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Following recent work by Marathe and Parrondo [PRL, 104, 245704 (2010)], we construct a

classical Hamiltonian system whose energy is reduced during the adiabatic cycling of external

parameters, when initial conditions are sampled microcanonically. Combining our system

with a device that measures its energy, we propose a cyclic procedure during which energy is

extracted from a heat bath and converted to work, in apparent violation of the second law of

thermodynamics. This paradox is resolved by deriving an explicit relationship between the

average work delivered during one cycle of operation, and the average information gained

when measuring the system’s energy.
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I. INTRODUCTION

The Kelvin-Planck statement of the second law of thermodynamics asserts that no process is

possible whose sole result is the extraction of energy from a heat bath, and the conversion of that

energy into work. [1] Because this statement is formulated in terms of energy rather than entropy,

it provides an attractive starting point for exploring the microscopic foundations of the second law.

This is particularly true when we consider an immediate corollary of the Kelvin-Planck statement:

when a thermally isolated system, initially in equilibrium, evolves under a cyclic variation of

external parameters, its internal energy cannot decrease.1 Since an isolated system exchanges no

heat with its surroundings, and is governed by familiar equations of motion – Hamiltonian dynamics

in the classical case, or the Schrödinger equation for a non-relativistic quantum system – relatively

few theoretical tools are needed to embark on an investigation of this statement.

Let us formulate the problem as follows. A finite, classical system is described by a Hamiltonian

H(z;~λ), where z = (q, p) denotes a point in 2D-dimensional phase space, and ~λ = (λ1, · · · , λn)

is a set of externally controlled parameters. At time t = 0 the system’s initial conditions are

sampled from an equilibrium distribution peq(z), and then for 0 ≤ t ≤ τ the system evolves under

Hamilton’s equations as the parameters are made to trace out a closed loop in ~λ-space. We will

use the notation ~λc(t) to denote such a cyclic protocol for varying the parameters, beginning and

ending at ~λA ≡ ~λc(0) = ~λc(τ). The work performed on the system during this process is the net

change in the value of the Hamiltonian,

W = H(zτ ;~λA)−H(z0;~λ
A), (1)

where the trajectory zt describes the system’s evolution from t = 0 to t = τ . Since Hamiltonian

dynamics are deterministic, the value of W is fully determined by the initial conditions: W =

W (z0). The Kelvin-Planck statement, viewed as a statistical prediction about averages, then

implies the inequality,

〈W 〉 ≡
∫

dz0 p
eq(z0)W (z0) ≥ 0. (2)

We now ask, for what choices of the equilibrium distribution peq(z) can this result be established

rigorously?

When initial conditions are sampled from a canonical distribution

peqcan(z) ∝ exp [−βHA(z)] , HA(z) ≡ H(z;~λA), (3)

1 If its energy were to decrease, then at the end of the process the system could be returned to its initial state by

equilibrating it with a heat bath at temperature T , resulting in the net conversion of heat to work.
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Eq. 2 follows directly from the properties of Hamilton’s equations [2–4]. In fact, this result extends

to any distribution of initial conditions that is a decreasing function of energy [3, 4]. Somewhat

surprisingly, however, Eq. 2 is not universally valid when initial conditions are sampled from a

microcanonical distribution,

peqµcan(z) ∝ δ [Ei −HA(z)] (4)

This has been discussed by Allahverdyan and Nieuwenhuizen [3], but to the best of our knowledge

it was Sato [5] who first constructed a counter-example, involving a perturbed, one-dimensional

harmonic oscillator. For microcanonically sampled initial conditions, Sato described a cyclic vari-

ation of the Hamiltonian that results in a negative value of average work, 〈W 〉 < 0. More recently,

Marathe and Parrondo [6] have developed another counterexample to Eq. 2, involving a particle

inside a box with hard walls and an insertable barrier. For a given initial energy, Marathe and

Parrondo describe a cyclic manipulation of the walls and the barrier, whose net effect is to reduce

the energy of the system. Ultimately, the particle can be brought arbitrarily close to zero kinetic

energy by a succession of such cycles, with a different protocol for each cycle.

Inspired by Ref. [6], in the present paper we introduce and analyze another model system

that violates Eq. 2. We consider a classical particle moving in a one-dimensional potential well,

described by a pair of external parameters ~λ = (λL, λR) (see Eq. 5 and Fig. 1). We will discuss

the design of protocols for varying these parameters cyclically with time, ~λc(t), in a manner that

lowers the energy of the system. In particular, for any choice of initial particle energy Ei, we will

construct a protocol (which depends on the value of Ei) that reduces the particle’s kinetic energy

arbitrarily close to zero in a single cycle, bringing the system to a final state in which the particle

sits nearly motionless at the bottom of the potential well. In effect, the system is cooled near to

“absolute zero” temperature.

Our model, like those of Refs. [5, 6], suggests that a perpetual-motion device of the second kind

could be constructed, operating by the following steps.

1. The system is brought into contact and allowed to equilibrate with a thermal reservoir at

temperature T . The reservoir is then removed.

2. The energy of the now-isolated system is measured.

3. The system is subjected to a cyclic protocol that reduces its kinetic energy close to zero (as

discussed above).
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By repeatedly performing this sequence of steps, we obtain a scenario in which energy is systemat-

ically extracted from the reservoir (step 1) and delivered as work to the agent that carries out the

cyclic protocol (step 3). This is reminiscent of Maxwell’s demon [7–9], only here the demon’s role is

to implement a cyclic protocol ~λc(t) based on the measured energy of the system, instead of opening

or closing a trapdoor based on the observed motion of nearby particles. The key to exorcising the

demon – that is, to reconciling this scenario with the second law of thermodynamics – is to recog-

nize that the repeated measurements of energy in step 2 result in the accumulation of information.

In order for the device to satisfy the “sole result” stipulation of the Kelvin-Planck statement (see

above), this information must eventually be erased. As famously discussed by Landauer [10], and

by Bennett [11] in the context of Szilard’s engine [12] – another incarnation of Maxwell’s demon

– the erasure of information carries an unavoidable thermodynamic cost of kBT ln 2 per bit. We

will show by explicit calculation that this cost ultimately wipes out any gains made by our device:

in the process of erasing the accumulated information, all of the work harvested by the device is

returned as heat to the thermal reservoir.

In Sec. II we introduce our model and discuss protocols ~λc(t) that reduce the energy of the

system. In Sec. III we discuss the average amount of work that is extracted per cycle, when

carrying out the three-step procedure discussed above; this amount depends on the precision with

which the initial energy is measured in step 2. Using Landauer’s principle for the work that must

eventually be expended to erase the accumulated information (kBT ln 2 per bit), we will show that

this is no less than the work extracted in step 3, regardless of the precision with which the initial

energy is measured. Thus in the final accounting, after all the bits of information are reset to zero,

the device is unable to deliver work and the second law is rescued from the demon.

II. MODEL AND PROTOCOLS

Consider a classical particle of unit mass moving in one dimension, governed by a Hamiltonian

H(z;~λ) =
p2

2
+ U(q;~λ) ≡ p2

2
+ q4 −


λL q

2 if q ≤ 0

λR q
2 if q ≥ 0

(5)

where z = (q, p) is a point in the phase space of the particle, and ~λ = (λL, λR) is a point in

two-dimensional parameter space, with λL, λR ≥ 0. The parameter λL modulates the shape of

the potential energy function in the region q < 0: when λL > 0, there is a local minimum at

qmin
L = −

√
λL/2, as illustrated in Fig. 1. Similarly, the value of λR specifies a minimum at
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FIG. 1. The solid curve depicts the potential U(q; 1.0, 0.7), with local minima at qmin
L = −

√
0.5 and

qmin
R = +

√
0.35 (see text). The dashed curve is the unperturbed, quartic potential U(q; 0, 0).

(0,0)

(Λ,Λ)

λL

λR

(a) Symmetric protocol.
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(b) Asymmetric protocol.

FIG. 2. The cyclic protocols ~λc(t), depicted here, proceed clockwise from the origin.

qmin
R = +

√
λR/2. We will refer to these regions as the left well and the right well. When ~λ = (0, 0),

the particle moves in a quartic potential, which we call the unperturbed system.

Now imagine a protocol ~λc(t) whereby the parameters are made to trace out the perimeter of the

square shown in Fig. 2(a), starting and ending at ~λ = (0, 0). For simplicity we assume a constant

speed, |d~λ/dt| = 4Λ/τ . The deformation of the potential during this protocol can be pictured

as follows. Starting from the unperturbed quartic potential, the right well gradually drops down,
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FIG. 3. Snapshots of the potential energy function as ~λ is varied according to the protocol shown in Fig. 2(a),

with Λ = 5.0 (hence E1 = 2.744 and E2 = 6.914, see Eq. 6). The shaded regions illustrate the evolution of

sets I and II, in the quasi-static limit τ →∞.

forming a local minimum that moves from the origin to
√

Λ/2 (see Fig. 3(a) - 3(c)) as λR increases

from 0 to Λ. Next, as λL increases from 0 to Λ the left well drops down, forming a local minimum

that comes to rest at −
√

Λ/2, with a local maximum at the origin (Fig. 3(d)). These two stages

are then undone (Figs. 3(e), 3(f)). The net effect is a piston-like pumping of the right and left

wells. For this protocol, let zt denote a trajectory evolving under the time-dependent Hamiltonian

H(z;λc(t)).

For a given choice of Λ, let us define two energy values,

E1(Λ) =

(
1

3I0

)4/3

Λ2 , E2(Λ) =

(
2

3I0

)4/3

Λ2, (6)

where

I0 =

∫ +1

−1
dy
√

1− y4 =

√
π Γ(5/4)

Γ(7/4)
≈ 1.74804. (7)

These in turn define three regions of phase space, I, II, and III, according to the value of the
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unperturbed Hamiltonian H0(z) ≡ p2/2 + q4:

I : 0 < H0(z) < E1

II : E1 < H0(z) < E2

III : E2 < H0(z)

(8)

We now claim that when the protocol ~λc(t) shown in Fig. 2(a) is implemented quasi-statically,

τ →∞, then the net effect is to swap regions I and II. That is, trajectories with initial conditions

z0 in region I end with final conditions zτ in region II, and vice-versa. (See, however, the discussion

of subtleties associated with this limit, in Sec. IV.) Fig. 3 and the following paragraphs convey how

this swap proceeds. For convenience, we will use the terms set I and set II to refer to trajectories

with initial conditions in regions I and II of phase space, respectively. The shaded regions in Fig. 3

depict the evolution of these sets of trajectories, as a sequence of snapshots from t = 0 to t = τ .

By Hamilton’s equations we have

d

dt
H(zt;~λt) =

d~λ

dt
· ∂H
∂~λ

(zt;~λt) = −q2t
[
λ̇L θ(−qt) + λ̇R θ(+qt)

]
(9)

where θ(·) is the unit step function. During the first stage of the process, 0 < t < τ/4, we have

λ̇L = 0 and λ̇R > 0, therefore as the right well drops down the value of H(zt;~λt) decreases whenever

qt > 0. As a result, some trajectories acquire negative energies (H < 0) and become trapped in

the right well. As shown in Fig. 3(c) – and as justified quantitatively by Eqs. 10 - 15 below – at

the end of this stage the trajectories belonging to set I are trapped.

During the second stage, τ/4 < t < τ/2, the left well drops down, trapping the trajectories in

set II. As this occurs, the trajectories in set I remain trapped in the right well.

From τ/2 < t < 3τ/4, as the right well rises and ultimately disappears, the trajectories in set

I gain energy (Fig. 3(e)), and during the fourth and final stage, 3τ/4 < t < τ , all trajectories gain

energy as the left well gradually rises until it disappears. The situation at t = τ , shown in Fig. 3(f),

reflects the swap that has occurred between sets I and II, relative to Fig. 3(a).

Due to adiabatic averaging, the energy-ordering of the trajectories within each set remains fixed

in the quasi-static limit: if we were to subdivide the lightly shaded region II in Fig. 3(a) into a

stack of narrow horizontal bands, then the vertical ordering of these bands would remain unchanged

throughout the process.

A proper analysis of this process involves the theory of adiabatic invariants, with careful at-

tention paid to the phase space separatrix that is present during the interval τ/4 < t < 3τ/4,

when U(q) has a local maximum at q = 0 [13, 14]. However, the essence of what occurs should be
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intuitively clear from the above discussion. A useful analogy is provided by imagining a container

initially filled with three layers of a viscous, incompressible fluid, labeled I, II and III in verti-

cally ascending order. Two syringes are attached to the bottom of the container. First one syringe

extracts the lowest layer I of the fluid, bringing layer II to the bottom of the container. Next, the

other syringe extracts layer II. Then the fluid layers are re-injected in the same order in which

they were removed, resulting in the rearrangement of these layers.

The incompressibility of the fluid in this analogy corresponds to Liouville’s theorem: phase space

volume is preserved under Hamiltonian dynamics. To justify quantitatively our assertion that the

protocol ~λc(t) swaps regions I and II, we must show that the phase space volumes corresponding

to the darkly shaded regions in Figs. 3(a) and Figs. 3(d) are equal (in other words, it is precisely

the trajectories in set I that get trapped in the right well), and similarly that the phase space

volumes of the lightly shaded regions in Figs. 3(a) and Figs. 3(d) are equal.

Let Ω(E;~λ) denote the volume of phase space enclosed by the surface H(z;~λ) = E:

Ω(E;~λ) =

∫
dz θ

[
E −H(z;~λ)

]
=

∫
E>U

dq

√
8
[
E − U(q;~λ)

] (10)

where we have integrated over momentum to get to the second line. When either E = 0 or ~λ = ~0

the remaining integral can be evaluated analytically:

Ω(E;~0) =

∫ +E1/4

−E1/4

dq
√

8(E − q4) =
√

8E3/4I0 (11a)

Ω(0;~λ) =

∫ √λR
−
√
λL

dq

√
−8U(q;~λ) =

√
8

9

(
λ
3/2
L + λ

3/2
R

)
= ΩL + ΩR (11b)

with I0 given by Eq. 7. The quantity

ΩL(λL) ≡
√

8

9
λ
3/2
L (12)

is the volume of phase space for which H < 0 and q < 0, and ΩR(λR) is defined similarly for H < 0

and q > 0.

Using Eq. 11a, the phase space volumes of regions I and II, defined by Eq. 8, are

ΩI =
√

8E
3/4
1 I0 , ΩII =

√
8
(
E

3/4
2 − E3/4

1

)
I0 (13)

In Fig. 3(d) the lightly and darkly shaded regions correspond to phase space volumes ΩL(Λ) and

ΩR(Λ), respectively, which are equal in value:

ΩL(Λ) = ΩR(Λ) =

√
8

9
Λ3/2 (14)
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Combining these results with Eq. 6 we find that

ΩI = ΩR(Λ) , ΩII = ΩL(Λ) (15)

This establishes that our qualitative description of what occurs during this process, as illustrated in

Fig. 3, is indeed consistent with the preservation of phase space volume, as mandated by Liouville’s

theorem.

The picture developed in the preceding paragraphs suggests the following relationship between

the initial (Ei) and final (Ef ) energy of the system, in the limit τ →∞:

Ω(Ef ;~0) = Ω(Ei;~0) + ΩII if 0 < Ei < E1 (16a)

Ω(Ef ;~0) = Ω(Ei;~0)− ΩI if E1 < Ei < E2 (16b)

Ω(Ef ;~0) = Ω(Ei;~0) if E2 < Ei (16c)

with E1 and E2 = 24/3E1 determined by the value of Λ (Eq. 6). Combining these results with

Eq. 13 (note that ΩI = ΩII) we obtain

Ef =



(
E

3/4
i + E

3/4
1

)4/3
if 0 < Ei < E1(

E
3/4
i − E3/4

1

)4/3
if E1 < Ei < E2

Ei if E2 < Ei

(17)

As a test of Eq. 17, we sampled 105 initial conditions z0 = (q0, p0) from a microcanonical

ensemble at energy Ei = H0(z0) = 2.8, near the bottom of region II (see Fig. 3). For each initial

condition z0 we generated a trajectory zt by integrating Hamilton’s equations as the parameters

were varied as in Fig. 2(a), with τ = 12000. The resulting distribution of final energies Ef =

H0(zτ ), spanning a range from Ef,min = 0.0030 to Ef,max = 0.0150, was characterized by a mean

value Ef = 0.0106 and a standard deviation σEf = 0.0014, in excellent agreement with the value

Ef = 0.0104 predicted by Eq. 17. (The small discrepancies reflect the fact that the duration

τ = 12000 is finite.) While these numerical results support the analysis leading to Eq. 17, some

caveats are in order. In particular, Liouville’s theorem itself rules out the possibility that all initial

conditions with energy Ei = 2.8 lead to a net decrease of energy, Ef < Ei. We defer a discussion

of this issue to Sec. IV.

To this point we have considered a symmetric protocol, Fig. 2(a), in which each well reaches

the same maximal depth, determined by the value of Λ (Fig. 3(d)). However, the analysis is easily

generalized to the asymmetric protocol shown in Fig. 2(b), in which the parameters are varied
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FIG. 4. Similar to Fig. 3, but for an asymmetric protocol, Fig. 2(b), with ΛL = 5.0 and ΛR = 3.0. The phase

space volume of set I (the darkly shaded region) remains constant, as does the volume of set II (lightly

shaded), but the two volumes differ: ΩI 6= ΩII .

around a rectangle with corners at (0, 0) and (ΛL,ΛR). Regions I, II and III are defined as in

Eq. 8, but now the energies E1 and E2 are defined by

E1(~Λ) =

(
Λ
3/2
R

3I0

)4/3

, E2(~Λ) =

(
Λ
3/2
R + Λ

3/2
L

3I0

)4/3

(18)

When the protocol is implemented quasi-statically, the net result is a rearrangement of sets I and

II, as depicted in Fig. 4. Eq. 16 now leads to the result

Ef =



(
E

3/4
i + E

3/4
2 − E3/4

1

)4/3
if 0 < Ei < E1(

E
3/4
i − E3/4

1

)4/3
if E1 < Ei < E2

Ei if E2 < Ei

(19)

The viscous fluid analogy also applies to this situation, only now the syringes remove different

quantities of fluid, ΩI 6= ΩII . Alternatively, the processes illustrated in Figs. 3 and 4 are analogous

to a simple shuffle of a deck of cards, in which a stack of adjacent cards (region II) is removed

from the middle of the deck and transferred to the bottom.

It should now be clear how to design a quasi-static protocol that lowers the energy of the system

almost to zero, for a given initial energy Ei = H0(z0). Namely, we choose ΛR such that Ei is slightly

above E1, thus locating the initial conditions near the bottom of region II. If we then implement

the protocol shown in Fig. 2, in either its symmetric (ΛL = ΛR = Λ) or asymmetric (ΛL 6= ΛR)

version, the system will be trapped near the bottom of the left well at t = τ/2, and will end the

process with Ef ≈ 0. This outcome is independent of the value of ΛL, which simply determines

the width (in energy) of region II.
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III. EXORCISING MAXWELL’S DEMON

Let us now return to the perpetual-motion device of the second kind proposed in the Introduc-

tion: after equilibrating the system with a thermal reservoir at temperature T (step 1), we measure

the initial energy Ei (step 2), then choose a protocol that reduces the energy near to zero (step

3). The amount of work we extract during this cycle – equivalently, minus the amount of work we

perform on the system – is given by

Wextracted = −W = Ei − Ef < Ei (20)

If we repeat this process many times, then the average work extracted per cycle satisfies

〈Wextracted〉 < 〈Ei〉 =

∫
dz0 p

eq(z0)H0(z0) =
3

4
β−1 (β−1 ≡ kBT ) (21)

where the canonical distribution peq ∝ exp(−βH0) reflects initial equilibration with the reservoir.2

To approach this upper bound of (3/4)kBT per cycle, in which the thermal energy of the system

is entirely converted to work (Ef = 0), the initial energy must be measured with high precision,

allowing us to choose a protocol for which Ei −E1(~Λ) is tiny but positive (Eqs. 17, 19). However,

as mentioned in the Introduction, these measurements generate information that must ultimately

be erased, at a cost of β−1 ln 2 per bit. There is a competition at play here: increased precision

brings us closer to the maximal extracted work, but carries the penalty of increased accumulation

of information.

To address this issue, imagine a measurement apparatus that reports the initial energy of the

system with finite precision. Specifically, given the initial microstate z0, the apparatus outputs one

of K values associated with specified energy intervals A, B, C, · · · . Taking K = 4 for purpose of

illustration, the apparatus outputs A, B, C, or D according to

A : 0 < H0(z0) < EA

B : EA < H0(z0) < EB

C : EB < H0(z0) < EC

D : EC < H0(z0)

(22)

where the values EA, EB, and EC are fixed properties of the apparatus.

Now consider the following strategy for choosing a cyclic protocol, based on the output of the

measurement apparatus.

2 In Eq. 21 we have used the identity 〈E〉 = −(∂/∂β) lnZ, with Z ≡
∫

dz exp(−βH0) =
√

8πΓ(5/4)β−3/4.
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• Output = A: Do nothing to the system, as it is already in the lowest-energy interval.

• Output = B: Using Eq. 18, set E1(~Λ) = EA and E2(~Λ) = EB, that is choose (ΛL,ΛR) so that

interval B in Eq. 22 corresponds to region II in Eq. 8. Next, implement the asymmetric protocol

of Fig. 2(b), under which initial conditions from this region are transferred to the bottom of the

potential well, as in Fig. 4.

• Output = C: Set E1(~Λ) = EB and E2(~Λ) = EC , then implement the asymmetric protocol.

Again, the energy interval containing the initial conditions – interval C, in this case – is shuffled

to the bottom of the potential.

• Output = D: Set E1(~Λ) = EC and E2(~Λ) = E∗, where E∗ > EC is an arbitrary cutoff energy,

then implement the asymmetric protocol. In this case, initial conditions from the region between

EC and E∗ are transferred to the bottom of the potential, whereas if H(z0) > E∗ the protocol

produces no net change in the energy of the system.

This strategy takes advantage of the limited knowledge provided by the measurement of the

initial energy. When it is implemented, the energy of the system decreases (that is, Ef < Ei) if

EA < Ei < E∗, and remains unchanged otherwise. Thus, on average per cycle, work is extracted

from the system,

〈Wextracted〉 > 0 (23)

and ultimately from the reservoir that replenishes the system’s energy.

Over N � 1 repetitions of the process, the measurement apparatus generates a symbolic string

of length N , of the form BDCCADA · · · . Letting PX denote the probability of outcome X ∈

{A,B,C,D} in a given measurement, the number of bits required to encode this string is given by

Nbits = NH/ ln 2, (24)

where

H = −
∑
X

PX lnPX (25)

is the Shannon entropy of the measurement [15]. Now, both 〈Wextracted〉 and H depend on EA, EB

and EC , and the former also depends on E∗. In the following section we establish that, no matter

what values these parameters take, the inequality

〈Wextracted〉 ≤ β−1H (26)
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is satisfied. The extraction of work thus comes at the cost of the accumulation of information: on

average, at least one bit is written per β−1 ln 2 of extracted work. 3

We now turn our attention to the eventual cost of erasing this information. By Landauer’s prin-

ciple, the average work required to erase one bit of information is no less than β−1 ln 2. Therefore,

since the number of bits generated per cycle is H/ ln 2 (Eq. 24), the average work required to erase

the information accumulated in one cycle of operation satisfies

〈Werasure〉 ≥ β−1H (27)

Combining Eqs. 26 and 27, we find that the work required to erase the accumulated information

exceeds – or at best, matches – the work extracted during the cycle:

〈Wextracted〉 ≤ β−1H ≤ 〈Werasure〉 (28)

Thus our model obeys the Kelvin-Planck statement of the second law, as it had better do! Eq. 28

highlights the two logically distinct steps we take in reconciling our model with the second law.

Although the second half of this inequality chain (that is, Landauer’s principle) is derived by appeal

to the second law itself [10], the first half (Eq. 26) is obtained without assuming the second law: in

Sec. III A we do not infer Eq. 26 by arguing that the second law demands it, rather we will derive

this inequality directly.

Eq. 26 is a special case of an inequality recently derived by Sagawa and Ueda (see Eq. 3

of Ref. [16] or, in the quantum setting, Eq. 14 of Ref. [17]), which generalizes the second law

of thermodynamics to processes with feedback, such as the one considered in this paper. This

inequality also follows readily from recent generalizations [16, 18, 19] of the nonequilibrium work

relation [2] and Crooks’s fluctuation theorem [20] to nonequilibrium processes with feedback. In

the following derivation, we do not directly invoke these results, instead we provide a self-contained

analysis that is pertinent to our particular model.

A. Bound on work

Consider a cyclic process with the measurement apparatus described by Eq. 22 above. For initial

conditions z0, let zXτ (z0) denote the final conditions, after implementation of the cyclic protocol

3 In the original Szilard engine, which involves a single particle in a chamber, this relationship is straightforward:

the determination whether the particle is in the left or right half of the chamber produces exactly one bit of

information, H = ln 2, and standard thermodynamics gives the amount of work extracted during the subsequent

isothermal expansion, Wextracted = β−1 ln 2.
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corresponding to measurement outcome X ∈ {A,B,C,D}. The work performed on the system as

it evolves from z0 to zXτ (z0) is given by

W = H0(z
X
τ (z0))−H0(z0) (29)

Over many repetitions of the process, with the protocol X determined by the measurement of

initial energy, the average work performed on the system is

〈W 〉 =

A,B,C,D∑
X

∫
z0∈X

dz0 p
eq(z0)

(
H0(z

X
τ (z0))−H0(z0)

)
(30)

where peq ∝ exp(−βH0), and
∫
z0∈X indicates integration over all microstates z0 that result in the

measurement outcome X. Eq. 30 can be rewritten as

〈W 〉 = β−1
∑
X

∫
z∈X

dz peq(z) ln
peq(z)

peq(zXτ (z))
(31)

(dropping the subscript 0). Let us now define two functions

fX(z) ≡


peq(z)/PX if z ∈ X

0 if z /∈ X
(32)

gX(z) ≡ peq(zXτ (z)) (33)

where PX ≡
∫
z∈X p

eq(z) is the probability that the outcome of the measurement is X. We can

interpret fX(z) as the probability distribution of initial microstates, conditioned on the outcome

X. Moreover,
∫

dz gX(z) =
∫

dzXτ p
eq(zXτ ) = 1 (since phase volume is preserved, dz = dzXτ (z), by

Liouville’s theorem), therefore gX(z) can also be interpreted as a probability distribution on phase

space.

With these definitions, Eq. 31 becomes

〈W 〉 = β−1
∑
X

∫
dzPXfX(z) ln

PXfX(z)

gX(z)
(34)

= β−1
∑
X

PX

∫
dz fX(z) ln

fX(z)

gX(z)
+ β−1

∑
X

PX lnPX (35)

The integral appearing in Eq. 35 is the relative entropy or Kullback-Leibler divergence between the

distributions fX(z) and gX(z); this quantity is equal to zero if the two distributions are identical

and is positive otherwise [15]: ∫
fX ln

fX
gX

= D[fX ||gX ] ≥ 0 (36)
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Thus the first sum on the right side of Eq. 35 is non-negative, hence

〈W 〉 ≥ β−1
∑
X

PX lnPX = −β−1H (37)

which is equivalent to Eq. 26, the bound we set out to establish. 4

The above derivation hinges on the non-negativity of relative entropy. A similar approach has

recently been taken to obtain inequalities related to the second law of thermodynamics [21–24],

in situations when the system of interest does not necessarily begin (or end) in states of thermal

equilibrium. (See also Ref. [25] for an alternative derivation of such inequalities.)

While the calculation presented here assumes a measurement apparatus with four possible

outcomes, it should be clear that the analysis generalizes to any finite number of energy intervals.

In fact, we can even drop the assumption that the measurement is strictly correlated with energy.

That is, suppose phase space is divided into N regions (not necessarily corresponding to energy

intervals) and suppose that when the system is in microstate z, the measurement apparatus returns

a value X that identifies the region of phase space to which that microstate belongs. Finally, a

cyclic protocol is assigned to each possible outcome. It can be verified by the reader that the steps

leading to Eq. 37 (equivalently Eq. 26) remain valid.

Moreover, to this point we have considered a measurement apparatus that is error-free: if the

initial microstate z0 belongs in region X, then the measurement outcome is necessarily X. Let

us now consider a more general situation in which P (X|z0) represents the probability that the

apparatus outputs the value X, when a measurement is performed on a system in microstate z0.

In the Appendix we analyze this scenario and derive the bound

〈Wextracted〉 ≤ β−1I (38)

where I is the mutual information [15] between the variable z0 and X. For error-free measurements

(e.g. Eq. 22), I = H and Eq. 38 reduces to Eq. 37. When the apparatus is capable of making

errors, then I < H [15], which conforms nicely to the intuition that an error-prone measuring

device degrades our ability to extract work from the system. In either case Eq. 26 remains valid.

Finally, we note that the results derived in this section can be generalized to systems evolving

according to stochastic equations of motion [26].

4 In fact, as long as our measurement apparatus has more than one possible outcome X, this result will be a strict

inequality, since fX(z) = 0 6= gX(z) for any z /∈ X, hence D[fX ||gX ] > 0.
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IV. DISCUSSION AND CONCLUSIONS

The past few years have seen considerable interest in the thermodynamics of small systems

and in the applicability of the second law to various nanoscale scenarios (see Ref. [27] for a recent

review), including those involving feedback. Motivated by the recent work of Marathe and Par-

rondo [6], we have studied a model single-particle system that is “cooled” under the quasi-static

cycling of external parameters, when initial conditions are sampled microcanonically. We have used

this model to construct a procedure for systematically harvesting energy from a thermal reservoir

and converting that energy to work, in seeming violation of the Kelvin-Planck statement of the sec-

ond law. This procedure, however, involves the repeated measurement of the energy of the system.

Modeling the measurement apparatus in Sec. III, we have shown by explicit calculation that the

average work delivered per operating cycle does not exceed the average work that must eventually

be expended (in accordance with Landauer’s principle) to erase the information acquired in the act

of measuring the initial energy. Thus on balance the Kelvin-Planck statement remains satisifed.

Our model illustrates the idea – which traces back to Maxwell and Szilard – that knowledge

about the microscopic state of a system can be exploited to circumvent the second law of ther-

modynamics, loosely speaking [8]. In this setting, Eq. 37 places a bound on the work that can be

extracted during a cyclic process, following a measurement that provides information about the

initial state of the system. As already mentioned, similar bounds have been obtained and studied

in the past few years, both for quantum systems [17, 28–30] and for systems evolving according

to stochastic equations of motion [16, 18, 19, 31–38]. We also note that Eq. 35, a precursor to

Eq. 37, generalizes the relative entropy work relation of Kawai, Parrondo and Van den Broeck [39]

to processes with feedback.

Let us now return to a point mentioned in Sec. II: the apparent incompatibility of Eq. 17 with

Liouville’s theorem. Consider a single energy shell, that is the set of all points z0 with a particular

value of energy Ei = H0(z0). This set, which we denote Si, has the topology of a simple closed loop

in phase space. Let us assume that this energy shell is located in region II, hence E1 < Ei < E2.

If we evolve trajectories from initial conditions in Si, using the protocol in Fig. 2(a), we arrive at

a set of final conditions, Sf , which also has the topology of a simple closed loop:

Si = {z0 |H0(z0) = Ei} → Sf = {zτ (z0) |H0(z0) = Ei} (39)

By Liouville’s theorem, these loops enclose equal volumes of phase space: Ω[Sf ] = Ω[Si]. This,

however, is incompatible with a literal interpretation of Eq. 17, which seems to assert that every
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initial condition with energy Ei leads to a net decrease of energy, Ef < Ei, in other words that

Sf is contained entirely in the interior of Si. To address this apparent contradiction, we sketch a

more careful interpretation of Eq. 17.

For any finite duration τ , there exist some initial conditions z0 ∈ Si that yield trajectories

for which the system’s energy increases: H0(zτ (z0)) > Ei. We will refer to these trajectories as

“bad actors”, as they spoil the picture shown in Fig. 3. 5 While bad actors exist for any finite

τ , the probability to generate one of these trajectories generally decreases with increasing τ , for

initial conditions sampled microcanonically from Si. We have observed this trend in numerical

simulations over a range from τ = 1200 to 2000 (data not shown); and as mentioned in Sec. II,

for Ei = 2.8 and τ = 12000 no bad actors were observed among 105 trajectories. Thus for large

but finite τ , we expect Sf to be a highly convoluted, closed loop – necessarily enclosing the same

volume of phase space as Si – with much of the loop concentrated at low energies near the value

predicted by Eq. 17, but with tendrils reaching into the region of energies higher than than Ei. We

believe this issue deserves a more careful treatment, but this is beyond the scope of the present

paper. We end with a conjecture regarding the quasi-static limit:

lim
τ→∞

P
[
|H0(zτ )− Ef | <

ε

2

]
= 1 for any ε > 0 (40)

where the quantity inside the limit is the probability to generate a trajectory whose final energy falls

within an interval of width ε around the value predicted by Eq. 17, and microcanonical sampling

at energy Ei is assumed. We believe this conjecture represents the proper way to understand the

validity of Eq. 17 and Fig. 3. Similar comments apply to Eq. 19 and Fig. 4.

Our results suggest several avenues for future research.

First, it would be interesting to explore a quantum-mechanical version of our model system.

Here, the possibility of tunneling between the left and right wells introduces a new aspect to the

problem, possibly spoiling the picture developed in Sec. II by preventing particles from getting

trapped.

Because the protocols discussed in Sec. II involve the quasi-static cycling of external parameters,

it is natural to wonder whether the swapping of regions I and II (illustrated in Fig. 3) can be

described in terms of a geometric phase.

Finally, we have not explicitly modeled the “demon” in Sec. III. Instead, we have assumed

the existence of some mechanism by which a particular outcome of the measurement leads to the

5 In simulations, we have observed bad actors that begin near the bottom of region II, but get trapped in the right

well at the end of the first stage of the process, e.g. just before t = τ/4 in Fig. 3. As a result, they do not get

drawn into the left well during the second stage. They subsequently “float” on top of the darkly shaded set I in

Fig. 3, and end the process with H0(zτ (z0)) ≈ E2.
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implementation of the corresponding protocol. It would be interesting, however, to model this

mechanism explicitly within a Hamiltonian framework, either by introducing additional degrees of

freedom to model the demon or by specifying coupling terms between the measurement device and

the system. In this case, we anticipate that the bound on extracted work will be given in terms

of the correlation between the state of the system and the state of the measuring device and/or

demon [28, 29, 31, 33].

ACKNOWLEDGMENTS

We gratefully acknowledge useful discussions and correspondence with Eric Heller, Jordan

Horowitz, Daniel Lathrop, Rahul Marathe, Juan Parrondo and Wojciech Zurek, as well as fi-

nancial support from the National Science Foundation (USA) under grants CHE-0841557 and

DMR-0906601, and the University of Maryland, College Park.

Appendix A: Analysis of error-prone measurement devices

Consider a measurement apparatus with a discrete set of possible outputs, X = A,B,C, · · · ,

and let P (X|z0) denote the probability to obtain outcome X, when the measurement is performed

on a system in microstate z0. We assume that every measurement produces some outcome, hence∑
X P (X|z0) = 1 for any z0. As before, a cyclic protocol is chosen based on the outcome of the

measurement. For initial conditions z0, let zXτ (z0) denote the final conditions, after implementation

of the protocol corresponding to outcome X. The work performed on the system is given by Eq. 29,

and averaging over many repetitions of the process gives us

〈W 〉 =

∫
dz0 p

eq(z0)
∑
X

P (X|z0)
(
H0(z

X
τ (z0))−H0(z0)

)
(A1)

= β−1
∑
X

∫
dz0 P (z0, X) ln

peq(z0)

peq(zXτ (z0))
(A2)

where P (z0, X) is the joint probability that the system is initially in microstate z0 and the mea-

surement outcome is X. Dropping the subscript 0, we now introduce two probability distributions

(compare with Eqs. 32, 33)

fX(z) ≡ P (z|X) = P (z, X)/PX (A3)

gX(z) ≡ peq(zXτ (z)) (A4)
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where PX =
∫

dzP (z, X) is the net probability to generate the outcome X, and P (z|X) denotes

the conditional probability distribution that the initial microstate is z, given the measurement

outcome X. In terms of these distributions we now have

〈W 〉 = β−1
∑
X

∫
dzP (z, X) ln

[
fX(z)

gX(z)
· PX p

eq(z)

PX fX(z)

]
(A5)

= β−1
∑
X

PX

∫
dz fX(z) ln

fX(z)

gX(z)
− β−1

∑
X

∫
dzP (z, X) ln

P (z, X)

peq(z)PX
(A6)

On the last line, the first term is a relative entropy, and therefore non-negative; while the second

term (apart from the factor β−1) is the mutual information between z and X. We thus arrive at

〈W 〉 ≥ −β−1I (A7)

equivalently Eq. 38.
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