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Abstract

We study reversible polymerization of rings. In this stochastic process, two monomers bond and

as a consequence, two disjoint rings may merge into a compound ring, or, a single ring may split

into two fragment rings. This aggregation-fragmentation process exhibits a percolation transition

with a finite-ring phase in which all rings have microscopic length and a giant-ring phase where

macroscopic rings account for a finite fraction of the entire mass. Interestingly, while the total

mass of the giant rings is a deterministic quantity, their total number and their sizes are stochastic

quantities. The size distribution of the macroscopic rings is universal, although the span of this

distribution increases with time. Moreover, the average number of giant rings scales logarithmically

with system size. We introduce a card-shuffling algorithm for efficient simulation of the ring

formation process, and present numerical verification of the theoretical predictions.

PACS numbers: 02.50.-r, 05.40.-a, 82.70.Gg, 64.60.ah
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FIG. 1: Rings made of magnetic beads.

I. INTRODUCTION

Percolation [1, 2] controls many natural processes from polymer gelation [3–5] and diffu-

sion in porous media [6, 7], to the spread of forest fires [8, 9] or infectious diseases [10–12].

In the standard percolation picture, a system evolves from a state with many small, micro-

scopic, clusters into a state with a single, macroscopic, system-spanning, cluster. This phase

transition is continuous, and it is controlled by the total number of connections between

elementary units in the system.

In this study, we show that restricting the structure of the clusters leads to a different

percolation behavior where multiple macroscopic clusters coexist. Percolation with multiple

giant clusters has been recently reported in theoretical studies [13, 14], and it is relevant to

the production of colloidal micro-gels [15, 16].

Our starting point is the classic polymer gelation process introduced by Flory [3–5, 17, 18],

a simplified model that is essentially the mean-field theory for percolation [1, 19–23]. In

this polymerization process, a very large number of molecular units (“monomers”) join

irreversibly to form clusters (“polymers”). This process has a second order phase transition

between a “sol” phase in which all polymers are finite to a “gel” phase in which a single

gel containing a finite fraction of the monomers in the system emerges. With time, this gel

grows and eventually, it engulfs the entire system.

In the Flory model, there is no limit on the number of bonds per monomer, and the

resulting polymers may have very different structures. We modify the polymerization process

so that all polymers have the same structure. In our version, all monomers have exactly two

bonds, so that all polymers are rings. Rings occur in magnetized powders or beads [24–26]
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FIG. 2: (a) Inter-ring bonds lead to aggregation. (b) Intra-ring bonds result in fragmentation.

because due to magnetic interactions, linear chains are unstable with respect to formation

of rings (Figure 1). As is the case for magnetic beads, we consider directed rings where the

bonds have directionality (Figure 2). The results extend to undirected rings.

II. AGGREGATION-FRAGMENTATION PROCESS

At time t = 0, our system consists of N isolated monomers. These particles bond to form

polymeric rings through the following process. In each elementary step, two monomers are

selected at random and a first bond is drawn between them. Subsequently, both monomers

drop an existing bond and then, the two “dangling” monomers form a second bond, as

shown in Figure 2. Time is updated, t → t + ∆t with ∆t = 2/N , after each step so that

each monomer experiences one bonding event per unit time. We note that the directionality

of the first bond dictates the directionality of the second bond. This polymerization process

conserves the total number of bonds because two bonds are gained and two bonds are

lost in each event. We assign an imaginary self-bond to every original monomer, so that

formally, the original monomers have a ring structure. Therefore, the total number of bonds

in the system equals N . With this formulation, the polymerization process maintains a ring

topology as every monomer has exactly two bonds.

The above polymerization process is equivalent to an aggregation-fragmentation process.

When a monomer that belongs to ring of size i bonds with a monomer that belongs to a

different ring of size j, a composite ring with size i + j forms (Figure 2a). Hence, rings
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undergo the aggregation process

i, j
Kij−→ i+ j with Kij = ij. (1)

The aggregation rate Kij is proportional to the product of the sizes because there are i× j

distinct pairs that can bond. We note that the aggregation process (1) alone constitutes the

Flory model.

A bond between two monomers in the same ring breaks that ring into two smaller rings.

Schematically, the fragmentation process is (Figure 2b),

i+ j
Fij−→ i, j with Fij =

i+ j

N
. (2)

Due to the circular symmetry, the fragmentation rate Fij is proportional to the ring size,

while the factor 1/N reflects that for fragmentation to occur, one must pick two monomers

within the same ring. The fragmentation rate (2) is unusual as there is an explicit dependence

on system size. Also, the aggregation-fragmentation process specified by (1) and (2) is

reversible because for every aggregation event, there is an opposite fragmentation event,

and vice verse.

Let rk(t) be the density of rings made of k monomers at time t. That is, if Rk is the

expected number of rings of size k, then rk ≡ Rk/N . This size density obeys the rate

equation

drk
dt

=
1

2

∑

i+j=k

ij rirj−krk +
1

N

[

∑

j>k

jrj− k(k−1)
2

rk

]

. (3)

The first two terms represent gain and loss due to the aggregation process (1), and the

last two terms represent gain and loss due to the fragmentation process (2). In particular,

let us consider the two loss terms. The total aggregation rate is, by definition, the ring

size k, but the total fragmentation rate, Fk ≡
∑

i+j=k Fij, grows quadratically with size,

Fk = 1
N

(

k
2

)

= k(k−1)
2N

. Our goal is to understand the time evolution of the density rk(t),

starting from the monomer-only initial condition, rk(0) = δk,0.

III. FINITE RINGS

Our implicit assumption is that the system is very large. When N → ∞, one can use

perturbation theory with the inverse system size being the small parameter [27]. We expand
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the size distribution to first order, rk = ck +
1
N
gk + · · · , and substitute this form into (3) to

obtain the rate equation
dck
dt

=
1

2

∑

i+j=k

ijcicj − kck. (4)

The initial condition is ck(0) = δk,1. The two terms in this equation describe gain and loss

due to aggregation. To zeroth order, the fragmentation process is negligible because the

likelihood of picking two monomers within the same ring vanishes when N → ∞. Equations

(4) describe the evolution of the size distribution in the Flory model, where there is no

fragmentation. The solution to these equations is well-known (see [20, 28] for a review)

ck(t) =
1

k · k!
(kt)k−1e−kt. (5)

Let Mn(t) =
∑

k≥1 k
nck(t) be the nth moment of the distribution ck. The second moment

diverges at a finite time as M2(t) = (1 − t)−1 for t < 1, a signature of the percolation

transition at time t = 1. The first moment, M1(t), provides additional information about

this phase transition. Consider the “missing mass” g(t) = 1−M1(t). This quantity obeys

the transcendental equation

g = 1− e−gt. (6)

When t < 1, there is only the trivial solution g = 0, and hence, finite clusters contain all of

the mass. However, when t > 1, there is a second, nontrivial solution, 0 < g < 1, and this

solution is the physical one. Finite rings account for only a finite fraction, M1 = 1 − g, of

the total mass. Therefore, giant rings must account for the remaining fraction of the total

mass, g. At time t > 1, the total mass of the giant rings equals g(t)N .

At time t = 1, the critical size distribution has a power-law tail (Figure 3),

ck(1) ≃
1

√
2π

k−5/2, (7)

when k ≫ 1. At the critical point, the size of largest ring scales as N2/3 with system size N

[29–31].

IV. GIANT RINGS

When t > 1, we expect that macroscopic rings, that is, rings that contain a finite fraction

of the total mass in the system, account for the missing mass. For a giant ring with size
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FIG. 3: (color online) The critical size distribution, ck ≡ ck(t = 1) versus k. The simulation results

are from 104 independent realizations of a system with N = 108.

k ∝ N , the total aggregation rate, k, and the total fragmentation rate, k(k−1)
2N

, are both

proportional to N . Hence, aggregation and fragmentation occur with comparable rates.

Also, since both rates are proportional to the system size, aggregation and fragmentation are

very rapid. To find the size distribution of the giant rings, we must consider the aggregation-

fragmentation process governing the giant rings.

We characterize a giant ring using the normalized size, ℓ, defined as ℓ = k/N . This

quantity equals the fraction of the total mass contained in the ring. Let G(ℓ, t) be the

average number of rings with normalized size ℓ at time t. Conservation of mass dictates

g(t) =

∫

dℓ ℓG(ℓ, t), (8)

where g(t) is the nontrivial solution of (6).

The quantity G(ℓ, t) satisfies

1

N

∂G(ℓ, t)

∂t
=

1

2

∫ ℓ

0

ds s(ℓ− s)G(s, t)G(ℓ− s, t)− ℓ(g − ℓ)G(ℓ, t)

+

∫ g

ℓ

ds sG(s, t)−
1

2
ℓ2G(ℓ, t). (9)

This rate equation, essentially the continuous analog of Eq. (3), describes the aggregation-

fragmentation process that governs the giant rings. To formally derive (9) from (3), we first

make the transformations Gk ≡ Nrk and k = ℓN , and then, note that the aggregation loss

rate is reduced by the factor (g − ℓ) because self-interactions do not lead to aggregation.
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FIG. 4: (color online) Simulation results for G(ℓ) ≡ G(ℓ, t) at three different times, t(g = 1/4) =

1.150729, t(g = 1/2) = 1.386294, and t(g = 3/4) = 1.848392. The time t(g) = 1
g ln 1

1−g follows

from (6). Also shown for reference is the theoretical prediction (10). The simulations results are

from 107 independent realizations of a system with size N = 106.

From the definition of G(ℓ, t) and from equation (8), we deduce that the quantity G(ℓ, t)

is finite when t > 1 and 0 < g(t) < 1. Therefore, the right-hand side of (9) is finite, while

the left-hand side is negligible in the large-N limit. We therefore replace the left-hand side

of Eq. (9) with zero to determine the time-dependent distribution G(ℓ, t). The resulting

non-linear integral equation has the remarkably simple solution (see Figure 4)

G(ℓ, t) =











ℓ−1 ℓ < g(t),

0 ℓ > g(t).
(10)

Indeed, this solution obeys the mass conservation statement (8). Surprisingly, the size

distribution is universal, although the span of the distribution grows with time, 0 < ℓ < g(t).

Therefore, at time t > 1, there are giant rings of all sizes up to the maximal value g(t)N .

The distribution of rings includes two distinct components: Nck gives the average number

of finite rings, and G(ℓ) gives the average number of giant rings. Of course, the former

expression applies at all times, while the latter holds only for t > 1. The giant rings grow

at the expense of the finite rings and essentially they take over the entire system as g → 1

when t → ∞.

Finite rings and giant rings undergo separate, essentially decoupled, aggregation-

fragmentation processes. Indeed, the rate equation (4) for ck is closed, while the rate
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FIG. 5: (color online) The average number of giant rings, Ng, and the variance σ2, versus system size

N . The simulation results represent an average over 105 independent realizations. We measured

Ng and σ2 by counting the number of rings with size k > 4 lnN at time t = 2.

equation (9) for G(ℓ) is, in practice, also a closed equation. There is a constant flux of

mass, N × dg/dt, from finite rings to giant rings, and this flux couples the two types of

rings. This coupling enters only through the fraction g(t) which appears explicitly in (9).

The distribution (10) implies that there are multiple giant rings: the average number of

giant rings, Ng, scales logarithmically with system size (Figure 5)

Ng ≃ lnN. (11)

This behavior follows from Ng =
∫ g

l∗
dℓG(ℓ). The lower limit ℓ∗ = k∗/N can be deduced from

the criterion N
∑

k≥k∗
ck(t) = 1 that estimates the size of the largest finite ring. Using this

criterion together with Eq. (5) we find k∗ ≃ (t− ln t−1)−1 lnN and therefore ℓ∗ ∼ N−1 lnN .

Since the merger-breakup process is random, we expect that the variance in the number

of giant rings, σ2, is proportional to the mean, σ2 ≃ lnN . Numerical simulations confirm

this behavior (Figure 5). Hence, the standard deviation

σ ≃
√
lnN (12)

quantifies fluctuations in the number of giant rings.

Figure 6 shows the normalized sizes of the three largest rings as a function of time using

a simulated system. These sizes exhibit huge fluctuations as giant rings constantly merge
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FIG. 6: (color online) The largest three rings. Shown is the time evolution of ℓn(t), the size of

the nth largest ring at time t, for n = 1 (upper red line), n = 2 (middle green line), and n = 3

(lower blue line). The results are from a single run of a system with N = 106. Also shown is the

cumulative mass g(t).

and break on a very fast time scale. Interestingly, while the size of an individual giant ring

is a stochastic quantity, the total size of all giant rings, g(t), is a deterministic quantity.

The number of finite rings is proportional to N , while the number of giant rings scales

only logarithmically with N . Equation (5) shows that monomers dominate in the long-time

limit. By comparing the average number of monomers, Nc1 = Ne−t, with the the average

number of giant rings, given by (11), we conclude that giant rings overtake finite rings when

t ≫ tf with

tf ≃ lnN. (13)

In writing this expression, we ignored secondary logarithmic corrections.

For times t ≫ tf , the ring-size distribution reaches a steady state. Setting g = 1 in (10)

shows that Nk, the average number of rings with (unnormalized) size k, has the following

form

Nk =
1

k
, (14)

for all 1 ≤ k ≤ N . Thus, at the steady state, there are rings of all lengths, from finite rings

to macroscopic rings. The distribution (14) also follows from the detailed-balance condition

Kijcicj = Fijci+j with the solution ck = (Nk)−1 [28, 32].
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FIG. 7: (color online) The average number Nk of rings of size k at the steady state. The simulation

results are from 103 independent realizations of a system with N = 108 at time t = 20.

In the steady state, aggregation generates an upward flux from small sizes to larger sizes,

while fragmentation leads to a downward flux from large sizes to smaller sizes. These two

fluxes perfectly balance. While the steady state distribution (14) includes rings of all sizes,

rings of finite size account only for a microscopic mass, while rings of giant size account for

nearly all of the (macroscopic) mass.

V. SHUFFLING ALGORITHM

Throughout this paper, we presented results of Monte Carlo simulations that support

the theoretical predictions. We implemented an elegant algorithm that takes advantage of

an isomorphism between the polymerization process and a card shuffling process. In the

card shuffling algorithm [33–36], we start with an ordered deck of N cards, numbered 1

through N . Then, at each elementary step, we pick two cards at random and exchange their

positions. For example, the first two steps in shuffling a deck of 6 cards may look like

123456 → 153426 → 154326 → · · · .

Time is updated by ∆t = 2/N after each step, t → t + 2/N , and thus, each card participates

in one shuffling event per unit time, on average.

We now use cycles to represent permutations. For example, six cards ordered 134265 are

represented by (1)(234)(56) because there are three cycles: the card 1 forms a cycle of length
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one, the cards 234 form a cycle of length three, and the cards 56 form a cycle of length two.

Initially, there are N cycles of length 1. Then, exchange of two cards in distinct cycles leads

to merger, while exchange of two cards in the same cycle leads to breakup. For example,

the following steps generate the merger and breakup events in Figure 2,

(123)(456) → (156423), and (156423) → (123)(456).

Furthermore, the merger rate and the breakup rate are given by (1) and (2). Hence, the

dynamics of cycles in the shuffling process are identical to the dynamics of rings in the

polymerization process.

The above algorithm is straightforward and efficient. The shuffling steps take O(N)

operations per unit time, and moreover, tracing the cycle structure requires only O(N)

operations. This linear algorithm enabled us to simulate large systems with as many as

N = 108. Figure 7 demonstrates the excellent agreement between the simulation results and

the theoretical prediction (14).

The distribution Nk given in (14) equals the average number of cycles of length k for a

random permutation of N elements [37, 38]. As expected, repeated shuffling randomizes the

card order and according to (13), the number of exchanges required to generate a perfectly

random shuffle scales as N lnN .

A natural generalization is to n-card shuffling where n randomly chosen cards are re-

ordered according to a prescribed rule. For example, if n = 3, we may follow the cyclic

rule 123 → 231. The equivalent polymerization process now involves merger of n poly-

mers. Straightforward generalization of the Flory model shows that the total gel mass, g(t),

satisfies [39]

1− g = e−
1−(1−g)n−1

(n−1)!
t, (15)

with 0 < g < 1 in the giant-ring phase t > (n − 2)!. We anticipate that the distribution

of giant rings is given by (10), except that the total mass is now specified by (15). Our

numerical simulations of the three-card process confirm this behavior.

VI. DISCUSSION

In summary, we studied a ring polymerization process in which a bond between two

monomers results either in aggregation of two rings into one or in fragmentation of one ring
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into two. This process exhibits a percolation transition with a finite-ring phase in which all

rings are microscopic and a giant-ring phase in which multiple macroscopic rings coexist.

While the cumulative mass of the giant rings is deterministic, the sizes of individual giant

rings are stochastic. Moreover, the giant rings exhibit huge fluctuations due to the extremely

rapid merger and breakup processes. Finally, the size distribution of giant rings is stationary,

although the span of this distribution grows with time.

The aggregation-fragmentation process that governs the rings is perfectly reversible. On

the one hand, the distribution of ring size reaches a stationary state where detailed balance is

formally satisfied. On the other hand, this final distribution is not thermodynamic because

the number of rings varies logarithmically, rather than linearly, with system size. Phase

transitions with non-thermodynamic states were previously observed only in irreversible

aggregation-fragmentation processes [40–42].

The original Flory model is equivalent to an evolving random graph [17, 18, 22, 23, 28–31]

in which a node can have an arbitrary degree. The ring formation process above generates

an evolving regular random graph in which all nodes have degree 2. In this context, the

fragmentation process illustrated in figure 2b naturally represents redirection of links. Hence,

our analysis also constitutes the kinetic theory of an evolving regular random graph.

The ring formation process can be generalized in many ways. We focused on the mean-

field version, and it will be interesting to study two-dimensional rings where spatial correla-

tions play an important role. Another direction for further study is percolation of polymers

with other types of fixed structures, for example, polymers where all monomers have exactly

three bonds [3].

Finally, we notice that the unusual behaviors in the giant-ring phase are the consequence

of the basic topological constraint, namely that the polymers maintain a ring structure. This

suggests to investigate the influence of other constraints such as planarity [43, 44]. Another

interesting question is what happens if the polymers are membranes [45] such as spheres

(say due to the surface tension) that can merge and divide.
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