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We study front propagation in the reaction-diffusion process {A % 24,4 =% 3A} on a one
dimensional (1d) lattice with hard core interactions between the particles. Using the leading particle
picture, the velocity of the front is computed using different approximate methods that yield results
in good agreement with simulation results. We observe that the front dynamics exhibits temporal
velocity correlations that must be accounted for to obtain accurate estimates of the front diffusion
coefficient. Interestingly, these temporal correlations change sign depending upon the sign of e, — D,
where D is the bare diffusion coefficient of A particles. For ¢, = D, we find analytically as well as
numerically that the leading particle and thus the front move like an uncorrelated random walker.

PACS numbers: 05.40.-a, 82.40.Ck

I. INTRODUCTION

Fronts that separate different phases occur in a large
number of physical, chemical, and biological settings [1—
4]. The propagation of such fronts is a ubiquitous phe-
nomenon when such systems are away from equilibrium.
In this paper we study the front dynamics in the reaction-
diffusion system A 5 24, A % 34 in a one-dimensional
lattice. The front separates a region asymptotically fully
occupied by A particles from a region that is asymptoti-
cally empty. Hard-core interactions between particles are
enforced by allowing each lattice site to be empty or oc-
cupied by at most one particle. The novel feature of our
model lies in the occurrence of the “twin” creation pro-
cess A — 34 in addition to the more familiar single cre-
ation process A — 2A. The twin creation process along
with the hard core interactions leads to interesting tem-
poral velocity correlations. These temporal correlations,
and our ability to provide analytic results, motivate this
work.

A mean field description of the model is provided by
the partial differential equation for the coarse grained
concentration p(z,t),

Idp >p 2
— =T=—L +ap—bp* + cp°, 1
5 = Lggz TP —bp tep (1)
where T is an effective diffusion coefficient [5], and a, b,
and c are related to the two microscopic processes of rate
€ and €, of particle creation. This description is expected
to hold at the macroscopic level.

Equation (1) reduces to the well-known Fisher equa-
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tion [6] in the absence of the twin creation process
A — 3A. The front dynamics in the microscopic lattice
model for A — 2A using two-site correlations has been
studied extensively [7-12]. The inclusion of the process
A — 3A involves three-site correlations and gives rise to
interesting results as reported in this paper.

The mean field description admits traveling wave solu-
tions of the form p(z,t) = ¢(x — vt), where the velocity
of an initially sharp front between the p = 1 (stable) and
p = 0 (unstable) states approaches an asymptotic veloc-
ity Vo = 2v/a T'. The important feature to be noted here
is that a mean field equation fails to deal with internal
fluctuations arising from the discrete nature of the react-
ing species, especially in lower dimensions or when, as
in our case, the occupancy per site is small. As shown
for the diffusion-controlled process 24 — 0, the mean
field theory predicts a decay of the global concentration
p(t) = [dzp(z,t) that goes asymptotically as p(t) ~ 1/t.
However, in lower dimensions it has been observed that
the decay of p(t) is slower than 1/t. In fact, in 1d,
p(t) ~ t=%/2 while in 2d, p(t) ~ Int/t [13]. Similarly,
for the front dynamics in A <> 2A, it is known that even
for very large occupancy N per site behind the front, dis-
creteness effects always affect the front, and the front ve-
locity V' converges very slowly to the mean field velocity
|V —Vo| ~In"2 N [14]. The mean field results are recov-
ered for N — oo. Thus, for macroscopic systems one can
safely neglect these correlations. However, for systems
with a finite number of particles and/or in lower dimen-
sions, fluctuation-induced behavior emerges [15, 16].

We focus on a 1d lattice and, using a leading parti-
cle picture, we study the front velocity and the diffusion
coefficient. We find analytic estimates for the front ve-
locity using different approximate methods which are in
increasingly good agreement with Monte Carlo simula-
tion results. Accounting for temporal correlations is not
necessary to obtain these accurate results. However, we



find that an accurate calculation of the front diffusion
coefficient requires that one take into account temporal
velocity correlations. Interestingly, it is observed that
these correlations change sign depending on the sign of
c¢—T. For ¢ =T, we find analytically as well as numer-
ically that the leading particle and thus the front move
as an uncorrelated random walker. For this special case,
through an explicit analysis we show that two successive
steps are uncorrelated.

II. MODEL

We consider a 1d lattice of sites ¢ and start with a
step function-like distribution where the left half (i < 0)
is filled with A particles while the right half (i > 0) is
empty. The size L of the lattice is chosen to be sufficiently
large for boundaries not to be of concern. We update the
system random sequentially, with L microscopic moves
corresponding to one Monte Carlo step (MCS). Explic-
itly, each update consists of the random selection of a
site with uniform probability from among the L sites of
the lattice. If the chosen site is occupied, then the par-
ticle at that site can undergo one of three microscopic
moves: (1) It can jump to the left or right nearest neigh-
bor site if it is empty, i.e., (10) — (01) (right jump) or
(01) — (10) (left jump), each with rate D. Here (10)
corresponds to a configuration of a pair of neighboring
sites with 1 and 0 representing occupied and empty sites
respectively; (2) The particle can give birth to one par-
ticle at the left or right nearest neighboring site if that
site is empty, i.e., (10) — (11) or (01) — (11), each with
rate €; (3) The particle can generate two new particles at
both the neighboring sites provided both are empty, i.e.,
(010) — (111) with rate €;. These choices of microscopic
moves lead to the following values for the parameters in
Eq. (1): a=2e+ €, b=2e+4 26, c =€, and I' = D.

As time evolves, these microscopic moves result in the
stochastic motion of the front which may be identified
with the leading A particle. After a transient time, the
front reaches an asymptotic state and we wish to com-
pute the speed and diffusion coefficient of the front in
this regime. Let us denote by P(X,t), the probability
of finding the leading A particle at X at time ¢ and by
Qo (X, t) the joint probability of finding the leading par-
ticle at X and the site immediately to the left of it to be
empty. Then the equation for the evolution of P(X,t)
is [17]

% =(e+D)P(X —1,t) + ¢,Qo(X — 1,t) +

DQo(X +1,t) — (e + D)P(X,t) — (e + D)Qo(X,t). (2)

This is not a closed equation for P(X, t) because Qo (X, t)
is also unknown at this point. The latter joint probability
can in turn be written as

QO(th) = [1 - p(X - 17t)] P(Xv t)? (3)

where p(X — 1,t) is the conditional probability that site
X — 1 is occupied given that the front is at X at time
t. This conditional probability is also unknown at this
point. In fact, to determine the evolution of Q)¢ requires
the introduction of an infinite hierarchy of such condi-
tional probabilities involving sites further and further re-
moved from the front. We will not do this but instead
will introduce appropriate approximations when needed.

The speed V' and the diffusion coefficient Dy of the
front are in general defined as

. d
V= lim - (X(2)), (4)
Dy =L im & (x20)) - (x(0))?) (5)
f 2 t—oo dt ’

where (f(X,t)) = > f(X,t)P(X,t). Note that D and
Dy differ because the former is a microscopic rate of mo-
tion to a site given that it is empty, while Dy is a macro-
scopic diffusion coefficient that includes the occupancy
information. We write

pi(t) = ZP(X - LH)P(X,t). (6)
X

This is the probability that the site behind the leading
particle is occupied at time ¢. Using the normalization
> x P(X) = 1 along with the time-independent limit
p1(t) — p1 in the steady state, we arrive at the expression
for the asymptotic velocity of the front,

V=ec+e—pi(e — D). (7)

The only unknown in this expression, which is exact, is
p1- The diffusion coefficient is given from Eq. (5) as

1
Dy = §{€+Et +2D — pi(e + D)}

+(e = D) | XQo(X) = (1—p1) Y _XP(X)|(8)

X

This quantity requires knowledge of the full evolution of
the system. However, if we implement the approxima-
tion p(X — 1,t) — p1, that is, that in the steady state
the conditional probability can be approximated by the
density at the site behind the leading particle, then the
second line drops out and we arrive at the approximate
expression

1
Dy = §{e+et+2D—p1(et+D)}. 9)

We have replaced the subscript f on D by a 0 to stress
that an approximation has been made. In this expression
once again the only unknown is p;. At this point we do
not know the severity of this approximation, whose effect
is to neglect temporal correlations implicit in Eq. (2). In
an interacting system, we cannot a priori neglect such



correlations. It now remains to determine the unknown
steady state density p; behind the front, and to assess
the severity of the approximation.

The expressions (7) and (9) for the front velocity and
diffusion coefficient can be understood by visualizing the
front as a random walker that moves to the left or right
with certain rates. For such a walker, the velocity and
diffusion coefficient are given as R, — R; and (R, + R;)/2
respectively, where R, and R; are the rates at which the
walker moves to the right or left. In our model the front
moves to the left with rate B; = D(1 — p1), which cor-
responds to hopping of the front to the left site if it is
empty. To find the rate with which the front moves to the
right, we first note that this can happen in three ways.
It can happen if the front either jumps or gives birth to
a single particle at the right empty site, or if it generates
two particles at the neighboring sites, provided the site
just behind it is empty, i.e., R, = D4e+e:(1—p1). Using
these rates one can find the front velocity and diffusion
coefficient as given by Egs. (7) and (9), respectively.
Here it is important to note that the master equation
(2) with the approximation discussed above is based on
the assumption that the future evolution of the system is
sensitive only to the present state of the system and thus
describes a simple random walk which neglects temporal
correlations in subsequent steps [20]. However, as we will
see later, this is in general not the case; indeed, we will
see that the front here moves like a correlated random
walker. Thus we interpret Dy as the front diffusion co-
efficient in the absence of any temporal correlations, and
will subsequently find corrections to this expression.

We note that Eqs. (7) and (8) are exact, and that the
static correlations in the problem are embodied in the
quantity p;. In Ref. [9], where ¢; = 0, it was shown that
the front velocity asymptotically approaches the mean
field value V' = Vj = 2v2¢eD in the limit D/e — oo,
while V' = e + D ~ € in the opposite limit D/e — 0.
However, between these two extreme limits we need to
know p1, and we expect to require knowledge of p; for
€ 75 0.

Before proceeding to compute p; for the most general
case, we discuss some special cases. (i) For D = 0, no
vacancies can be created between two A particles and
thus the asymptotic front profile is a sharp step. Con-
sequently, no twin production takes place (as the site to
the left of the leading particle is always occupied, that is,
p1 = 1). Hence the speed should be independent of ¢;, as
confirmed from Eq. (7): V = e. In this limit Eq. (9) gives
Dy ~ ¢/2. (ii) For D = ¢, one obtains V' = e+¢; indepen-
dently of p;. More interestingly, in this case Dy = Dy,
i.e., the front moves like an uncorrelated random walker.

III. FRONT VELOCITY

In this section we present three approximate analytic
methods to estimate p; and with this the front velocity
as obtained given in Eq. (7). The first method is the so

called fized site representation discussed in [7]. In this
method, a truncated master equation is written in the
frame moving with the front to describe the evolution
of particles up to a given number (1) of sites behind the
front. The density at the (I 4 1)st site behind the front
is approximated as the bulk density, i.e., pjy1 = 1. In
Appendix A we have illustrated this scheme for [ = 1.
In this case we work with a set of two states, {01} and
{11}, with the rightmost ‘1’ representing the front par-
ticle and a ‘0’ representing an empty site. As shown in
Fig. 1, the front velocity V estimated with this approx-
imation is in reasonable agreement with the simulation
results. For the special case D = ¢;, as discussed earlier,
the figure confirms that the theoretical result agrees ex-
actly with the simulation result. We also notice that the
approximate analytic results in general show improved
agreement with the simulation results for larger values
of ¢;. Conversely, as ¢; decreases and approaches zero,
we see a gradual departure of the simulation data from
the analytic outcome. This is due to the fact that the
density at the sth site behind the front, p;, differs sig-
nificantly from the bulk density as ¢; decreases. This is
shown in Fig. 2. The estimate for the velocity can be
further improved if we explicitly include a larger number
of sites in the dynamical description, that is, if we in-
crease [. For example, for [ = 2 we consider the explicit
evolution of four states: {001}, {011}, {101}, and {111}.
The improved results are shown in Fig. 1.

The second approximate method is the two particle
representation (2P) proposed by Kerstein [11]. Here each
state of the system is defined by only the two rightmost
particles. This leads to an infinite set of states: {11},
{101}, {1001}, {10001}, {100001}, ---. The rightmost
‘1’ represents the front particle and the leftmost ‘1’ the
second particle. We have computed p; using this scheme
for the process under study, see Appendix B. The results
obtained using this method are in good agreement with
the simulation results marked 2P in Fig. 1.

Since we are dealing with a multiparticle interacting
system, it is in general desirable to include a larger num-
ber of particles in the explicit state to find better ana-
lytic estimates. Motivated by this, we propose a scheme,
which we call the mized representation, in which we ex-
plicitly include all states that have either two or three
particles. Thus, the set of states that we study here is
{011}, {111}, {0101}, {1101}, ---, and obtain an esti-
mate for p; using a procedure similar to that used in the
2P representation (Appendix C ). This representation
can be considered as the simplest extension of two par-
ticle representations and yields better results than either
of the above two schemes. The results are marked as M R
in Fig. 1.

Finally, we have also studied the front dynamics in
two interesting limits, namely, diffusion-controlled and
reaction-controlled dynamics. In the diffusion-controlled
limit, D < ¢; ~ €, we expect the front velocity to be
independent of €;, which is confirmed by our simulation
results (Fig. 3a). In the reaction-controlled limit, when
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FIG. 1: (a) Percentage relative error in V, ie., (|[V° —

Ve /V?®) x 100 (V*° and V*® representing simulation and an-
alytic results, respectively), vs e , with D = 0.25 and
e = 0.025. | = 1 (stars), I = 2 (open squares), 2P (open
circles) and MR (filled circles). The simulation and analytic
profile using MR are almost coincident for the range of pa-
rameters explored. (b) Percentage relative error in V' vs D,
with € = 0.05 and ¢; = 0. The top data (filled squares) cor-
responds to Ref. [7] for [ = 3 (eight states). The middle data
(open circles) corresponds to the Kerstein [11] two-particle
self-consistent representation, while the bottom data (filled
circles) is the result of the mixed representation.
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FIG. 2: Density profile behind the front for different values of
€, for D = 0.25 and € = 0.025. As e; decreases, the density
profile curve shifts away from the bulk density level.

diffusion is very fast compared to the reaction processes,
we expect the mean field continuum equation to be valid
as has been shown exactly for the process A — 2A4 in
1d [9]. In this limit we observe that V' o ez /2 indicating
mean field-like behavior. The agreement with numerical
results indeed improves as /D — 0 (Fig. 3b).
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FIG. 3: Front velocity V versus ¢; for ¢ = 0 and two different
values of D on a log-log scale. In (a) we vary ¢ from 0.01 to
0.99 while in (b) we vary ¢ from 0.003 to 0.10. Inset in (b)
plots the percentage relative difference (|V — Vo|/V) x 100 as
a function of €;. V4 is the mean field prediction.

IV. FRONT DIFFUSION COEFFICIENT

In order to further study the effects of temporal corre-
lations on the front dynamics, in Fig. 4 we present three
sets of results for the front diffusion coefficient. One is
the value of Dy using the approximate value of p; calcu-
lated using the fixed site representation approximation
with I = 2 in Eq. (9). Another is the value of Dy calcu-
lated with values of p; obtained from simulations. The
third is the value Dy obtained from simulation results.
The following observations are immediately evident: (1)
For D = ¢, the analytical value Dg calculated with ei-
ther p; agrees well with the simulation result D;}im; (2)
For ¢, > D, D;im > Dy; (3) For ¢ < D, D;im < Dy.
These over- and under-estimates are presumably due to
the neglect of the second line of Eq. (8) in the calculation
of DQ.

The effect of temporal correlations in the velocity on
the front diffusion coefficient that have been omitted in
Dg can be studied using the Green-Kubo result for the
asymptotic front diffusion coefficient,

Dy =Dy + /OO C(t)dt. (10)

Here C(t) is the temporal velocity correlation function
defined as

C(t) = ((0)v(t)) = (w(0)){v (1)), (11)

where v(t) is the displacement of the front per unit time
at time t. In Fig. 5 we have plotted the temporal velocity
correlations C(t) for different values of ;. For ¢, > D,
we observe positive correlations while for ¢, < D, the
correlations are negative. Most interestingly, for e¢; = D,
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Other parameters: D = 0.25, ¢ = 0.025. We note that when
e: = D = 0.25, the analytic results exactly match the simula-
tion.
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FIG. 5: Simulation results for the time dependence of the
velocity correlation of the front for different values of €;, with
D = 0.25 and € = 0.025. The velocity correlation is seen to
vanish when ¢; = D. Inset: semi-log plot of C(t) versus ¢ for
D = 0.05, 0.10, 0.30, 0.40 from top to bottom.

C'(t) vanishes for all t. Thus, ¢, = D is a special case
for which the front particle moves like an uncorrelated
random walker.

We proceed to show explicitly that for the special case
€: = D two consecutive steps of the leading particle are
indeed uncorrelated in the steady state. The analysis is
based on the fact that in two successive steps, separated
by L microsteps, the front is picked on average once.
Since at most two sites behind the front can be affected
in two consecutive steps, we explicitly consider four states

corresponding to [ = 2, namely, {001}, {011}, {101}, and
{111}, with the rightmost ‘1’ representing the front. We
then write

(@t +1)=Ryy — Ry —R 4 +R_,  (12)
where
_ p001 . poll | plol | plll
Ry = RO + RO + R + R (13)

denotes the steady state flux for taking two consecutive
steps labeled by i = + and j = +. For example, R%! is
the flux of two consecutive negative steps starting from
the state 001. The only way this can occur is if the front
particle makes two diffusive moves to the left, which in
turn can only happen if those sites are empty. Thus
R — D2Pyg;1, where Py, is the steady state weight of
the configuration {001}. Considering all such two suc-
cessive moves in the each state, we can clearly write

Ry, = D*+2eD+ D+ e + (D + ¢16){ Poo1 + Pio1},
R, = D?*

R_ = (D*+ De+ De;)Poor + (D? + De) Py,

R__ = D?Pyy. (14)

This in turn immediately allows us to write

(vt +1)) = €+ De; +2eD + {e,D + e
- D?>— DE)}PlOl + {ete — DE}PQOl.
(15)

Similarly,

(v(®)) = (u(t+1))
= €+ € — {P011 =+ Plll}(et — D) (16)

To compute these quantities we next need to deter-
mine the probabilities of the different states that ap-
pear in the above expressions. This is in general diffi-
cult to do analytically. However, we straightforwardly
observe that when ¢, = D, the correlation function
(w(t)v(t+ 1)) — (v(t))(v(t + 1)) is independent of all the
probabilities and vanishes identically! Thus, two succes-
sive steps are temporally uncorrelated, as observed in
the simulations, cf. Fig. 5. We also stress that for this
special case the above analysis does not involve any ap-
proximation, that is, it is exact. This is an interesting
non-equilibrium state in which there are spatial correla-
tions but no temporal correlations [22].

When we depart from this special case, it is evident
that for ¢, # D, (v(t)v(t +1)) # (v(t))(v(t + 1)), i.e., the
front motion is now correlated. Preliminary fits suggest
that the the temporal velocity correlation function has
the general form C(t) ~ t®e=Pt/T,

The reaction-diffusion system presented above can be
generalized by allowing annihilation of particles, e.g.,
2A — A with, say, rate W. The speed of the front in
this case may be written following the steps leading to
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FIG. 6: Schematic representation of the temporal velocity
correlation function C(t) for different values of D, W and e,
with + and — denoting the sign of C(¢). The plane D =
€: + W corresponds to C(t) = 0, which also contains the lines
e =D, W=0and W = D,¢ =0.

Eq. (7), and we obtain
V=e+e—pi(ee+W—D). (17)

This implies that for ¢, + W = D, the front speed is
independent of p;. For this special case the temporal
correlations in velocity are also found to vanish numer-
ically. Following the steps used earlier in this section
we can explicitly show that two successive steps are in-
deed uncorrelated. Note that this condition generalizes
two special cases. One is the result that we have dis-
cussed in this paper, for which W = 0 and ¢, = D.
The other is the well-studied process A <> 2A (no cre-
ation of twins, ¢, = 0), for which there are no temporal
correlations when W = D. In Fig. 6 we schematically
show the general result, that is, that everywhere on the
€:+W = D plane the temporal velocity correlations van-
ish. Furthermore, spatial correlations also vanish on the
line ¢, = 0,W = D. The signs of the temporal correla-
tions (found numerically) are shown in different sections
of the coordinate plane. It is interesting to note that for
€. > D, W = 0, the sign of the correlations is positive,
whereas it is negative on the D = 0 and ¢; = 0 planes.
Thus, if parameters are continuously changed to connect
a point on the ¢, > D, W = 0 plane to one on either of
the D = 0 or ¢, = 0 planes, C(t) must vanish at some
intermediate point. This has in fact been verified by our
simulation results, as shown in Fig. 7.
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FIG. 7: Simulation results for velocity correlation function of
the front as a function of time ¢, for different values of W
while keeping D = 0.05, ¢ = 0.025 and ¢ = 0.15 fixed. We
note that when W ~ 0.05, this correlation is zero.

V. CONCLUSION

We have studied the front dynamics for the reaction-
diffusion system {4 5 24, A % 34} on a one dimen-
sional (1d) lattice. We also briefly considered a gener-
alization of this rate scheme in which there is a reverse
reaction 24 % A whereby an A particle can die. The
A particles can random walk onto neighboring sites with
transition rate D. No more than one particle may oc-
cupy a lattice site, so all of these rate processes are only
allowed when there are appropriate empty sites to accept
the process, be it a singlet birth, a twin birth, or a diffu-
sive step. The rightmost occupied site is defined as the
front.

We have calculated the front velocity analytically using
different approximate methods. In the fixed site repre-
sentation one can systematically improve upon estimates
of the front velocity by studying the explicit evolution of
particles at increasingly larger numbers of sites behind
the front. The results from the two-particle fixed site
representation procedure and from the mixed representa-
tion procedure show gratifying agreement with the simu-
lation results. The mixed representation scheme leads to
the simplest generalization of the two-site representation
method and can be applied to other processes as well.
We also observe that when diffusion is very large com-
pared to the reaction rates, the front velocity converges
to the mean field velocity.

We have also directed our attention to the front dif-
fusion coefficient. In general, in non-equilibrium inter-
acting systems the temporal velocity correlations affect
the diffusion coefficient. However, interestingly, on the
parameter plane €, + W = D these temporal correlations
vanish and the front performs a temporally uncorrelated
random walk, a result that we are able to obtain analyti-
cally as well as numerically. Furthermore, there are spa-
tial correlations that only vanish when W = D e, = 0.
This result generalizes one found earlier for the single
particle creation problem A + 2A4 [21].
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FIG. 8: Microscopic moves. The rightmost e represents the
front. (a) Diffusion of the front particle to its right site leading
to a transition from {11} to {01} with rate D. (b) Creation of
one particle to the left of the front leads to a transition from
{01} to {11} with rate e. (c¢) {01} changes to {11} due to the
creation of twins at both neighboring sites of the front with
rate ;. (d) If the front moves diffusively to its left and the
second site behind the front is occupied, there is a transition
from {01} to {11} with rate Dp2, where p2 is the occupancy
probability of the second site behind the front.
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Appendix A

In this appendix we illustrate the fixed site represen-
tation scheme for the simplest case, | = 1. Transitions
occur between the two states {01} and {11} due to the
microscopic processes in the system shown in Fig. 8.
Considering all such transitions, the probabilities of these
two states follow the evolution equations

0P,
a;“ = (2D — Dp3) P11 — {2Dps + €(2 + p2)
+ee(1+ p2(1 = p3)) } ot
oP;
atll = {2Dps + €(2 + p2) + (1 + p2(1 — p3)) } Por

—(2D — Dp2) P11 (A1)
Here, p; is the density at the ith site behind the front,
and we have neglected the spatial density correlation be-
tween consecutive pairs of sites beyond the second site
behind the front. Using Eq. (A1) and the normalization
condition Py; + P;; = 1, we obtain the following expres-
sion for py:

P 2Dp2 +€(2+ p2) + &1 + p2(1 — p3)]
' Dpy+ 2D + 2 + epa + o1 + p2(1 — p3)]

. (A2)

In order to find p; we need to know py and p3. As a first
approximation we assume that po = p3 = 1, the bulk
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FIG. 9: Transition between two particle states with right-
most e representing front. (a) Diffusive move of the front
particle to its left leading to transition 101—11 with rate D,
(b) When the second particle behind the front jumps to the
left, provided it is empty, state changes from 101—1001 with
rate D(1— p), (c) Birth of a single particle by the second par-
ticle to its left with rate e leads to transition 1001—101, (d)
1001—101 if the second particle gives birth of two particles,
provided the the site left to it is empty, with rate e:(1 — p).

density. We then find

2D + 3¢+ ¢

~ A3
3D + 3¢+ ¢ (A3)

P1

Using this value of p; in Eq. (7) allows analytic estimates
of the front velocity. We can also extend the above pro-
cedure to higher values of [.

Appendix B

In this appendix we use Kerstein’s two-particle repre-
sentation [10, 11] for the analytic estimates of the front
velocity. We denote by Py the probability of a two-
particle state with k empty sites between the leading par-
ticle and the next particle behind it. These states form a
closed set under transitions due to microscopic processes.
We have illustrated a few transitions in Fig. 9. Consid-
ering all such transitions and denoting the probability of
occupancy of the site just behind the second particle by
p, we write the following rate equations for Py,

oP,

6—t0 = (e+2D)P, + ¢(1 — p)P1 + (2 + ) (1 — Py)
—(2D — Dp) Py,

P,

W = (2D — Dp)Pk,1 + {6 + 2D + Gt(l — p)}Pk+1

— (4D —Dp+3e+2¢, — p)Py, k>1. (B1)
In order to solve Eq. (B1) we need to specify the de-
pendence of p on the parameters ¢, €;, and D. Following
Kerstein [11], we write p as a linear combination of Py
and P} with coefficients to be determined. Enforcing

the condition that p = 1 when Py = 1 leaves us with a



relation in terms of a single free parameter A,

p=(1+XNPy— \PZ. (B2)
This equation implicitly specifies the dependence of p on
the model parameters through the parameter dependence
of Py. To reduce the infinite set of coupled (linear) equa-
tions to a single (nonlinear) equation, we further follow
Kerstein and use the ansatz P, = Py(1 — Py)*. With
Eq. (B2) in Eq. (B1), in the steady state this yields a
quartic equation for Py,

APy + (DX — e — 26, A\)P3 + (e + D + 26, + e\
—DM)P? 4¢Py —2¢ — ¢, = 0. (B3)

In order to find Py we still need to fix the value of .
For large D and ¢, = 0, it is exactly known that the
front particle moves with its mean field velocity [9]. We
have also ascertained this feature numerically for e; = 0,
cf. Fig. 3b. Equating the mean field front velocity Vo =
24/(2¢ + €;)D to that obtained from Eq. (7), i.e., V ~
DP,, for D very large compared to other parameters,
we find Py = 24/(2¢ + €:)/D. Using this value of Py in
Eq. (B3), we find A = 3/4 in the limit D — oco. Finally,
we solve the quartic equation (B3) to get the value of
p1 = Py and hence the front velocity.

Appendix C

Here we discuss the proposed mixed representation
scheme and study the evolution of states {011}, {111},
{0101}, {1101}, ---. We denote the states as (k,0) or
(k,1), representing the states having k empty sites be-
tween the front and the second particle followed by either
an empty site or an occupied site, respectively, after the
second particle. For example, (0,0) represents the state
{011} while (0,1) denotes the state {111}. Some of the
transitions in this representation are shown in Fig. 10.

Next, we assume p to be the density of the site which
is the next nearest neighbor to the second particle. This
allows us to write the following rate equation for the
evolution of the probabilities P(k,0) and P(k,1), k =

/N
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FIG. 10: Transitions between mixed particle states with the
rightmost e representing the front. (a) Diffusive move of the
particle to the right empty site with rate D. This leads to
a transition from (1,1) to (0,0). (b) Birth of a new parti-
cle on the right neighboring empty site with rate ¢, which
changes the state (1,0) to (0,1). (c) Transition from (1,0)
to (1,1) with rate Dp, when the third particle jumps to the
right neighboring empty site. (d) (1,0) — (0,1) when the
second particle behind the front in (1,0) produces twins at
the neighboring empty sites with rate ;.

0,1, oo
PO — Dyt ep+ 2+ eupll = p}P(0.0)
+ (D +2e+€)P(1,1) + (2¢ + 2¢,) P(1,0)
+ &{P(2,0) + P(2,1) + P(3,0) + P(3,1) + ...}
— (2D = Dp)P(0,1),
‘9Pg;’0) — D(1-p)P(0,1) + (D +)P(1,1)
+ (2D +€)P(1,0) + 2¢{ P(2,1) + P(2,0)
+ P(3,0)+P(3,1)+ ...} —{2D +2¢+ Dp
+ ep+ep(l —p)}pP(0,0),
8Pg§’ D DP(k —1,1) + DpP(k — 1,0)
+ {Dp+e+ep+ep(l—p)}P(k,0)
+ (D+e)P(k+1,1)+ (e + &) P(k +1,0)
— (4D +3e—Dp +¢€)P(k, 1),
8Pg? 0 _ (D+ D(1 —p))P(k—1,0)+ D(1 — p)P(k,1)

+ DP(k+1,1)+2DP(k +1,0) — {4D + 4e
+ Dp+ep+2¢ +ep(l—p)P(K,0). (C1)

This is an infinite set of (linear) coupled equations. We

truncate the problem and find an analytic estimate for

Py by solving the rate equations for P(0,0) and P(0,1),

assuming P(1,1) = pP;, P(1,0) = (1 — p)P1. Using
1

ZP(k,i) = P, and ZPk = 1, we find steady state
i=0 k=0

expression for P(0,0) and P(0,1) in terms of P, and p,
which in turn leads to an expression for P, in terms of



these quantities since
P(0,0) + P(0,1) = F. (C2)

Following Kerstein [11], we use the ansatz P, = Py(1 —
Py) and arrive at the equation

aPO(l — P()) + ﬂpo + Y= O, (03)
where

a = (2e4+ e+ Dp—ep){3D+2e+ep+ep(l—p)}
+(2D — Dp —e){2D + 2+ ep+ €1p(1 — p)},
B = {2D+2e+ep+ Dp+ep(l —p)}H(2D — Dp)
—{Dp+2¢+ep+ep(l — p)}HD — Dp),
= &(1 = Py){3D+2c+ep+ep(l—p)}
+2e(1 — Py){2D +2e+ep+ep(1 —p)}.  (C4)

)
|

Equation (C3) contains the two unknowns p and Py. We
therefore need an additional relation between them to
find the desired Py. We specify the dependence of p on
Py in a way analogous to the procedure followed in the
case of the two-particle representation (B), and thereby
arrive at analytic estimates for Py and hence for the front
velocity. The expressions are rather cumbersome and so
we only exhibit the results graphically in Fig. 1.
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