typical D∗ρ∗ variations versus the time of

correlation for a system with a reduced temperature of 1.8 and a reduced density of 0.02.
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There are only small variations around the mean value. Thus, the standard deviations are

small and it is possible to calculate the self-diffusion coefficient values to a high level of

precision using the simulation parameters described in this work.

In order to calculate MSD and VACF curves, the order-n algorithm was used because

it can be adjusted to the sampling parameters. This makes it applicable for computing

both the slow and fast correlation decays simultaneously, namely the low- and high-density

systems. In this algorithm, the block sums of the velocities are first calculated and saved in

distinct time intervals, and then the values of the velocities are determined at the desired

times by using a recursive relation between the values of the subsequent block sums. More

details about this algorithm can be found in Ref. [37].

The values of the self-diffusion coefficients and their standard deviations are presented

in Table I in the Supplementary Information section [38]. The values at zero density limit

are calculated from the Chapman-Enskog theory [3]. For isotherms of 0.7, 0.8, and 0.9,

the systems are metastable at densities higher than 0.015, 0.03, and 0.045, respectively,

so the temperature values of these systems change toward the nearest stable states due to

adjustment of temperature in the NVE ensemble during the equilibration stage.

While the calculation of the second self-diffusion virial coefficients necessarily involves a

survey of the self-diffusion density dependence along specified isotherms (FIG. 4), the self-

diffusion coefficient values are related to the simulated temperatures, which are somewhat

different from the desired temperatures. Because the standard deviations of the calculated

self-diffusion coefficients are very low, it is useful to have a temperature correction on them

to adjust their values for the desired isotherms. The differences between the simulated (T ∗

sim)

and the desired temperatures (T ∗

des) are small, so a first-order Taylor series in terms of the

reduced temperature can be used to predict D∗ρ∗ at T ∗

des as follows:

D∗ρ∗ (ρ∗, T ∗

des) = D∗ρ∗ (ρ∗, T ∗

sim) + (T ∗

des − T ∗

sim)
∆D∗ρ∗ (ρ∗, T ∗

sim)

∆T ∗
(10)

where the first derivative is approximated from the difference between D∗ρ∗ at T ∗

sim and

D∗ρ∗ at the nearest simulated temperature to T ∗

des along an isochore. The values at T ∗

sim

are shown as the unfilled circles and the corrected values are shown as the filled squares

with error bars in Figures 4(a) and 4(b). These figures show the density dependence of

the reduced self-diffusion coefficients divided by their values at the zero density limit that

is calculated from the Chapman-Enskog theory at the different temperatures. The results
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indicate that it is possible to approximate the values of the self-diffusion coefficients as the

first order power series of density, as in Eq. (1), within the density ranges covered in this

project, so we calculated the second self-diffusion virial coefficients as the slope of solid

straight lines in FIG. 4(a) and in FIG. 4(b) up to the reduced temperature of T ∗ = 5.0. At

higher temperatures, it seems that higher order terms in Eq. (1) are not negligible. Thus,

the isotherms of T ∗ = 8.0, T ∗ = 20.0 and T ∗ = 30.0 can be fitted to Eq. (1) up to the

fourth virial coefficients (dotted line in FIG. 5). This also indicates the importance of the

logarithmic term in Eq. (1) by which it becomes possible to give a suitable fit.

The values of the second self-diffusion virial coefficient at different temperatures and their

standard deviations are presented in Table II. The thermal behavior of them is also shown

graphically in Figure 6 and compared with the approximated values reported by Meier et

al. [20]. The differences are from 12% up to 35%. The overall thermal behavior of the second

self-diffusion virial coefficient is similar to the thermal behavior of the second viscosity and

thermal conductivity virial coefficient predicted by the Rainwater-Friend theory [8].

V. CALCULATION OF THE SECOND VISCOSITY VIRIAL COEFFICIENTS

Since the shear viscosity coefficient is a collective property, increasing the number of

particles should not have any significant effect on increasing the statistical precision. Nev-

ertheless, to explore it precisely, we performed a set of simulations at a stated point with a

reduced density of 0.001 and a reduced temperature of 1.2 by different numbers of particles

in the primary simulation cell. In all cases, the simulation length was t∗ = 2.3 × 105 and

other parameters were given as in section II. Figure 7 shows the results of the normalized

shear-stress correlation function for these systems. Small deviations in these curves, which

grow with time, cannot be attributed to the number of particles because there is no linear

relation between them. For example, the curves corresponding to 108 and 4000 particles co-

incide with each other, and the small deviations between other curves are due to temperature

variation and computational errors.

In contrast to the self-diffusion, the viscosity coefficient is not averaged over all particles,

so it is obtained with less statistical precision at the same simulation length. Therefore, con-

fidently determining a linear regime in the generalized mean-squared displacement functions

as in the Einstein approach shown in Eq. (6) is difficult. Moreover, this approach cannot
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be applied directly because the particles trajectories are not continuous in a system that

is simulated under periodic boundary conditions. In this work, we used the Green-Kubo

approach as described in Eq. (5) to calculate the shear viscosity coefficients. In practice,

at every state point, we calculated the values of η∗ as a function of time by integrating

the shear-stress correlation function and then we averaged the values beyond its decay time.

The variations around mean values of the calculated viscosity coefficients (FIG. 8) are higher

than the variations around mean values of the calculated self-diffusion coefficients (FIG. 3)

when all simulation parameters are equal.

The values of the reduced viscosity coefficients and their standard deviations are presented

in Table I of the Supplementary Information section. The values at zero density limit are

calculated using the Chapman-Enskog theory [3]. As with self-diffusion, shear viscosity

coefficient values are related to the simulated temperatures, which are somewhat different

from the desired temperatures, so they can be corrected by using the first-order Taylor

series in terms of the reduced temperature, as in Eq. (10), for the self-diffusion coefficient,

to obtain η∗ at T ∗

des.

Figures 9(a) and 9(b) show the density dependence of the reduced-viscosity coefficients

divided by their values at zero density limit at different temperatures. Although the consis-

tency between viscosities is less than the self-diffusion coefficients, nevertheless, it is possible

to approximate their values as the first order power series of density, as in Eq. (1). Thus,

the second viscosity virial coefficients can be calculated as the slope of the solid straight

lines in Figures 9(a) and 9(b) for all isotherms. The values of the second viscosity virial

coefficient at different temperatures and standard deviations are presented in Table II. Fig-

ure 10 compares the second viscosity virial coefficients calculated in this work with those

reported by the Rainwater-Friend theory at different temperatures. The figure indicates

that for temperatures beyond T∗ = 1.0 the simulated B∗

η values are appropriately described

by the Rainwater-Friend theory. However, for the reduced temperatures of 0.8, 0.9, and 1.0,

the simulated values are higher than the values from the Rainwater-Friend theory and for

T ∗ = 0.7, uncertainty in the simulated value is too high to permit a strong statement.
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VI. CONCLUSION

The effect of second transport virial coefficients is very small at low densities, so it can be

hidden by common simulation errors. This makes it difficult to calculate second transport

virial coefficients using common simulation methods. This is why calculation of the second

virial transport coefficients requires highly accurate, consistent data for the corresponding

transport coefficients in the low and moderate densities. In the present work, we reduced

simulation errors by performing very long equilibrium molecular dynamics simulations using

optimized parameters. We also evaluated the correlation functions to remove the artificial

effects of periodic boundary conditions on the results. Standard deviations of the self-

diffusion coefficients obtained in this work are small, so it is possible to extract the second

self-diffusion virial coefficients from the data. The results also indicate that even at the high

reduced temperatures of 20.0 and 30.0, at which the linear regime cannot be observed, the

density expansion with logarithmic terms, as in Eq. (1), can be established. Although, the

standard deviations of the simulated viscosity coefficients are not so low as the standard

deviations of the self-diffusion coefficients, it is still possible to extract the second viscosity

virial coefficients with only reasonable levels of uncertainty. The comparison of the second

viscosity virial coefficient with the results of the Rainwater-Friend theory shows that they

are compatible beyond T ∗ = 1.0 in the error bars, but at this and lower temperatures the

simulated values are higher than the values from RF theory.
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FIGURE CAPTIONS:

FIG. 1. Effects of sampling parameter, t∗s ; number of particles, N ; length of simulation;

and 1/(N − 1) correction on the velocity autocorrelation function of LJ fluid at reduced

density of 0.05 and reduced temperature of 1.0.

FIG. 2. Effect of time interval between the beginnings of two successive time windows,

t∗o, on calculation of the normalized shear-stress correlation function of LJ fluid at a reduced

density of 0.01 and a reduced temperature of 5.0.

FIG. 3. Reduced self-diffusion coefficient of LJ fluid at a reduced temperature of 1.8

and a reduced density of 0.02 versus time of correlation (a) from zero-time and (b) from

decay-time. (Dotted line: mean value.)

FIG. 4. Density dependence of the simulated reduced self-diffusion coefficients of LJ

fluid divided by their values at zero density limit from the Chapman-Enskog theory (a) for

isotherms of 0.7 to 1.5 and (b) for isotherms of 1.8 to 5.0. (Filled squares with error bars:

temperature corrected values; circles: values at simulated temperatures; solid line: fitted

linear regime.)

FIG. 5. Density dependence of the simulated reduced self-diffusion coefficients of LJ fluid

divided by their values at zero density limit from the Chapman-Enskog theory for isotherms

of 8.0, 20.0, and 30.0. (Legend as in FIG. 4; dotted line: fitted up to fourth term of Eq. (1).)

FIG. 6. Second self-diffusion virial coefficients of LJ fluid as a function of reduced tem-

perature. (Circles with error bars: this work; crosses: from Ref. [20].)

FIG. 7. Normalized shear-stress correlation functions of LJ fluid at a reduced temperature

of 1.2 and a reduced density of 0.001 with different numbers of atoms in the simulation

primary cell.

FIG. 8. Reduced viscosity coefficient of LJ fluid at a reduced temperature of 1.8 and a

reduced density of 0.02 versus time of correlation (a) from zero-time and (b) from decay-time.

(Dotted line: mean value.)

FIG. 9. Density dependence of the simulated reduced viscosity coefficients of LJ fluid di-

vided by their values at zero density limit from the Chapman-Enskog theory (a) for isotherms

of 0.7 to 2.0 and (b) for isotherms of 2.5 to 30.0. (Legend as in FIG. 4)

FIG. 10. Second viscosity virial coefficients of LJ fluid as a function of reduced temper-

ature. (Circles with error bars: this work; solid line: Rainwater-Friend theory, Ref. [8].)
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TABLE CAPTIONS:

TABLE I. Reduced adiabatic compressibility, κ∗

s ; reduced speed of sound, c∗s ; and reduced

beginning time of the artificial PBC effect on VACF, t∗max, for LJ fluid at T ∗ = 1.2 and

ρ∗ = 0.001, simulated with N particles for the duration of t∗ = 1× 108.

TABLE II. Simulated reduced second self-diffusion virial coefficients, B∗

D; reduced second

viscosity virial coefficients, B∗

η ; and their standard deviations [SD(B∗

D) and SD(B∗

η)] for the

Lennard-Jones fluid at different temperatures.
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FIG. 4. Density dependence of the simulated reduced self-diffusion coefficients of LJ fluid divided

by their values at zero density limit from the Chapman-Enskog theory (a) for isotherms of 0.7 to
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FIG. 7. Normalized shear-stress correlation functions of LJ fluid at a reduced temperature of 1.2

and a reduced density of 0.001 with different numbers of atoms in the simulation primary cell.
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FIG. 8. Reduced viscosity coefficient of LJ fluid at a reduced temperature of 1.8 and a reduced

density of 0.02 versus time of correlation (a) from zero-time and (b) from decay-time. (Dotted line:

mean value.)
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TABLE I. Reduced adiabatic compressibility, κ∗s ; reduced speed of sound, c∗s ; and reduced beginning

time of the artificial PBC effect on VACF, t∗max, for LJ fluid at T ∗ = 1.2 and ρ∗ = 0.001, simulated

with N particles for the duration of t∗ = 1× 108.

N κ∗s c∗s t∗max

108 524.2 1.381 34.48

256 507.6 1.404 45.24

500 505.6 1.406 56.44

864 503.2 1.410 67.56

1372 502.8 1.410 79.10

2048 502.3 1.411 90.00

4000 501.6 1.412 112.40
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TABLE II. Simulated reduced second self-diffusion virial coefficients, B∗

D; reduced second viscosity

virial coefficients, B∗

η ; and their standard deviations [SD(B∗

D) and SD(B∗

η)] for the Lennard-Jones

fluid at different temperatures.

T ∗ B∗

D SD(B∗

D) B∗

η SD(B∗

η)

0.7 -3.103 0.1723 -2.287 3.470

0.8 -2.056 0.0537 -0.268 0.828

0.9 -1.389 0.0543 0.490 0.337

1.0 -1.027 0.0555 1.281 0.645

1.2 -0.698 0.0509 0.794 0.729

1.5 -0.555 0.0348 0.920 0.270

1.8 -0.495 0.0275 1.059 0.514

2.0 -0.516 0.0357 1.082 0.285

2.5 -0.550 0.0335 0.766 0.237

3.0 -0.576 0.0238 0.588 0.266

4.0 -0.597 0.0216 0.507 0.281

5.0 -0.649 0.0212 0.347 0.237

8.0 -0.836 0.0296 -0.130 0.251

20.0 - - 0.184 0.129

30.0 - - -0.147 0.120
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