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Abstract

We conduct a comparative study to evaluate several lattice Boltzmann (LB) models for solving

the near incompressible Navier-Stokes equations, including the lattice Boltzmann equation with the

multiple-relaxation-time (MRT), the two-relaxation-time (TRT), the single-relaxation-time (SRT)

collision models, and the entropic lattice Boltzmann equation (ELBE). The lid-driven square cavity

flow in two dimensions is used as a benchmark test. Our results demonstrate that the ELBE does

not improve the numerical stability of the SRT or the lattice Bhatnagar-Gross-Krook (BGK) model.

Our results also show that the MRT and TRT LB models are superior over the ELBE and LBGK

models in terms of accuracy, stability, and computational efficiency, and that the ELBE scheme is

the most inferior among the LB models tested in this study, thus is unfit for carrying out numerical

simulations in practice. Our study suggests that, to optimize the accuracy, stability, and efficiency

in the MRT model, it requires at least three independently adjustable relaxation rates: one for

the shear viscosity ν (or the Reynolds number Re), one for the bulk viscosity ζ, and one to satisfy

the criterion imposed by the Dirichlet boundary conditions which are realized by the bounce-back

type boundary conditions.
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I. INTRODUCTION

The lattice Boltzmann equation (LBE) has been used to solve a wide range of of problems

in computational fluid dynamics (CFD) (cf. reviews [1, 2] and references therein). There are

several variations of the LBE, including the lattice Bhatnagar-Gross-Krook (LBGK) model

or single-relaxation-time (SRT) model, the entropic model [3, 4], and the two-relaxation-time

(TRT) [5–7] and multiple-relaxation-time (MRT) [8–11] models. All these LB models can

be derived from the linearized Boltzmann equation [12, 13], and the difference between them

resides in their collision terms. The lattice BGK (LBGK) model is the simplest in appearance

and thus is also the most popular one. However, the LBGK model has several inherent

deficiencies including numerical instability and inaccurate boundary locations [14, 15]. The

entropic LBE (ELBE) is intended to overcome the numerical instability of the LBGK model

[3, 4]. The MRT-LB model is the most general form derived from the linearized collision

model within the theoretical framework of the LBE and kinetic theory — it includes all

possible degrees of freedom to optimize the LBE, and it has been shown to be superior over

the SRT models in terms of accuracy, stability, and computational efficiency [10, 15, 16].

The TRT model allows only two most important relaxation rates in the LBE; it retains

some advantages of the MRT model in terms of accuracy and stability, while maintaining

the simplicity of implementation and hence the computational efficiency.

While the aforementioned LB models have existed for quite some time, there has never

been a comprehensive comparative evaluation to quantitatively assess the efficacy of these

LB models for solving problems in CFD. In this work, we intend to compare the LBGK,

ELBE, MRT, and TRT models in terms of their accuracy, stability, and computational

efficiency for solving the incompressible Navier-Stokes equations in two dimensions (2D).

We will use the lid-driven square cavity flow in 2D as a benchmark test.

The remainder of the paper is organized as follows. Sec. II provides a succinct introduction

of the LB models including the MRT, TRT, LBGK, and ELBE models; it also includes a brief

discussion of the bounce-back (BB) boundary conditions (BCs). Sec. III presents the results

of this study. We first briefly describe the benchmark test problem: the lid-driven square

cavity flow in 2D. The LB results are compared with data obtained by using a pseudo-spectral

method with multigrid and singularity subtraction technique [17, 18]. We investigate the

abilities of the LB schemes to compute the gross features of the flow, the flow fields near the
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boundary, the convergence behavior, the numerical stability, and computational efficiency.

Our results expose the inherent deficiencies of the ELBE and LBGK schemes in terms of

accuracy, stability, and efficiency. Finally, Sec. IV concludes the paper.

II. LATTICE BOLTZMANN EQUATION

A. Lattice Boltzmann Models

The lattice Boltzmann equation is a discrete system evolves on a d-dimensional lattice

xi ∈ δxZ
d and in discrete time tn ∈ δtN0 := δt{0, 1, . . .}. The lattice Boltzmann equation is

derived from the kinetic theory and resembles the discrete velocity model of the Boltzmann

equation in some aspects [19]. The discrete velocity set of the LBE, V := {ci|i = 0, 1, . . . , b},
usually is symmetric, i.e., V = −V, and has a zero velocity c0 = 0. The total number of

discrete velocities in V is q = (1 + b), including one zero velocity and b non-zero ones. An

LB model with q velocities in d-dimensional space is usually denoted as DdQq model. In

this work, we will use the D2Q9 model on a square lattice, of which the discrete velocity set

{ci|i = 0, 1, . . . , 8} is

ci =



















(0, 0) i = 0,

(±1, 0)c, (0, ±1)c, i = 1– 4,

(±1, ±1)c, i = 5– 8,

(1)

where c := δx/δt.

In general, the lattice Boltzmann equation can be concisely written as the following:

f(xi + cδt, tn + δt)− f(xi, tn) = Ω(f), (2)

where the bold-font symbols represent q-dimensional (column) vectors

f(xi + cδt, tn + δt) =: (f0(xi, tn + δt),

. . . , fb(xi + cbδt, tn + δt))
†,

f(xi, tn) =: (f0(xi, tn), f1(xi, tn), . . . , fb(xi, tn))
†,

Ω(f) = (Ω0(xi, tn), Ω1(xi, tn), . . . , Ωb(xi, tn))
†,

† denotes the transpose operation, fi(xj, tn) is the distribution function corresponding to

the discrete velocity ci, and Ωi is the change in fi due to collisions.
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For the purpose of solving the incompressible Navier-Stokes equations, most collision

models in the lattice Boltzmann equation (2) are based on the linearized collision operator.

This study will focus on the following LB models: the multiple-relaxation-time (MRT) [8–

11], two-relaxation-time (TRT) [5–7], single-relaxation-time (SRT) or the lattice Bhatnagar-

Gross-Krook (LBGK) [20], and the entropic LB models [3]. We will first discuss the MRT

model, of which the collision model can be written as

Ω = −M−1 ·Ŝ·[m−m
(eq)], (3)

where m and m
(eq) represent the velocity moments of the distribution functions f and their

equilibria, respectively,

m = (m0(xi, tn), m1(xi, tn), . . . , mb(xi, tn))
†,

m
(eq) = (m

(eq)
0 (xi, tn), m

(eq)
1 (xi, tn), . . . , m

(eq)
b (xi, tn))

†,

M is a q × q matrix which linearly transforms the distribution functions f ∈ V ≡ R
q to the

velocity moments m ∈ M ≡ R
q,

m = M · f , f = M−1 ·m, (4)

and Ŝ is a non-negative q × q diagonal relaxation matrix [8–11].

The LB method was created as an alternative CFD solver — it is not intended as a solver

for the Boltzmann equation. The quantities of interest to macroscopic hydrodynamics, such

as the density ρ, the flow momentum ρu, and the total energy ρE, as well as their fluxes

are (velocity) moments of the single-particle mass distribution function f(x, ξ, t) in the

phase space Γ := (x, ξ), which satisfies the Boltzmann equation, and it is therefore natural

to deal with equations of moments (cf. e.g., [21]). The MRT-LBE is formulated in the

spirit and tradition of kinetic method in this regard: the collision process is approximated

as linear relaxations in the space of moments, and the relaxation rates are directly related

to transport coefficients, while the transport process is independently executed in velocity

space. The MRT-LBE is not only theoretically elegant, but practically advantageous, as we

shall demonstrate through this study.

Corresponding to the nine discrete velocities of the D2Q9 LB model, {ci|i = 0, 1, . . . , 8},
there are nine velocity moments {mi|i = 0, 1, . . . , 8}. The labeling (or the ordering) of these
moments is arbitrary and we will use the convention given by Lallemand and Luo [9], that
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is, m0 = δρ, m1 = e, m2 = ε, m3 = jx, m4 = qx, m5 = jy, m6 = qy, m7 = pxx, and

m8 = pxy. The conserved moments in the system are the density ρ = ρ0 + δρ, where ρ0 = 1

and δρ are the mean density and the density fluctuation, respectively, the flow momentum

j = (jx, jy) = ρ0u, where u = (u, v) is the flow velocity. (Because energy is not a conserved

quantity in the LB models considered in the present, thus these LB models are athermal.)

The physical significance of the other six non-conserved moments can be found in literature

[8–11]. The equilibria of the conserved moments are themselves, and the equilibria of the

non-conserved moments are given bellow:

e(eq) = −2δρ+
3

ρ0
(j2x + j2y), (5a)

ε(eq) = δρ− 3

ρ0
(j2x + j2y), (5b)

(q(eq)x , q(eq)y ) = −(jx, jy), (5c)

p(eq)xx =
1

ρ0
(j2x − j2y), p(eq)xy =

1

ρ0
jxjy. (5d)

By considering only δρ in various parts of the equilibria pertaining to the mass conservation,

the effects of the round-off error can be reduced [22, 23], especially when |δρ| ≪ 1. Since the

density fluctuation δρ and the flow velocity u are decoupled, the above model approximates

incompressible flows [22]. With ordering of the discrete velocities {ci} and the moments

{mi} given above, the transformation matrix M is [8–11]:

M =













































1 1 1 1 1 1 1 1 1

−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 −2 0 2 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 1

0 0 −2 0 2 1 1 −1 −1

0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 −1













































. (6)

Note that rows 4 and 6 uniquely define the ordering (or labeling) of the discrete velocities

{ci}. Correspondingly, the diagonal matrix of non-negative relaxation rates 0 < si < 2 is

given by

S = diag(0, se, sε, 0, sq, 0, sq, sν , sν). (7)
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With the equilibria given by Eqs. (5), the first-order non-equilibrium parts of the non-

conserved moments are,

p(1)xx = − 2

3sν
(∂xjx − ∂yjy) , (8a)

p(1)xy = − 1

3sν
(∂yjx − ∂xjy) , (8b)

e(1) = − 2

se
(∂xjx + ∂yjy) , (8c)

ε(1) =
2

sε
(∂xjx + ∂yjy) , (8d)

q(1)x,y = 0 . (8e)

The speed of sound in a quiescent media for the D2Q9 model is

cs =
1√
3
c, (9)

and the shear viscosity ν and the bulk viscosity ζ are

ν =
1

3

(

1

sν
− 1

2

)

cδx, (10a)

ζ =
1

6

(

1

se
− 1

2

)

cδx, (10b)

where sν is the relaxation rate for the moments pxx and pxy, which are related to the off-

diagonal elements of the stress tensor, and se is the relaxation rate for the moment e, which

is related to the diagonal elements of the stress tensor. The dissipation for (longitudinal)

sound waves or density fluctuations in the system is (ζ + ν/2).

If we set the relaxation rates for the even-order non-conserved moments (i.e., e, ε, pxx,

and pxy) to s+ = 1/τ and those for the odd-order ones (i.e., qx and qy) to the following

[14, 24, 25]:

sq = 8
(2− sν)

(8− sν)
= 8

(2τ − 1)

(8τ − 1)
=

16ν

8ν + 1
, (11)

then the MRT model becomes the two-relaxation-time (TRT) model [5–7]. If we set all

relaxation rates {si} equal to 1/τ , then the MRT model reduces to the lattice Bhatnagar-

Gross-Krook (LBGK) model with single-relaxation-time (SRT), of which the equilibrium

distribution functions are:

f
(eq)
i = wi

[

δρ+ ρ0

{

ci · u
c2s

+
1

2

(

(ci · u)2
c4s

− u · u
c2s

)}]

, (12)
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where w0 = 4/9 for ‖c0‖ = 0, w1,2,3,4 = 1/9 for ‖c1,2,3,4‖ = c, w5,6,7,8 = 1/36 for ‖c5,6,7,8‖ =
√
2c, and cs = c/

√
3. The collision model in the LBGK equation is

Ωi = −1

τ

[

fi − f
(eq)
i

]

. (13)

The entropic lattice Boltzmann equation (ELBE) proposed by Ansumali et al. [3] has the

BGK collision term with the following equilibria:

f
(eq)
i = wiρ

2
∏

α=1

(2− Sα)

(

2uα + cSα

c− uα

)ciα/c

, (14a)

Sα :=

√

1 +

(

uα
cs

)2

, (14b)

where Greek subscript α denotes the Cartesian coordinates {x, y} or {1, 2} in 2D, and

ciα/c ∈ {−1, 0, +1}. The above equilibria can also be re-written as [26]:

f
(eq)
i =ρ

(

−1

2

)

|cix|+|ciy|

c

[

c2s
c2
(2Sx − 1) +

(

−uxcix
c2

)

|cix|

c

]

×
[

c2s
c2
(2Sy − 1) +

(

−uyciy
c2

)

|ciy |

c

]

. (15)

For both the LBGK and ELBE models with one relaxation time τ given above, the shear

viscosity ν and the bulk viscosity ζ are given by [9]:

ν =
1

3

(

τ − 1

2

)

cδx , ζ =
ν

2
. (16)

The attenuation coefficient (or dissipation) for acoustic waves (or the density fluctuation)

in the system is ζ + ν/2 = ν for the LBGK models. Consequently, the LBGK models are

prone to numerical instabilities when ν is small (or τ close to 1/2), because there is no

ν-independent mechanism to keep the density fluctuation in check.

A few remarks regarding the ELBE model [3] described above are in order here. First of

all, the equilibrium moments computed from the equilibrium distributions of Eqs. (14) or

(15) with c2s = c2/3 are:

e(eq) = 2ρ (Sx + Sy − 3) , (17a)

ε(eq) = ρ (2Sx − 3) (2Sy − 3) , (17b)

q(eq)x,y = ρ (2Sy,x − 3)
ux,y
c
, (17c)

p(eq)xx =
2

3
ρ (Sx − Sy) , (17d)

p(eq)xy = ρuxuy . (17e)
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Thus, except p
(eq)
xy and the terms involving δρ ·u which are neglected by the incompressibility

approximation [22], one difference between the ELBE and MRT-LBE is the O(u3) terms in

the odd-order equilibrium moments, q
(eq)
x and q

(eq)
y , which affect the Galilean invariance of

the model [9], while the difference in the even-order equilibrium moments, e(eq), ε(eq), and

p
(eq)
xx , is of the terms of the order O(u4).

And secondly, based on our experience and understanding of the LBE, it is unclear theo-

retically how the ELBE with a constant relaxation parameter τ can improve the numerical

stability of the LBGK scheme, as it has been advocated [3, 4]. Furthermore, if the equilibria

of Eqs. (14a) are replaced by their low-order Taylor expansions in u, as suggested in [26],

then it can be shown rigorously that the equilibria of polynomial form cannot admit an

H theorem [27, 28] and the ELBE is no longer entropic. In this study we will numerically

demonstrate that the ELBE model does not improve the numerical stability of the LBGK

model in any way, contrary to previous claims [3, 4].

We would also like to comment on the general characteristics of the LBE. First of all,

the relevant physical quantities of the LBE are the conserved quantities, i.e., the density ρ

and the momentum ρu for the athermal LB models — the pressure p and the velocity u are

derived or indirect quantities. The conserved quantities, ρ and ρu, obtained with the LBE

can only approximate p and u, which are the solutions of the incompressible Navier-Stokes

equations [29]. Since the density ρ is an intrinsic variable of the LBE, the compressibility

associated with the density fluctuation is inherent in the LBE. Thus, the second point is that

all LB schemes are intrinsically compressible in the sense that the density is an essential

variable and the velocity field is never divergence free. The so-called “incompressible” LB

schemes (e.g., [22]) can only alter the compressibility effect quantitatively, but can never elim-

inate it entirely. Theoretically, the incompressible Navier-Stokes equations can be derived

directly from the Boltzmann equation in the diffusive scaling limit δ2x/δt = 1 (cf. [29, 30] and

references therein), and the exponential tail of the Maxwellian equilibrium when ‖ξ‖ → ∞
is indispensable in this derivation. With a set of finite discrete velocities {ci|i = 0, 1, . . . , b},
the LBE cannot possibly satisfy the Poisson equation exactly, which requires the pressure to

propagate throughout the system instantaneously, i.e., with a propagating speed of infinity.

Thus, the LBE is intrinsically compressible, and can only approximate the incompressible

Navier-Stokes equations. The pressure p in the LBE is coupled to the density ρ through a

simple equation of state p = c2sρ for ideal gases, and in this way the LBE is related to the
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artificial compressibility method [31, 32].

It is also worth noting that the only important distinction between the so-called “in-

compressible” and the “compressible” LB schemes lies in the acoustics of the system. The

speed of the sound waves in the “incompressible” LB schemes is incorrect (cf. Eq. (48) and

relevant discussions in [9]),

Cs = V cosφ±
√

c2s + V 2 cos2 φ

= V cosφ± cs

√

1 +Ma2 cos2 φ ,

where Ma = V/cs, V = ‖V ‖, V is the constant streaming velocity of the media, and φ is the

angle between V and the wave-vector k of the acoustic waves [9]. In order to have a correct

speed of acoustic waves, Cs = V cosφ ± cs, one must use the “compressible” LB schemes,

i.e., replacing ρ0 by ρ in the equilibria of Eqs. (5) and (12). Since we are only concerned

with steady-state calculations in this study, while the “incompressible” approximation can

improve computational efficiency a little by avoiding the divisions by ρ in computing the

equilibria and possibly reduce the compressibility effect [22], its defect in the acoustic prop-

agation will not affect the results negatively.

B. The Bounce-Back Boundary Conditions

The bounce-back boundary conditions in the LBE are used to realize the Dirichlet bound-

ary conditions. The bounce-back boundary conditions are easily to implement: when collid-

ing with an impenetrable wall with a velocity uw, the particle simply reverses its momentum

normal to the wall and gains an additional momentum due to the wall velocity uw, i.e.,

fı̄(xb, t+ δt) = fi(xb, t)− 2ρ0wi
ci · uw

c2s
, (18)

where fı̄ and fi correspond to the discrete velocity cı̄ and ci, respectively, and fi(xb, t)

in the right-hand side of Eq. (18) is the post-collision distribution function; cı̄ = −ci; the

component of ci normal to the wall is pointing outward from fluid domain to the wall, xb

is a fluid node adjacent to a wall boundary; and uw is the wall velocity at the point where

the particle of the velocity ci collides with the wall.

The bounce-back boundary conditions are implemented as follows. Beyond the boundary,

an extra (ghost) layer of nodes is used to store the distribution functions fi which move out
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of the flow domain in the advection step; the collisions between these particles and the

wall are accomplished by reversing themselves to fı̄ and gaining the amount of momentum

−2ρ0wici · uw/c
2
s, they are then copied to the fluids nodes where they came from through

the advection.

The bounce-back boundary conditions have been studied in details and are well un-

derstood [14, 24, 25]. The analytic solutions for the LBE with the bounce-back bound-

ary conditions can be obtained for simple flows, such as the Poiseuille and Couette flows

[24, 25, 33, 34]. For the Poiseuille flow driven by a constant body force G = ‖∇p‖ and with

its walls parallel to lattice lines, the actual channel width H observed in the simulations is

given by [14, 24, 25]

H2 = H2
1/2 + 4∆2 − 1, (19a)

∆ =
4

3

(

1

sν
− 1

2

)(

1

sq
− 1

2

)

, (19b)

where H1/2 := Nδx, N is the number of fluid nodes across the channel. That is, only when

the relationship between sq and sν of Eq. (11) is satisfied, ∆ = 1/2 and H = H1/2; the

no-slip boundary conditions at the channel walls are indeed satisfied at the δx/2 beyond the

last fluid nodes; and the maximum velocity at the channel center line is Umax = GH2/8ν.

If H 6= H1/2, then the LB solution is inconsistent with the incompressible Navier-Stokes

solution we desire.

For the ELBE and the LBGK schemes with only one relaxation parameter τ , Eq. (19b)

becomes

∆ =
4

3

(

τ − 1

2

)2

= 12ν2 .

Therefore, ∆ = 1/2 if and only if ν = 1/(2
√
6) (or τ = 1/2 +

√
6/4 ≈ 1.1123). In the

interval 1/2 < τ ≤ 1/2+
√
6/4, we have −1 < (4∆2− 1) ≤ 0 or 0 < ∆ ≤ 1/2. Consequently

the error of the inaccurate boundary location is within one lattice spacing δx. This explains

why the LBGK simulations of flows of high Reynolds number with τ < 1 have relatively

small errors at the boundary. Since this error at the boundary is quadratic in ν (or τ), it

becomes considerable or even intolerable when τ ≫ 1, which is the case for the Stokes or

creeping flows and is practiced in simulations of flow through porous media [14, 15]. This

error of the LBGK schemes with the bounce-back type boundary conditions is ostentatiously

manifested in simulations of flow through porous media with very low Reynolds numbers —
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the permeability obtained by the LBGK schemes is viscosity dependent, which is unphysical

[14, 15].

Due to the intuitive nature of the bounce-back boundary conditions, it is often mistakenly

assumed that, in the ELBE and LBGK schemes, the imposed Dirichlet boundary conditions

are indeed satisfied either right on the last fluid nodes adjacent to boundary, or one half

or one full grid spacing beyond them. This forms the basis of the misguided idea that

the non-zero velocity in the vicinity of the last fluid nodes can mimic the Knudsen layer

in rarefied flows (e.g., [35–37]). However, a close examination shows that the ELBE or

LBGK schemes with the BB type BCs are inadequate to model the Knudsen layer for at

the following reasons. The first is that theoretically the LBE is a truncated model valid

for the Navier-Stokes equations, and is incapable of modeling higher-order moments of the

distribution function [38–41]. And the second is that the velocity near the boundary depends

on the grid resolution N thus the solution with fixed Re, Ma, and Kn does not converge as

N increases [41]. A more detailed discussion of this point is deferred to Sec. IIIC.

III. RESULTS AND DISCUSSIONS

A. Lid-driven square cavity flow in 2D

We will use the lid-driven square cavity flow in two dimensions (2D) as a test case

to compare the lattice Boltzmann models. The 2D lid-driven flow prescribed by the 2D

incompressible Navier-Stokes equation on a square domain Ω := (x, y) ∈ [0, L] × [0, L] =

[0, 1]× [0, 1]:

∂tu+ u ·∇u = −∇p + ν∇2u, ∇ · u = 0 , (20)

u(x, 1) = (U, 0), u(x, 0) = u(0, y) = u(1, y) = 0 ,

where u(x, t) and p(x, t) are the velocity and the pressure field, respectively, and U is the

sliding velocity of the top wall. The Reynolds number of the flow is defined by the sliding

velocity U , the dimension L of the cavity, and the viscosity ν, i.e., Re = UL/ν.

The 2D lid-driven square cavity flow has been studied extensively and employed by many

as a benchmark test (cf., e.g., [17, 18, 42–45]). While the geometry of the flow domain is

simple, the flow exhibits complicated features. Small vortexes developed at the corners and
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other locations can be difficult to capture numerically for they are weak and small. The

flow becomes unsteady when the Reynolds number is beyond a certain critical value, and

eventually becomes turbulent. In this work we will restrict ourselves to the steady states of

the flow with Re = 100, 400, and 1,000. The criterion for reaching steady state in the LB

simulations is given by
∑

i ‖u(xi, tn + 1000δt)− u(xi, tn)‖2
∑

i ‖u(xi, tn)‖2
< 10−12, (21)

where ‖u‖2 denotes the L2 norm of u. We will compare the LB simulations with the results

obtained by using an explicit Chebyshev pseudo-spectral (PS) multigrid (MG) method (cf.

[18] and refs. therein) together with a singularity subtraction technique (cf. [17] and refs.

therein) to deal with the corner singularities. With singularity subtraction technique, PS-

MG methods can yield very accurate results effectively and efficiently [17, 18].

For the LB simulations, the viscosity in the units of δx and δt is determined by

ν =
UL

Re
, (22)

where U = 0.1c unless other stated and L = Nxδx. Therefore,

τ =
1

sν
= 3ν +

1

2
=

3UNδx
Re

+
1

2
. (23)

For the MRT and TRT models, Eq. (11) is used to determine the value of sq, which is the

relaxation rate for the heat fluxes qx and qy. The other two relaxation rates, se for the

energy mode and sε for the energy square mode, are set to 1.64 and 1.54, respectively [9].

We use the bounce-back boundary conditions in the LB simulations. The nodes on the top

two corners belong to the moving lid in the LB simulations.

The value of U = 0.1c is not chosen entirely arbitrary — it is a compromise between

accuracy and computational efficiency. The value of U cannot be too large or the LB code

becomes unstable. Also the compressibility error in the LBE is of O(U2) [29, 43], therefore

U should be as small as possible for the sake of accuracy. As a practical rule, one should

restrict ‖u(x, t)‖ < 0.2 throughout the entire flow domain and for all time, so that flow is

nominally incompressible. On the other hand, larger U also means better computational

efficiency, because the number of iterations to reach steady state, Nt, is proportional to the

hydrodynamic diffusive time scale in the system, i.e., Nt ∝ N2/ν = ReN/U = csReN/Ma.

Thus the number of iterations Nt and the computational time are inversely proportional
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to U with both the mesh resolution N and the Reynolds number Re fixed. One can also

see that increasing U effectively increases the Courant-Friedrichs-Lewy (CFL) number, thus

decreases the computational time as a consequence [57].

In pseudo-spectral methods, both the stream function ψ and the vorticity ω can be

obtained analytically from the velocity u. In the LBE, ψ is computed by using Simpson’s

rule for numerical integration:

ψ(xi+1, yj) =ψ(xi−1, yj)−
δx
6
[v(xi−1, yj)

+4v(xi, yj) + v(xi+1, yj)] , (24)

where ψ(x = 0, y) = 0, and the vorticity ω are computed from u by using the following

finite difference formulas:

∂xu(xi, yj) ≈u(xi+1, yj)− u(xi−1, yj)

− 1

4
[u(xi+1, yj+1)− u(xi−1, yj+1)

−u(xi−1, yj−1) + u(xi+1, yj−1)] , (25a)

∂yu(xi, yj) ≈u(xi, yj+1)− u(xi, yj−1)

− 1

4
[u(xi+1, yj+1) + u(xi−1, yj+1)

−u(xi−1, yj−1)− u(xi+1, yj−1)] . (25b)

Note that the above formulas used to compute ψ and ω are valid only in the interior of the

flow domain {(xi, yj)|2 ≤ i ≤ (Nx − 1), 2 ≤ j ≤ (Ny − 1)}. For the fluid nodes next to

the boundary or on the boundary nodes, special consideration must be given because the

distance between the last fluid nodes and the boundary is only δx/2 as opposed to δx (cf. the

discussion in Sec. II B). For the fluid nodes next to the left boundary x = 0, i.e., ∀ (x1, yj)
1 ≤ j = N , the following formula is used:

∂xu(x1, yj) ≈
1

3
[u(x2, yj) + 3u(x1, yj)− 4u(x0, yj)] , (26)

where (x0, yj) denotes a node on the left wall x = 0. Note that the velocity u is specified

by the boundary conditions at the boundaries, thus the above formula can be simplified to

∂xu(x1, yj) ≈
1

3
[u(x2, yj) + 3u(x1, yj)] ,

13



because u(x = 0, y) = 0. Similar formulas can be devised for the right, top, and bottom

boundaries. On the boundary, we use Tom’s formula to compute the vorticity:

ω(x0, yj) = 2v(x1, yj) , (27a)

ω(xi, y0) = 2u(xi, y1), (27b)

ω(xN+1, yj) = −2v(xN , yj) . (27c)

ω(xi, yN+1) = 2[U − u(xi, yN)] . (27d)

At the four corners, we simply compute the vorticity as the following:

ω(x0, y0) = ω(xN+1, y0) = 0 , (28a)

ω(x0, yN+1) = ω(xN+1, yN+1) = 2U . (28b)

B. General flow features

We first compare the pressure p(x, y), the stream function ψ(x, y), and vorticity ω(x, y)

obtained by the pseudo-spectral and LB methods. We found that, in many cases, the results

obtained by the MRT-LB and TRT-LB schemes are very close to each other, so are those

obtained by the LBGK and ELBE schemes. Therefore we will only show the MRT-LB and

ELBE results unless otherwise stated. For the pseudo-spectral method [18], the number of

collocation points in each dimension is N = 96, and the mesh size for the LB simulations

presented in this section is Nx × Ny = 1292 unless otherwise stated. In LB simulations, we

always use an odd number of grid points in each dimension to reduce the oscillations due to

the spurious conserved quantities [47, 48].

In Fig. 1, we show p, ψ, and ω with Re = 100 (τ = 0.887 and 1/sq ≈ 0.984496125)

obtained by the pseudo-spectral method, the MRT-LB and ELBE schemes. The fields of p,

ψ, and ω are normalized by U2, UL, and U/L, respectively, where U is the sliding velocity

of the top boundary and L = Nxδx = Nx is the dimension of the cavity in the lattice units

of δx = δt = 1. The flow fields obtained by the MRT-LB and ELBE schemes are very close

to the PS-MG results in terms of vorticity locations and general features of p, ψ, and ω.

When the Reynolds number Re is increased to Re = 400 (τ = 0.59675 and 1/sq ≈
2.437984495), as shown in Fig. 2, the pressure field p and the vorticity field ω obtained

by using the ELBE scheme start to oscillate in the upper-left corner, while those obtained

14
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FIG. 1. Re = 100. From left to right: contours of pressure p, stream function ψ, and vorticity ω.

From top: the PS-MG method (N = 96), and the MRT-LB and ELBE schemes (Nx×Ny = 1292).

Solid and dashed lines denote contours of positive and negative values, respectively.

by the MRT-LB and TRT-LB schemes remain close to the pseudo-spectral results without

oscillations. The oscillations in the ELBE simulations are in part due to the fact that there

is insufficient dissipation to the higher order moments in the model. This is evident because

the results obtained by using the TRT-LB scheme do not exhibit any oscillation, that is, a

larger dissipation to the heat flux modes (qx, qy) is sufficient to prevent the oscillation.

When the Reynolds number Re is further increased to Re = 1, 000 (τ = 0.5387 and

1/sq ≈ 5.34496124), as shown in Fig. 3, the oscillations in both the pressure field p and
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FIG. 2. Re = 400. Similar to Fig. 1.

the vorticity field ω obtained by using the ELBE scheme become quite severe, for lack of

sufficient dissipation to the higher order moments, while the results obtained by both the

MRT-LB and TRT-LB schemes remain free of oscillations and close to the pseudo-spectral

solutions.

We observe that the general features in the vorticity fields obtained by both the TRT-LB

and MRT-LB schemes agree with the pseudo-spectral results better than the pressure field

p does. This is expected because the pressure field p in the LBE is not solved as accurately

as the velocity field u [29]. To make a closer examination of the oscillations in p and ω

observed in the ELBE and LBGK schemes, we also carry out simulations at Re = 1, 000
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FIG. 3. Re = 1, 000. Similar to Fig. 1.

with a larger mesh size of N2 = 2572 (τ = 0.5771). In Fig. 4 we show the pressure field p

and the vorticity field ω in the small area at the upper-left corner (x, y) ∈ [0, 0.1]× [0.9, 1.0]

where the ELBE and LBGK simulations oscillate severely. Because the results of the ELBE

and LBGK schemes are so similar to each other, only the results obtained by using the

ELBE scheme are shown in Fig. 4. We found that the ELBE scheme does not reduce the

oscillations in the simulation; consequently it does not improve the numerical stability of the

LBGK scheme, which will be further discussed later. The results obtained by the TRT-LB

and MRT-LB schemes are very close to each other and much closer to the pseudo-spectral

results (which are not shown in the figure, but will be discussed later). We note that the
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LB schemes are only first-order accurate for the pressure field p [29]. Thus, the pressure

field obtained by using the LB schemes is expected to be significantly different from the

PS solution. We also note that the vorticity field obtained by using the ELBE and LBGK

schemes is less oscillatory than the pressure fields.

0 0.05 0.1
.9

5

1

FIG. 4. The pressure field p (two figures on the left) and the vorticity field ω (two figures on

the right) at the upper-left corner (x, y) ∈ [0, 0.1] × [0.9, 1.0], Re = 1,000. From left to right: p

obtained using the pseudo-spectral method (N = 96) and the ELBE scheme (N2 = 2572); and ω

obtained using the pseudo-spectral method and the ELBE scheme.

We compile in Table I and Table II, respectively, the positions of the primary and two

secondary vortexes, as well as the intensities of the pressure p, the stream function ψ, and

the vorticity ω at the vortex centers, which are determined by the locations of local extrema

of the stream function ψ. In these tables, we also include the data obtained by using the

pseudo-spectral methods [17, 18]. For the data obtained by a pseudo-spectral method [18],

the flow fields are interpolated to a very fine, equispaced mesh with the grid spacing of 10−6L,

and the vortex centers and their intensities are found on the fine mesh. In the Tables I and

II, blank entries indicate the results obtained by using the LB methods which have at least

six significant digits identical to that obtained by using the MRT-LBE with the same mesh

size. For example, in Table I, in the case of Re = 100 with N = 513, the results obtained by

using the TRT-LBE agree with that by the MRT-LBE in at least six significant digits, thus

the entries corresponding to the TRT-LB results are left blank in the Table. Note that for

the LB results, the vortex centers are determined by finding extrema of the stream function

ψ on grid points, thus the error in the vortex centers is of the order O(1/N).

Clearly, the positions of the primary and secondary vortex centers obtained by the LB

schemes are identical in most cases, and the difference is only one grid spacing δx = 1/N
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TABLE I. The center location (x, y), pressure p, stream function ψ, and vorticity ω of the primary

vortex.
N (x, y) p ψ ω

Re = 100

PS 96 (0.615753, 0.737290) −0.07791293 −0.1035213 −3.168830

65 (0.623077, 0.746154) −0.077359 −0.103303 −3.260493

129 (0.616279, 0.740310) −0.077366 −0.103483 −3.182492
MRT

257 (0.616732, 0.737354) −0.077146 −0.103514 −3.175132

513 (0.615010, 0.737817) −0.077238 −0.103519 −3.162855

65 −0.077354 −0.103300 −3.260376

129 −0.077364 −0.103482 −3.182455
TRT

257 −0.077145 −3.175125

513

65 −0.077528 −0.103383 −3.273133

129 −0.077305 −0.103442 −3.189044
ELBE

257 −0.077029 −0.103444 −3.180179

513 −0.077112 −0.103444 −3.167593

65 (0.607692, 0.730769) −0.076922 −0.103434 −3.096890

129 −0.077379 −0.103490 −3.182824
LBGK

257 −0.077106 −0.103494 −3.174138

513 −0.077187 −0.103493 −3.161545

Re = 400

PS 96 (0.5541003, 0.6054134) −0.07806343 −0.1139895 −2.292390

65 (0.561538, 0.607692) −0.076940 −0.113061 −2.286839

129 (0.554264, 0.608527) −0.077554 −0.113838 −2.295671
MRT

257 (0.554475, 0.605058) −0.077635 −0.113958 −2.295325

513 (0.554581, 0.605263) −0.077642 −0.113983 −2.294973

65 −0.077077 −0.113144 −2.288611

129 −0.077558 −0.113841 −2.295716
TRT

257 −2.295318

513 −0.077641 −2.294971

65 −0.078043 −0.114145 −2.309413

129 −0.077920 −0.114031 −2.305663
ELBE

257 −0.077847 −0.114000 −2.303388

513 −0.077822 −0.113994 −2.302593

65 −0.077889 −0.114159 −2.302237

129 −0.077742 −0.114022 −2.298109
LBGK

257 −0.077669 −0.113991 −2.295796

513 −0.077644 −0.113985 −2.295001

Re = 1, 000

PS1 160 (0.5318, 0.5652) — −0.1189366 −2.067753

PS 96 (0.5307818, 0.5652325) −0.08144173 −0.11895958 −2.0686118

65 (0.530769, 0.561538) −0.070758 −0.115683 −2.031164

129 (0.531008, 0.562016) −0.073607 −0.118406 −2.063210
MRT

257 (0.531128, 0.562257) −0.074010 −0.118843 −2.067339

513 (0.531189, 0.566277) −0.074069 −0.118919 −2.067664

65 −0.071975 −0.116587 −2.047911

129 −0.073711 −0.118486 −2.064605
TRT

257 −0.074014 −0.118846 −2.067397

513 −2.067661

129 −0.074672 −0.119253 −2.081538

ELBE 257 −0.074461 −0.119117 −2.077452

513 −0.074422 −0.119098 −2.076384

129 −0.074361 −0.119115 −2.073356

LBGK 257 −0.074134 −0.118964 −2.069077

513 −0.074092 −0.118942 −2.067992

at most. The LB results for the vortex positions also agree with those obtained by using
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TABLE II. The location (x, y), pressure p, stream function ψ, and vorticity ω of the secondary

vortexes.
N lower-left secondary vortex lower-right secondary vortex

Re = 100

(x, y) p× 102 ψ × 106 ω × 102 (x, y) p× 102 ψ × 105 ω × 102

PS 96 (0.033586, 0.034560) 1.590806 1.702429 1.198286 (0.943043, 0.062727) 1.935636 1.2738424 3.279431

65 (0.038462, 0.038462) 1.6287 1.463627 1.7232 (0.946154, 0.069231) 2.0320 1.226275 3.4998

129 (0.034884, 0.034884) 1.6424 1.787060 1.4701 (0.941860, 0.065891) 2.0545 1.252207 3.8814
MRT

257 (0.036965, 0.033074) 1.6433 1.781289 1.5448 (0.943580, 0.064202) 2.0585 1.269040 3.6066

513 (0.034113, 0.034113) 1.6470 1.793627 1.4478 (0.942495, 0.061404) 2.0632 1.271244 3.4830

65 1.462137 1.7231 2.0318 1.225926 3.4999

129 1.786233 1.4700 2.0544 1.252060 3.8813
TRT

257 1.781069 1.269009

513 1.793598 1.271239

65 (0.023077, 0.038462) 1.6508 1.037024 0.4740 2.0366 1.110408 3.4176

129 1.6405 1.750346 1.4632 2.0451 1.251772 3.8433
ELBE

257 1.6372 1.854699 1.5466 2.0458 1.292095 3.5831

513 (0.034113, 0.036062) 1.6411 1.894922 1.5839 (0.942495, 0.063353) 2.0477 1.300282 3.6342

65 (0.023077, 0.038462) 1.6540 1.040556 0.4753 2.0469 1.103691 3.4493

129 1.6435 1.756372 1.4675 2.0553 1.245085 3.8778
LBGK

257 1.6402 1.861059 1.5512 2.0560 1.287105 3.6159

513 (0.034113, 0.036062) 1.6441 1.901394 1.5886 (0.942495, 0.063353) 2.0579 1.295183 3.6673

Re = 400

(x, y) p× 102 ψ × 105 ω × 102 (x, y) p× 102 ψ × 104 ω × 10

PS 96 (0.0507581, 0.0473733) 3.561592 1.411438 6.095086 (0.8854916, 0.1223319) 2.868448 6.445330 4.498006

65 (0.053846, 0.038462) 3.5478 1.276588 3.7173 (0.884615, 0.130769) 2.8676 6.380941 4.80869

129 (0.050388, 0.050388) 3.6107 1.409211 6.1506 (0.887597, 0.127907) 2.9286 6.434737 4.63641
MRT

257 (0.048638, 0.048638) 3.6214 1.425964 5.6380 (0.885214, 0.122568) 2.9541 6.441301 4.52944

513 (0.051657, 0.047758) 3.6218 1.431790 6.0228 (0.885965, 0.121832) 2.9572 6.444459 4.45115

65 3.5547 1.280803 3.7140 2.8679 6.415618 4.79649

129 3.6109 1.409436 6.1507 2.9287 6.435241 4.63639
TRT

257 3.6213 1.425921 5.6380 2.9540 6.441246 4.52941

513 1.431775 6.0227 6.444444 4.45114

65 3.6304 0.8986897 3.6154 2.9284 6.121705 4.78454

129 3.6250 1.315058 6.0880 2.9233 6.409993 4.56471
ELBE

257 3.6230 1.394593 5.5897 2.9360 6.459935 4.45056

513 3.6206 1.412064 5.9729 (0.884016, 0.121832) 2.9392 6.473385 4.49090

65 3.6338 0.9117275 3.6448 2.9507 6.079209 4.87065

129 3.6266 1.333206 6.1393 2.9442 6.377187 4.64669
LBGK

257 3.6244 1.412786 5.6359 2.9570 6.430523 4.53112

513 3.6220 1.430911 6.0226 2.9574 6.443752 4.45123

Re = 1, 000

(x, y) p× 102 ψ × 104 ω × 10 (x, y) p× 102 ψ × 103 ω

PS1 160 (0.0833, 0.0781) — 2.334528 3.255861 (0.8640, 0.1118) — 1.729717 1.109789

PS 96 (0.083276, 0.078090) 3.84669 2.334089 3.544582 (0.864045, 0.111815) 2.815128 1.730292 1.110800

65 (0.084615, 0.069231) 4.2328 2.039721 2.64440 (0.869231, 0.115385) 3.3005 1.702777 0.993187

129 (0.081395, 0.081395) 4.4558 2.278163 3.58490 (0.864341, 0.112403) 3.5013 1.730337 1.086797
MRT

257 (0.083658, 0.079767) 4.4860 2.320909 3.65599 (0.861868, 0.110895) 3.5468 1.729997 1.124101

513 (0.082846, 0.078947) 4.4915 2.331772 3.55657 (0.864522, 0.112086) 3.5500 1.729537 1.103888

65 4.3129 2.069050 2.66191 (0.853846, 0.100000) 3.3656 1.688924 0.984722

129 4.4626 2.282009 3.58787 3.5043 1.731326 1.085883
TRT

257 4.4862 2.321087 3.65614 3.5469 1.730064 1.124103

513 4.4914 2.331765 3.55656 1.729533 1.103887

129 4.5203 2.212502 3.58111 3.5382 1.705555 1.074814

ELBE 257 4.5064 2.268905 3.63586 3.5396 1.718036 1.104222

513 4.5044 2.284222 3.53476 3.5367 1.720601 1.111817

129 4.5106 2.260153 3.60505 3.5573 1.713561 1.096735

LBGK 257 4.4954 2.316249 3.65919 3.5577 1.725431 1.126455

513 4.4932 2.330706 3.55706 3.5522 1.728455 1.104395
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PS-MG methods [17, 18]. The intensities of p, ψ, and ω at the vortex centers obtained by

using different methods agree well with each other for the given mesh resolution. For the

primary vortex, the intensities of both the stream function ψ and the vorticity ω at the

vortex center have agreement of three significant digits, while the pressure p obtained by

using the LB schemes only achieves one or two digits agreement with the PS-MG data, and

the discrepancy in p clearly grows as Re increases. The errors in the LB results are consistent

with the density fluctuation in the system, which is a measure of the compressibility effect

in the system. The values of ω, ψ, and p at the primary vortex center are of the order

O(1), O(10−1), and O(10−2), respectively. With U = 0.1c and Ma = 0.1/
√
3 ≈ 0.1732,

the compressibility effect is of the order O(Ma2) = O(10−3), which is not negligible when

compared with the intensity of p at the vortex centers. A more quantitative discussion of

the compressibility effect will be deferred to Sec. IIID.

The sizes of the secondary vortexes are much smaller than that of the primary one, and

the intensities of p, ψ, and ω at the secondary vortex centers are significantly weaker than

those at the primary vortex center, especially at low Reynolds numbers. For example, with

Re = 100, at the center of the secondary vortex at the lower-right corner, the intensities

of p, ψ, and ω are weaker than their counterparts at the primary vortex center by a factor

about 4, 104, and 102, respectively, and the vortex at the lower-left corner is even smaller

and weaker. Nevertheless, the LB simulations are able to quantitatively capture the general

flow features.

With Re = 1, 000, a tertiary vortex appears at the lower-right corner, which can be

accurately captured by the PS method with at least five significant digits (cf. Table 14

in [17]). Both the MRT-LB and TRT-LB schemes can capture the tertiary vortex with

a resolution of N = 129, but not the ELBE and LBGK schemes. However, with a higher

resolution of N = 257, all the LB schemes can capture the tertiary vortex, as shown in Fig. 5.

We note that the stream function ψ obtained by using the PS-MG method [18] exhibits high-

frequency oscillations near the right wall, which affects the results of the tertiary vortex.

We tabulate the results for the tertiary vortex in Table III. The values of p, ψ, and ω

of the PS-MG method [18] given in Table III are estimated by using data probing tool of

TecplotTM, which is used to generate the contour plots of Fig. 5. We note that the stream

function ψ at the tertiary vortex center is extremely weak — it is of the order O(10−8).

With the resolution of N2 = 2572, the intensities of ψ at the tertiary vortex center obtained
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by both the MRT-LB and TRT-LB schemes are about 20% weaker than the very accurate

value obtained by using a PS-MG method [17], while the result of the ELBE scheme is

weaker than the PS-MG result by a factor about 5. It is remarkable that the LB schemes

can capture the tertiary vortex at all, in spite of its minuscule extent and weak intensities.
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FIG. 5. (Color online) The stream function ψ at the lower-right corner (x, y) ∈ [0.98, 1]× [0, 0.02],

Re = 1,000. From left to right: PS-MG method (N = 96) [18], MRT-LBE, TRT-LBE, and ELBE

(N = 257). The tertiary vortex is clearly seen. The straight horizontal and vertical lines are the

grid lines. The symbol “+” marks the approximated position of the tertiary vortex center.

TABLE III. The center location (x, y), pressure p, stream function ψ, and vorticity ω of the tertiary

vortex at the lower-right corner.
N (x, y) p× 102 ψ × 108 ω × 103

PS1 160 (0.99232, 0.00765) — −5.03944 —

PS 96 (0.98913, 0.00534) 2.84 −6.00 8.91

129 (0.99612, 0.00387) 3.51 −0.976 0.674
MRT

257 (0.99416, 0.00972) 3.55 −4.03 4.84

129 (0.99612, 0.00387) 3.52 −0.781 0.606
TRT

257 (0.99416, 0.00972) 3.56 −4.07 4.91

ELBE 257 (0.99416, 0.00583) 3.55 −0.937 0.535

C. Flow fields near the boundary

In the previous section, we show that all LB schemes can capture general flow features of

the flow, such as locations and intensities of primary and secondary vortexes. We observe

that the pressure field near the top sliding lid obtained with the TRT-LB and MRT-LB

schemes differ from each other, indicating the effects of the relaxation rates se and sε on

the pressure field p. This is conceivable because se directly affects the dissipation of the
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acoustics (pressure waves) in the system, while sε affects it indirectly through a higher order

moment ε.

There are only two adjustable relaxation rates in the MRT-LB scheme: se and sε; and

the other two relaxation rates, sν and sq, are fixed by the Reynolds number Re (cf. Eq. (23))

and the boundary conditions (cf. Eq. (11)), respectively. We fix sε = 1.9 and vary se in

the following test. In addition to the case of se = 1.64, which is the value used throughout

this study unless otherwise stated, we also set se = 1.54 and 1.9. In Fig. 6 we show

the contour plot of the pressure field p and the vorticity field ω at the upper-left corner

(x, y) ∈ [0, 0.3]×[0.7, 1.0] obtained by using the MRT-LBE with the resolution ofN2 = 1292

and two different values of the relaxation rate se = 1.54 and 1.64, and compared them

with the TRT-LB and PS-MG results [18]. Bear in mind that in the TRT-LB scheme,

se = sε = sν . Because the MRT-LB results for se = 1.54 and 1.9 are very close to each

other, so only the case of se = 1.54 is shown in Fig. 6. Clearly, the relaxation rate se has no

observable effect on the vorticity ω, but it affects the pressure p significantly. With se = 1.64,

the contours of the pressure p near the top wall all exhibit a kink, which disappears with

se = 1.54 and 1.9 (which is not shown in the figure), and with the TRT setting (se = sε = sν).

This indicates that the pressure p is affected by not only the relaxation rate se, but also sε

and sq in a complicated manner.

To further investigate the pressure field near the wall, we show in Fig. 7 the pressure

field near the top and the left walls at the fluid nodes adjacent to the boundary, for the

case of Re = 1, 000. The fluid nodes adjacent to the top driving lid and the left wall are

located at y = δx(1 − 1/2N) and x = δx/2N , respectively — we assume that the no-slip

boundary conditions are satisfied at the line δx/2 beyond the last fluid nodes, as discussed

in Sec. II B. It can be seen clearly that, when N = 65, the pressure field p obtained by

using the MRT-LBE with se = 1.64 has a kink near the top-left corner, where the velocity

field is singular mathematically, while the pressure obtained with the TRT-LBE does not

exhibit the kink. The kink may indicate that, with the particular choice of se = 1.64 and

sε = 1.9, the pressure field obtained by using the MRT-LBE oscillates near the top wall with

very short wavelength of about two grid spacing; and the oscillations quickly attenuate. We

observe that, with the choice of se = 1.54 (or 1.9) and sε = 1.9, the kink in the pressure

field near the top wall disappears completely. Note that, for Re = 1, 000, both the ELBE

and LBGK schemes diverge with the resolution N = 65. For N = 129 and 257, the pressure
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FIG. 6. The pressure field p (top) and the vorticity field ω (bottom) at the upper-left corner

(x, y) ∈ [0, 0.3]× [0.7, 1.0], Re = 1,000. From left to right: the PS-MG method (N = 96) [18], the

MRT-LBE with se = 1.64 and 1.54, and the TRT-LBE (N = 129).

field obtained with the ELBE exhibits strong oscillations near the top-left corner, and the

magnitude of the oscillations is reduced as N increases while the Reynolds number is fixed.

This is understandable because with Re fixed, the value of τ increases linearly as N increases,

and so do the viscosity ν and the dissipation to the density fluctuations in the system, as

indicated by Eq. (23).

We also study the velocity field u and its gradient ∇u near the walls. In Fig. 8 we show

the gradient of the tangential velocity u along the transverse direction, ∂yu(x, y), and the

transverse velocity v(x, y) for Re = 1, 000 at the fluid nodes adjacent to the driving lid, i.e.,

y = (1− 1/2N), for N = 65, 129, and 257. Instead of showing u(x, y) near the top wall, we

choose to show ∂yu(x, y) for it illustrates more clearly the differences between the results

obtained by using different methods. The tangential velocity near the top wall, u, has a

very sharp gradient in y direction near the top corners, which are captured by the MRT-LB

and TRT-LB schemes; and as the resolution N increases, the velocity fields obtained by

the MRT-LB and TRT-LB schemes agree with the PS-MG result better and better. The

velocity field obtained by using the ELBE oscillates severely near the wall. Similar to the

pressure field, oscillations are weakened as N increases.
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FIG. 7. (Color online) The pressure field near the top (top row) and the left (bottom row) walls,

Re = 1, 000.

In Fig. 9 we show ∂v(x, y)/∂x and u(x, y) near the left wall at x = δx/2N for N = 65,

129, and 257. Similar to the results shown in Fig. 8, the velocity field u obtained by using the

ELBE scheme exhibits oscillations near the top-left corner, while the velocity field obtained

by using the MRT-LB and TRT-LB schemes does not show any oscillation.

It should be emphasized that, for the ELBE and LBGK schemes with one relaxation time

and the bounce-back type of boundary conditions, it is impossible to achieve converging

results as the mesh is refined because of inaccurate boundary conditions. The inaccurate

boundary conditions can lead to severe adverse effects (cf., e.g., [49]). To substantiate this

point, we compute the positions where the no-slip boundary conditions are satisfied in the

simulations in the middle one-third sections of the left (L), bottom (B), and right (R) walls,

i.e., we compute the distance δ between the last fluid nodes to the locations where u = 0,

which is derived from Eq. (19b):

δ =
1

2
+
√

H2
1/2 + 4∆2 − 1−H1/2 . (29)

For the Poiseuille flow, ∆ = 1/2, thus δ = δx/2 exactly. We use a parabola to fit the

velocity tangential to a wall with three points adjacent to the boundary and on the grid

25



x

∂ yu
/U

0 1
-3

-2

-1

0
Spectral
MRT
TRT

N=65

x

∂ yu
/U

0 1

-5

0

Spectral
MRT
ELBE

N=129

x

∂ yu
/U

0 1

-10

-5

0

Spectral
MRT
ELBEN=257

x

v/
U

0 0.050

0.1

0.2
Spectral
MRT
TRT

N=65

x

v/
U

0 0.1

0

0.1

0.2

0.3
Spectral
MRT
ELBE

N=129

x

v/
U

0 0.01 0.02 0.030

0.1

0.2

0.3 Spectral
MRT
ELBE

N=257

FIG. 8. (Color online) The velocity field u = (u, v) at the last fluid nodes located at y = 1−1/2N

and adjacent to the top wall, Re = 1, 000. ∂u(x, y)/∂y (top row) and v(x, y)/U (bottom row) at

(from left to right): y = 129/130, y = 257/258, and y = 513/514.

line normal to the wall. The least-square fitted parabola is then extrapolated to find the

position where the tangential velocity is equal to zero. We observe that in the middle one-

third section of the walls, the tangential velocity is at least two orders of magnitude larger

than the transverse velocity. In the ideal situation, i.e., the Poiseuille flow, δ = δx/2. We

fix the mesh size N2 = 652 and 1292 and vary the value of the viscosity ν (or the relaxation

parameter τ). The results are summarized in Table IV.

In Table IV we present the mean value δ̄, the maximum value δM, and the minimum value

δm, of δ along the left (L), bottom (B), and right (R) walls. Clearly, the value of δ computed

by using the MRT-LB and TRT-LB schemes varies very little — at the worst scenario the

value of δ deviates from δx/2 less than 6%. In contrast, the value of δ obtained by using the

ELBE and LBGK schemes can be greater than 3.7δx, which is more than three grid spacings

away from the assumed boundary location.

To further illustrate the inaccuracy of the ELBE and LBGK schemes with the bounce-

back boundary conditions, we use the following formula [34] to fit the tangential velocity
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FIG. 9. (Color online) The velocity field at the last fluid nodes located at x = 1/2N and adjacent

to the left wall, Re = 1, 000. Top row: ∂v(x, y)/∂x (top row) and u(x, y) (bottom row) at (from

left to right): x = 1/130, x = 1/258, and x = 1/514.

along center lines of the cavity,

ui =
4U∗

N2
∗

i(N∗ − i) + Us , (30a)

Us =
2U∗

3N2
∗

[(2τ − 1)(4τ − 3)− 3N∗] , (30b)

where U∗ and N∗ are the effective maximum velocity and channel width, respectively, which

are to be determined by the least-square fitting. For the MRT-LB and TRT-LB schemes,

the corresponding formula is:

ui =
4U∗

N2
∗

(i− 1/2)(N∗ + 1/2− i) . (31)

We use a small mesh of size N2 = 332 and τ = 3.0, which means very small Reynolds

number. The tangential velocities along the horizontal center line (y = 1/2) near the left

wall (x = 0) and along the vertical center line (x = 1/2) near the bottom wall (y = 0) are

fitted with Eqs. (30a) and (31). The results are shown in Fig. 10.

The results shown in Fig. 10 indicate that, when the flow is laminar, the tangential

velocity near wall is accurately represented by a parabola when the transverse velocity is
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TABLE IV. The distance (δ) of the last fluid node to the boundary wall, where u = 0. L, B,

and R indicate the left, bottom, and right wall, respectively. δ̄, δM, and δm denote the averaged,

maximum, and minimum values of δ in the middle one-third of a wall, respectively.

τ = 0.55 τ = 1.0 τ = 3.0 τ = 5.0

δ̄ δM δm δ̄ δM δm δ̄ δM δm δ̄ δM δm

N2 = 652

L 0.5039 0.5076 0.4979 0.4993 0.4996 0.4985 0.4986 0.4989 0.4980 0.4985 0.4989 0.4977

MRT B 0.5047 0.5084 0.4985 0.5023 0.5026 0.5017 0.5021 0.5024 0.5016 0.5021 0.5024 0.5016

R 0.4774 0.4789 0.4719 0.4970 0.4974 0.4964 0.4982 0.4984 0.4979 0.4984 0.4987 0.4980

L 0.5035 0.5063 0.4985 0.4992 0.4996 0.4983 0.4983 0.4986 0.4975 0.4982 0.4985 0.4973

TRT B 0.5043 0.5075 0.4988 0.5025 0.5028 0.5019 0.5024 0.5027 0.5020 0.5024 0.5027 0.5019

R 0.4810 0.4824 0.4742 0.4966 0.4970 0.4960 0.4979 0.4981 0.4976 0.4980 0.4982 0.4976

L 0.4838 0.5035 0.4783 0.5024 0.5030 0.5007 0.8748 1.1081 0.7056 2.6185 3.7490 1.9473

ELBE B 0.4983 0.5152 0.4934 0.5052 0.5057 0.5040 0.7535 0.7683 0.7243 1.3025 1.3169 1.2678

R 0.5070 0.5585 0.4745 0.4985 0.5004 0.4966 0.8928 1.1051 0.7356 2.7151 3.6252 2.1112

L 0.4838 0.5034 0.4783 0.5024 0.5030 0.5007 0.8748 1.1086 0.7053 2.6174 3.7351 1.9495

LBGK B 0.4979 0.5138 0.4932 0.5051 0.5058 0.5042 0.7537 0.7685 0.7246 1.3027 1.3171 1.2682

R 0.5069 0.5580 0.4745 0.4984 0.5004 0.4965 0.8923 1.1045 0.7353 2.7225 3.6500 2.1121

N2 = 1292

L 0.5010 0.5039 0.4975 0.5000 0.5001 0.4996 0.4996 0.4998 0.4993 0.4996 0.4997 0.4993

MRT B 0.5015 0.5043 0.4973 0.5006 0.5010 0.5001 0.5006 0.5008 0.5002 0.5006 0.5009 0.5003

R 0.4896 0.4919 0.4617 0.4988 0.4990 0.4983 0.4994 0.4995 0.4991 0.4995 0.4996 0.4992

L 0.5009 0.5033 0.4980 0.5000 0.5002 0.4996 0.4996 0.4997 0.4993 0.4995 0.4997 0.4993

TRT B 0.5014 0.5036 0.4977 0.5007 0.5010 0.5003 0.5007 0.5010 0.5003 0.5006 0.5009 0.5004

R 0.4909 0.4933 0.4642 0.4987 0.4990 0.4981 0.4993 0.4994 0.4991 0.4994 0.4995 0.4992

L 0.4886 0.4984 0.4848 0.5018 0.5021 0.5011 0.6369 0.6981 0.5754 1.0796 1.4689 0.8005

ELBE B 0.4982 0.5113 0.4922 0.5020 0.5025 0.5014 0.6366 0.6466 0.6140 0.9287 0.9546 0.8688

R 0.5387 0.8978 0.4899 0.4986 0.5003 0.4968 0.6115 0.6911 0.5439 1.0715 1.4629 0.7890

L 0.4886 0.4985 0.4848 0.5019 0.5021 0.5012 0.6367 0.6978 0.5754 1.0794 1.4690 0.8003

LBGK B 0.4979 0.5114 0.4919 0.5020 0.5025 0.5014 0.6367 0.6468 0.6138 0.9290 0.9549 0.8694

R 0.5385 0.9117 0.4898 0.4987 0.5003 0.4971 0.6112 0.6907 0.5435 1.0709 1.4626 0.7884

small enough, i.e., when the location is sufficiently away from the corners so the nonlinear

term u ·∇u is sufficiently small. The result also suggests that, with U and Re fixed, the

velocity field obtained by using the ELBE or LBGK scheme with the bounce-back boundary

conditions will not converge when the resolution N increases. This is because τ increases

linearly with N (cf. Eq. (23)), and for the single-relaxation-time collision models with the

bounce-back boundary conditions, ∆ = 12ν2 = 12(NU/Re)2 (cf. Eq. (19b)), therefore

location where u = 0 is satisfied will move further and further away from the last fluid

nodes as N increases.

28



u/U

y

-0.05 0

0

0.1 MRT
MRT Fit
ELBE
ELBE Fit

N=33

x

v/
U

0.9 1

-0.1

0

MRT
MRT Fit
ELBE
ELBE Fit

N=33

FIG. 10. (Color online) The tangential velocities near the bottom wall (left) and the right wall

(right), N2 = 333 and τ = 3.0. The symbols are data obtained in simulations, and the dash-dot

and solid lines correspond to Eqs. (30a) and (31), respectively. The straight dashed lines mark the

assumed locations of the bottom wall x = 0 and the right wall y = 1.

To further substantiate this point, we compute the τ -dependence of the “slip” velocity

Us on the boundary node at the center of the bottom wall by using the ELBE scheme with

N = 33. For a given value of τ , we can fit the velocity tangential to the wall with a parabola

which includes two parameters: the effective maximum velocity U∗ and the effective channel

width N∗, as the results shown in Fig. 10. The velocity profile is then extrapolated to the

boundary node to obtain the effective slip velocity Us, which is compared with the value of

Us computed from Eq. (30b). As shown in Fig. 11, clearly the τ -dependence of Us/U∗ in the

cavity flow is well predicted by Eq. (30b), which is exact for the Poiseuille flow. Therefore,

to achieve convergence by using the SRT-LB schemes, i.e., the ELBE and LBGK schemes,

with the bounce-back boundary conditions, one must maintain a constant ν with a fixed Re

in order to control the error due to inaccurate boundary conditions, that means the product

UN must be kept as a constant so U must decrease as 1/N when the resolution N increases.

Consequently the number of iterations for the SRT-LB schemes to attain steady state would

grow as ReN2, as opposed to ReN/U for the MRT-LB schemes with U kept as a constant.

Our results shown in Table IV and Figs. 10 and 11 unequivocally demonstrate that the

so-called “slip velocity” Us obtained by using the ELBE and LBGK schemes is merely a

numerical artifact of these models due to their inaccurate boundary conditions. The “slip

velocity” obtained by using any scheme based on the SRT model, such as the ELBE and
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the center of the bottom wall. N2 = 332. The symbols and the solid line are data obtained by

using the ELBE scheme and Eqs. (30a), respectively.

LBGK ones, cannot converge as N increases with fixed Re, Ma, and Kn, hence it is N

dependent. In fact, for most ELBE and LBGK simulations of flow through a microchannel

[35–37, 50], the resolution N is indeed used as a fitting parameter, and such results are

erroneous and flawed, as pointed out previously [38, 39, 41, 51]. On the other hand, the

MRT-LBE is free of the inherent defects of the SRT model, and is capable of reproducing

convergent results [41].

D. Accuracy and Convergence

We now study the convergence behavior of the LB schemes. For the Reynolds number

Re = 100, 400, and 1,000, the mesh resolutions, N2, used for the LB simulations are: 652,

1292, 2572, and 5132. We first compute the total energy E and the total enstrophy Z of the

system:

E =
1
2

∫

Ω
‖u(x)‖2 dx
∫

Ω
dx

=
1
2

∑

i ‖u(xi)‖2
N2

, (32a)

Z =
1
2

∫

Ω
ω2(x) dx
∫

Ω
dx

=
1
2

∑

i ω
2(xi)

N2
, (32b)

where Ω is the entire flow domain, and both the velocity u and the vorticity ω have been

properly normalized by U and L/U , respectively. We also compute the L2-normed error for

the velocity field, uN(xi), obtained by using an LB scheme with a given mesh resolution
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N2,

E2(uN) :=

∑

i ‖uN(xi)− u∗(xi)‖2
∑

i ‖u∗(xi)‖2
, (33)

where u∗(xi) denotes the reference field. Two reference fields are used, the LB solution

obtained with the largest mesh resolution of N = 513 and the PS-MG solution with N =

96. When the PS-MG solution is used as the reference solution, it is interpolated to the

equispaced mesh of size N2 used in the LB simulations. The above formula can also be

applied to the vorticity and pressure fields. We can also estimate the convergence speed α

as the following:

α ≈ ln (E2(uM)/E2(uN ))

ln(N/M)
, (34)

where E2(uM) and E2(uN) are the errors with the resolution M and N , respectively. In

what follows, we will use the errors with two largest meshes to compute α.

When computing the total energy E and the total enstrophy Z, the integrations of u·u/2
and ω2/2 are carried out over the entire flow domain Ω or only the fluid nodes, i.e., excluding

the boundary ∂Ω. When the boundary ∂Ω is included in the integration, the integrand is

weighted with a factor of 1/2 and 1/4 at ∂Ω and the four concerns, respectively, because the

boundary is only δx/2 away from the nearest fluid nodes. The Clenshaw-Curtis quadrature

formula for integration is used to compute E and Z from the flow field obtained by using

PS-MG method [18].

In Table V we present the total energy E integrated over Ω and Ω\∂Ω. Several obser-

vations can be made. First of all, the value of E computed on the entire flow domain Ω

decreases monotonically as N increases, while the value of E computed on fluid nodes alone,

i.e., on Ω\∂Ω, increases monotonically, hence providing the upper and lower bounds of E,

respectively. The lower and upper bounds obtained by the LB schemes with N = 513 have

two or three significant digits agreeing with the PS-MG values, and the lower bounds are

generally closer to the PS-MG values. This clearly indicates that the boundary conditions

have considerable influence on the value of E. And second, the lower and upper bounds of E

converge differently. The convergence speed for the upper bounds is about 1.0, independent

of LB scheme, as showed by the left figure of Fig. 12. However, the convergence speed for the

lower bounds is scheme-dependent. For the MRT-LB and TRT-LB schemes, the convergence

speed is about 2.0; and the ELBE and LBGK schemes cease to converge when N ≥ 129, as

showed by the right figure of Fig. 12. This clearly indicates the importance of the boundary
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conditions and demonstrates the superiority of the MRT-LB and TRT-LB schemes over the

ELBE and LBGK schemes. The inaccuracy of the boundary conditions in the ELBE and

LBGK schemes severely degrades the quality of the velocity field, as shown in the previous

section, which in turn, negatively affect the quality of integral quantities in the system, such

as E. Similar observation has made previously (cf., e.g., [49]).

TABLE V. The total energy E on the entire flow domain Ω or only the interior, i.e., the flow

domain excluding the boundary Ω\∂Ω. The case of N = 96 is obtained by using the PS-MG

method and the Clenshaw-Curtis quadrature formula for integration [18].

E on Ω E on Ω\∂Ω

MRT TRT ELBE LBGK MRT TRT ELBE LBGK

N Re = 100

65 0.035838 0.035837 0.035968 0.036017 0.034173 0.034171 0.034311 0.034363

129 0.035223 0.035222 0.035185 0.035234 0.034371 0.034370 0.034332 0.034383

257 0.034855 0.034855 0.034770 0.034820 0.034424 0.034424 0.034337 0.034388

513 0.034655 0.034655 0.034556 0.034606 0.034438 0.034438 0.034338 0.034389

96 0.0344435487

Re = 400

65 0.041307 0.041357 0.042193 0.042239 0.039983 0.040036 0.040925 0.040974

129 0.041299 0.041301 0.041444 0.041474 0.040637 0.040639 0.040786 0.040817

257 0.041108 0.041107 0.041111 0.041140 0.040774 0.040773 0.040778 0.040807

513 0.040972 0.040972 0.040945 0.040974 0.040804 0.040804 0.040778 0.040806

96 0.0408141964

Re = 1, 000

65 0.043148 0.043708 — — 0.041939 0.042534 — —

129 0.044602 0.044656 0.045221 0.045181 0.044043 0.044099 0.044681 0.044641

257 0.044704 0.044707 0.044861 0.044809 0.044426 0.044429 0.044586 0.044533

513 0.044638 0.044638 0.044711 0.044658 0.044499 0.044499 0.044573 0.044519

96 0.0445286399

In Table VI we present the values of the total enstrophy Z computed over the entire fluid

domain Ω or only on the fluid nodes Ω\∂Ω, similar to the total energy E in Table V. Because
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FIG. 12. (Color online) The convergence behaviors of the upper and lower bounds of the total

energy E in Table V. Re = 400.

the vorticity ω = ∇ × u is singular on the top corners, we should not expect ω computed

with finite-difference to converge as N increases. Indeed, Z does not seem to converge when

it is computed with the boundary value, while Z obtained by integrating over the fluid nodes

alone appears to converge to the corresponding values obtained by using the PS-MG method

with the convergence speed approximately equal to 1.0.

In Table VII we show the L2-normed errors for the velocity field u, the vorticity field ω,

and the pressure field p, with the reference fields obtained by a particular LB scheme with

the largest mesh size N2 = 5132. This is a consistency test to see if the solution of each LB

scheme converges when mesh is refined. It should be pointed out that the grid points on

two different meshes are not perfectly laying on top of each other because the boundary is

only δx/2 away from the fluid nodes adjacent to the boundary. This introduces a systematic

error when it is assumed that the grid points on two meshes are perfectly aligned with

each other. The alternative would be to interpolate data in one mesh to the grid points of

the other mesh. This would introduce the error due to interpolations. We use the former

approach, i.e., assuming the grid points on two meshes are aligned with each other, because

it is simpler. The data in Table VII shows that the convergence speed α for the velocity u

and the vorticity ω is approximately 1.5 and 1.0, respectively, independent of the Reynolds

number Re. As for the pressure p, the convergence speed depends not only on the Reynolds

number Re, but also on the scheme. For the MRT-LB and TRT-LB schemes, the convergence
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TABLE VI. The total enstrophy Z on the entire flow Ω or only the interior fluid nodes Ω\∂Ω. The

case of N = 96 is obtained by using the PS-MG method [18].

Z on Ω Z on Ω\∂Ω

MRT TRT ELBE LBGK MRT TRT ELBE LBGK

N Re = 100

65 13.871481 13.873742 13.454383 13.446956 9.269805 9.274383 9.241040 9.251079

129 15.482982 15.488585 15.427444 15.397035 10.750270 10.760709 10.739797 10.745891

257 17.029284 17.037512 17.887833 17.814132 12.230504 12.244964 12.430537 12.422978

513 18.530581 18.540718 21.699074 21.544143 13.700707 13.717798 14.644868 14.603368

96 17.4773036837

Re = 400

65 17.742368 17.736531 16.868321 16.886885 11.825388 11.821156 12.095108 12.129003

129 19.037842 19.036509 18.393694 18.395769 13.470404 13.467743 13.525332 13.558239

257 20.300225 20.302552 19.875573 19.842928 15.017366 15.021890 14.965177 14.991985

513 21.604582 21.610247 21.598736 21.511861 16.510269 16.520684 16.491830 16.504690

96 20.2966851756

Re = 1, 000

65 23.821075 23.685784 — — 15.291749 15.293886 — —

129 24.687357 24.670743 23.508602 23.543192 17.348414 17.344816 17.595882 17.656577

257 25.466743 25.464046 24.721660 24.728690 19.089853 19.085165 19.169924 19.227861

513 26.384755 26.385888 25.887249 25.846128 20.662131 20.664337 20.606352 20.654849

96 24.4937074969

speed for p increases from about 1.0 at Re = 100 to about 1.5 at Re = 1, 000. For the ELBE

and LBGK schemes, the trend is the opposite: the convergence speed decreases from about

1.5 at Re = 100 to about 1.0 at Re = 1, 000. Given the singular nature of the flow, the

convergence speeds for u, ω, and p observed here are those of a second-order scheme and

consistent with the theory [29].

In Table VIII we show the L2-normed errors by using the PS-MG solutions with N = 96

[18] as the reference fields in Eq. (33). The errors are computed over the entire flow domain

Ω, i.e., including the boundary ∂Ω. We note that the errors between the LB and PS-
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TABLE VII. Convergence of the LB simulations. The reference fields in Eq. (33) are obtained by

using the LB schemes with the largest mesh size N2 = 5132. For Re = 1, 000, both the ELBE and

LBGK schemes are unstable when N = 65. The rows denoted with “α” are the convergence speed.
E2(u) E2(ω) E2(p)

MRT TRT ELBE LBGK MRT TRT ELBE LBGK MRT TRT ELBE LBGK

N Re = 100

65 0.086320 0.086237 0.075633 0.075838 0.813140 0.813394 0.806760 0.810152 0.823758 0.834287 0.585283 0.585244

129 0.038947 0.038782 0.033147 0.033222 0.595578 0.595863 0.602381 0.605486 0.622870 0.638575 0.347275 0.347390

257 0.013212 0.013132 0.011064 0.011084 0.294511 0.298272 0.330958 0.330293 0.300127 0.314486 0.132029 0.132087

α 1.55 1.56 1.58 1.58 1.01 0.99 0.86 0.87 1.05 1.02 1.39 1.39

Re = 400

65 0.100600 0.100410 0.088230 0.088508 0.797194 0.798397 0.796002 0.799037 0.663377 0.684981 0.594142 0.593535

129 0.043847 0.043818 0.040090 0.040255 0.571285 0.572026 0.568732 0.572676 0.407075 0.426939 0.345349 0.345294

257 0.014651 0.014628 0.013630 0.013693 0.275600 0.278278 0.277395 0.277874 0.160402 0.170074 0.124284 0.124413

α 1.58 1.58 1.55 1.55 1.05 1.03 1.03 1.04 1.34 1.32 1.47 1.47

Re = 1, 000

65 0.124179 0.121146 — — 0.782128 0.783456 — — 0.457776 0.470430 — —

129 0.051978 0.051735 0.046169 0.046380 0.544739 0.546456 0.565525 0.568647 0.230639 0.238365 0.338832 0.340169

257 0.017065 0.017048 0.016146 0.016222 0.256228 0.257526 0.280737 0.284390 0.081443 0.084864 0.153368 0.153689

α 1.60 1.60 1.51 1.51 1.08 1.08 1.01 0.99 1.50 1.48 1.14 1.14

MG solutions are smaller in general than those in Table VII, except some isolated cases: the

velocity field u computed by using the ELBE scheme at Re = 400 and 1,000 and the pressure

field at Re = 1, 000. This suggests that the systematic error due to mismatched grid points

in the LB grid refinement may not be negligible. The convergence speed α for the velocity

field obtained by using the MRT-LB and TRT-LB schemes weakly depends on the Reynolds

number Re: it varies between 1.09 at Re = 100 and 1.30 at Re = 1, 000. In contrast, the

convergence speed of the velocity field obtained by using the ELBE and LBGK schemes has

a much stronger dependence on Re. For both the ELBE and LBGK schemes, at Re = 100

the velocity field fails to converge. At Re = 400 and 1,000, the ELBE scheme converges very

slowly, while the LBGK scheme converges with a speed of about 1.5 or better. However,

we can expect the convergence behavior of the ELBE and LBGK schemes to deteriorate as

the mesh size N becomes sufficiently large so that τ > 1, due to their inaccurate boundary

conditions.

The vorticity field obtained by the LB schemes converges very slowly to the PS-MG

solution, while the pressure field does not seem to converge at all. In absence of a body

force, the vorticity ω in compressible flows satisfies the following equation:

∂tω + u·∇ω = ω ·∇u− ω∇·u+
1

ρ2
∇p×∇p+∇×

(

1

ρ
∇ · σ

)

, (35)

where σ is the stress tensor including the bulk viscosity ζ . For incompressible flows, ∇·u = 0,
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TABLE VIII. Convergence of the LB simulations. The reference fields in Eq. (33) are obtained

by using the PS-MG method with N = 96 collocation points in each dimension [18]. The PS-MG

solutions are interpolated to the equispaced meshes used in the LB simulations. For the convergence

speed α, “—” indicates the error not convergent, and “0” indicates very small α.
E2(u) E2(ω) E2(p)

N MRT TRT ELBE LBGK MRT TRT ELBE LBGK MRT TRT ELBE LBGK

Re = 100

65 0.009656 0.009596 0.013264 0.012407 0.404343 0.403632 0.405224 0.411644 0.139478 0.132741 0.130186 0.130833

129 0.004881 0.004762 0.006520 0.004521 0.349975 0.348526 0.341324 0.348427 0.142614 0.126274 0.108636 0.107584

257 0.002627 0.002536 0.007008 0.005103 0.312173 0.310392 0.309956 0.318039 0.139070 0.118188 0.210484 0.209649

513 0.001230 0.001159 0.008170 0.006575 0.278520 0.276377 0.317375 0.325069 0.133328 0.110153 0.294257 0.293612

α 1.09 1.12 — — 0.16 0.16 — — 0.06 0.10 — —

Re = 400

65 0.014338 0.013976 0.032697 0.032139 0.537835 0.538175 0.577239 0.582646 0.059236 0.064428 0.552563 0.557939

129 0.005045 0.005046 0.011319 0.010116 0.434750 0.435049 0.450761 0.456535 0.060323 0.064410 0.215502 0.217022

257 0.002425 0.002412 0.005523 0.003001 0.358009 0.357551 0.356791 0.362463 0.065658 0.063101 0.063333 0.063627

513 0.001103 0.001076 0.004624 0.001022 0.299231 0.298099 0.292251 0.297964 0.067925 0.061149 0.054081 0.053463

α 1.13 1.16 0.25 0.28 0.25 0.26 0.28 0.28 — 0.045 0.22 0.25

Re = 1, 000

65 0.034915 0.029041 — — 0.646958 0.638229 — — 0.185030 0.163602 — —

129 0.008008 0.007549 0.018693 0.017704 0.521715 0.521236 0.550802 0.555590 0.160785 0.159536 0.364401 0.367965

257 0.002737 0.002726 0.007693 0.005767 0.416626 0.416986 0.433239 0.438302 0.158460 0.158936 0.206599 0.207348

513 0.001111 0.001108 0.005084 0.001694 0.333622 0.333426 0.335350 0.340138 0.158451 0.158393 0.162416 0.162488

α 1.30 1.29 0.59 1.53 0.32 0.32 0.36 0.36 0 0.0049 0.34 0.35

the density ρ is a constant, and the pressure p satisfies the Poisson equation. Since the LBE

does not solve the Poisson equation accurately [29, 52], the compressibility effect can affect

ω through all the terms involving u, p, and σ in Eq. (35), for the velocity field u has a

non-negligible dilatational component. It appears that the compressible effect in the LB

solution severely degrades the accuracy of the vorticity field in this case. We will quantify

the compressibility effect later.

To further investigate the convergence behavior of the LB schemes, we compute the

differences between the flow fields obtained by the LB schemes and the PS-MG method in

the middle portion of the interior flow domain, which excludes (N − 1)/32 grids around the

boundary, this reduces the total number of grid points by about N2 × 31/256 ≈ N2/8. As

shown in Table IX, the errors in the interior are significantly smaller than their counterparts

on the entire flow domain Ω except the following cases: the velocity field computed by using

the ELBE scheme at Re = 400 and 1,000, the vorticity field by the ELBE and LBGK schemes

at Re = 100, and the pressure field by all LB schemes at Re = 1, 000. The convergence

speed is also changed. Compared to the errors on the entire flow domain Ω, the convergence

speed of the velocity field by using the MRT-LB and TRT-LB schemes has decreases slightly
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to about 0.65 (from ca. 1.1), and has increases to about 1.68 and 1.81 (from ca. 1.13 and

1.30) at Re = 400 and 1,000, respectively. The convergence speed by using the ELBE

scheme decreases to about 0.07 and 0.12 (from ca. 0.25 and 0.60) at Re = 400 and 1,000,

respectively, while that by using the LBGK scheme decreases slightly to about 1.36 and 1.6

(from ca. 1.55 and 1.75).

TABLE IX. Convergence of the LB simulations, same as in Table VIII. The errors are computed

over the interior flow domain by cutting away (N − 1)/32 grid points along the boundary. For the

convergence speed α, “—” indicates the error not convergent, and “0” indicates very small α.
E2(u) E2(ω) E2(p)

N MRT TRT ELBE LBGK MRT TRT ELBE LBGK MRT TRT ELBE LBGK

Re = 100

65 0.003252 0.003191 0.005719 0.004002 0.035406 0.037472 0.082058 0.083648 0.014485 0.014595 0.062072 0.062115

129 0.000779 0.000767 0.003543 0.000608 0.011840 0.012174 0.014103 0.013633 0.011412 0.011346 0.011463 0.011121

257 0.000238 0.000238 0.003459 0.000874 0.003290 0.003324 0.007181 0.001070 0.010858 0.010839 0.012035 0.011690

513 0.000152 0.000152 0.003462 0.001010 0.000868 0.000869 0.008341 0.003268 0.010733 0.010728 0.012277 0.011936

α 0.65 0.65 — — 1.92 1.93 — — 0.0016 0.0014 — —

Re = 400

65 0.012047 0.011806 0.018762 0.017260 0.061100 0.055325 0.294266 0.297101 0.040048 0.038949 0.366186 0.368029

129 0.002522 0.002508 0.005850 0.001903 0.016072 0.015879 0.040473 0.039531 0.035796 0.035834 0.046303 0.045871

257 0.000577 0.000580 0.004789 0.000434 0.004224 0.004235 0.010929 0.005740 0.035835 0.035792 0.036286 0.035842

513 0.000180 0.000181 0.004563 0.000169 0.001107 0.001107 0.008579 0.001189 0.035868 0.035850 0.036271 0.035855

α 1.68 1.68 0.0069 1.36 1.93 1.93 0.34 2.27 — — 0 —

Re = 1, 000

65 0.034225 0.028946 — — 0.114977 0.103268 — — 0.191773 0.186110 — —

129 0.006475 0.006042 0.007961 0.004135 0.028005 0.026225 0.133858 0.134461 0.178741 0.178870 0.210671 0.210918

257 0.001408 0.001388 0.005462 0.000653 0.006668 0.006636 0.016632 0.009163 0.178174 0.178190 0.178190 0.178197

513 0.000401 0.000402 0.005028 0.000215 0.001722 0.001722 0.012118 0.001900 0.178148 0.178144 0.178118 0.178141

α 1.81 1.78 0.11 1.60 1.95 1.94 0.45 2.26 0 0 0 0

The the convergence speed of ω on the interior flow domain is considerably better than

that on the entire flow domain. It is particularly interesting to note that in many cases the

convergence speed of the vorticity field ω in the interior flow domain is consistently better

than that of the velocity field u, as evidently shown in Table IX. For the MRT-LB and TRT-

LB schemes, the convergence speed of ω is better than 1.9 in all cases, as opposed to between

0.16 and 0.32 on the entire flow domain. The ability of the MRT-LBE to accurately compute

vorticity field has also been observed in simulations of turbulence in three dimensions [16].

For the LBGK scheme, the convergence speed of ω is better than 2.2 at Re = 400 and 1,000.

As for the ELBE scheme, the convergence speed of ω is only 0.34 and 0.45 at Re = 400 and

1,000, respectively. As for the pressure field p, the convergence speed remains the same as

on the entire flow domain — the pressure field does not appear to converge to the PS-MG

solution.
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The data in Table IX reveals some interesting observations. First, the error in the LB

simulations concentrates mostly in the boundary region. In the case of the cavity flow, the

corner singularities may be the main cause of the problem. And secondly, with carefully

tuned equilibria, the MRT-LBE can solve both the velocity field u and vorticity field ω with a

convergence speed about 2 in regions where the flow is smooth. This can be explained as the

following. According to Noether’s theorem, which states that any differentiable symmetry

of the action of a physical system has a corresponding conservation law, the conservation

laws of the linear and angular momenta correspond to Galilean and rotational invariance,

respectively. The LBE preserves both invariances up to second order in the wavevector k

[9], and consequently the conservation laws of the linear and angular momenta to the same

order of accuracy. Although this does not constitute a rigorous proof, it helps explain the

phenomenon.

With Ma = 0.1×
√
3 ≈ 0.1732, the rms density fluctuation

√

〈δρ2〉 in the system is of the

order O(10−3) (cf. Table X related discussion later). Given the fact that the pressure field p

obtained by using the LB schemes has a significant compressibility component proportional

to Ma2, it is expected that the pressure p is most sensitive to the error due to the compress-

ibility effect in the LBE. The data in Table IX attests again the crucial role of the boundary

conditions play in the LB simulations. Clearly the MRT-LB and TRT-LB schemes are far

more accurate than the ELBE and LBGK schemes in terms of the convergence speed and

the magnitude of errors in u and ω, and the ELBE scheme is the most inferior in all these

measures.

To quantify the compressibility effect, we compute the root-mean-square (rms) density

fluctuation
√

〈(δρ)2〉 and the rms velocity divergence
√

〈(∇·u)2〉 in the system:

√

〈(δρ)2〉 =
[∑

i(δρ)
2(xi)

Nx ×Ny

]1/2

, (36a)

√

〈(∇·u)2〉 =
[∑

i(∇·u)2(xi)

Nx ×Ny

]1/2

, (36b)

where xi are fluid nodes. The results of
√

〈(δρ)2〉 and
√

〈(∇·u)2〉 are tabulated in Table X.

Several observations can be made. First of all, for all LB schemes, with a fixed the Mach

number Ma, the rms density fluctuation
√

〈(δρ)2〉 is nearly independent of the mesh resolu-

tion N and decreases as the Reynolds number Re increases. The rms density fluctuation is

approximately equal to 3.0× 10−3, 1.6× 10−3, and 1.3× 10−3, at Re = 100, 400, and 1,000,
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respectively.

And secondly, for the MRT-LB and TRT-LB schemes, the rms velocity divergence
√

〈(∇·u)2〉 does not seem to depend on either N or Re. As for the ELBE and LBGK

schemes, the rms velocity divergence decreases as N increases, and increases as Re in-

creases. Since in the ELBE and LBGK schemes the bulk viscosity ζ = ν/2, as Re increases

with a fixed N , ζ decreases, and so similarly do the decay rates of all other non-conserved

modes, leading to weaker dissipation to all non-conserved modes, including the modes re-

lated to the compressibility term ∇ρζ∇ ·u in the Navier-Stokes equation. In the case of

increasing N with a fixed Re, ζ and all the other decay rates increase, resulting in stronger

dissipation to the modes related to the compressibility effect. This explains the dependence

of the rms velocity divergence on N and Re for the ELBE and LBGK schemes. It is inter-

esting to note that the bulk viscosity ζ in the MRT-LBE is fixed, while in the TRT-LBE it

is identical to that in the LBGK scheme, and yet, the rms density fluctuation and the rms

velocity divergence behave almost identically for the MRT-LB and TRT-LB schemes. This

indicates that the dissipation of the “heat fluxes” q, determined by sq, and the boundary

conditions play a crucial role here. This is certainly more complicated than the case without

boundary [23], and suggests that the TRT-LBE is a much better approach than the ELBE

with a tunable bulk viscosity [26].

Finally, since the rms density fluctuation and the rms velocity divergence are the direct

measures of the compressibility effect, which is proportional to O(Ma2), and the pressure

field is most direly affect by the compressibility effect through the simple equation of state

in the LBE, p = c2sρ, thus, to improve the accuracy of the pressure field p, the Mach number

must be decreased, as observed previously (cf. [23, 43]).

E. Stability and computational efficiency

To compare the numerical stability of the LB schemes, we conduct the following test.

With a small mesh size N2 = 172 and a given value of the viscosity ν, we search the

maximum lid velocity U such that the simulation does not diverge with 1,000 iterations.

For the MRT-LBE, in addition to sν = 1/τ , there are three adjustable relaxation rates:

sq, se, and sǫ. To accurately realize the no-slip boundary conditions through the bounce-

back boundary conditions, sq must be a fixed function of sν (cf. Eq. (11)). However, to
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TABLE X. The dependence of the rms density fluctuation
√

〈(δρ)2〉 and the rms velocity divergence
√

〈(∇·u)2〉 on the Reynolds number Re and the mesh size N .

rms density fluctuation rms velocity divergence

N MRT TRT ELBE LBGK MRT TRT ELBE LBGK

Re = 100

65 0.002569 0.002574 0.002850 0.002855 0.305216 0.302737 0.360637 0.361507

129 0.002753 0.002764 0.002789 0.002793 0.305982 0.299739 0.309758 0.310092

257 0.002926 0.002940 0.002803 0.002806 0.309262 0.298951 0.241936 0.239084

513 0.003091 0.003105 0.002822 0.002826 0.313143 0.298658 0.191387 0.181124

Re = 400

65 0.001533 0.001530 0.001898 0.001905 0.321806 0.329121 0.530087 0.528835

129 0.001564 0.001563 0.001670 0.001672 0.310099 0.311752 0.426615 0.428021

257 0.001586 0.001587 0.001618 0.001619 0.305285 0.302858 0.359677 0.362329

513 0.001607 0.001608 0.001610 0.001611 0.305859 0.299648 0.308708 0.310513

Re = 1, 000

65 0.001321 0.001329 — — 0.345939 0.359265 — —

129 0.001368 0.001368 0.001491 0.001491 0.325027 0.334810 0.567532 0.567025

257 0.001379 0.001379 0.001413 0.001411 0.313045 0.316334 0.456678 0.458426

513 0.001384 0.001384 0.001396 0.001394 0.305985 0.304804 0.375882 0.379374

demonstrate the effect of sq on the numerical stability of the MRT-LBE, we also vary sq

independently in the test. Table XI lists the values of relaxation rates used in the test.

In Fig. 13 we show the result of the stability test. Clearly, the ELBE and LBGK schemes

are shown to be the most inferior in this test, and there is no observable difference between

the ELBE and LBGK schemes in terms of stability. It is evident that the ELBE scheme

does not improve numerical stability of the LBGK scheme. The TRT-LB scheme is more

stable than both the ELBE and LBGK schemes. By far, the MRT-LBE is the most stable

scheme. However, as the viscosity ν decreases, the stability of the MRT-LB scheme deterio-

rate considerably. As sν = 1/τ approaches to 2, sq(sν) approaches to 0, the relaxation time

of the modes qx and qy becomes longer and longer, so that qx and qy become quasi-conserved

modes eventually when sq is sufficiently small. This apparently affects the stability of the
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TABLE XI. The values of the relaxation rates used in the stability test shown in Fig. 13.

Relaxation Rates

Model se sǫ sq

MRT 1.64 1.54 8(2τ − 1)/(8τ − 1)

MRT1 1.64 1.54 1.9

MRT2 1.8 1.54 1.9

MRT3 1.64 1.8 1.9

MRT4 1/τ 1.9 8(2τ − 1)/(8τ − 1)

TRT 1/τ 1/τ 8(2τ − 1)/(8τ − 1)

MRT-LBE when sν = 1/τ is close to 2. If sq is fixed at 1.9 or so while other relaxation rates

are unchanged (corresponding to MRT1 in Table XI and Fig. 13), then the stability of the

MRT-LBE is improved when sν = 1/τ & 1.965, but degraded when sν = 1/τ . 1.965, as

shown in Fig. 13. If we use sq = 1.9 and increase se from 1.64 to 1.8 (the case MRT2 in

Fig. 13), the stability is weaker than the case of MRT1.

1/τ

U

1.9 1.92 1.94 1.96 1.98
0

0.5

MRT
MRT1
MRT2
MRT3
MRT4
TRT
ELBE
LBGK

FIG. 13. (Color online) The stability characteristics of various LBE models. N2 = 172. The test

is deemed stable if it does not diverge within 1,000 iterations.

We note that the numerical stability of the LBE can be affected by factors other than the

relaxation rates. For example, the stability would be different if one uses the “compressible”

version of the LBGK model of which the equilibria are [53]:

f
(eq)
i = wi ρ

[

1 +
ci · u
c2s

+
1

2

{

(ci · u)2
c4s

− u · u
c2s

}]

. (37)
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We do not use the “compressible” LB model because we would like to minimize the com-

pressibility effect, because we are only interested in simulating incompressible flows. Another

factor may be the mean density ρ0. In our implementation, we set ρ0 = 1 so the LBE can

approximate the Poisson equation obeyed by the pressure [52]. In addition, to reduce the

effects due to round-off error we only consider the density fluctuation δρ in the mass conser-

vation [22, 23], as indicated in the equilibria defined by Eqs. (5) and (12). With a value of

ρ0 > 1 [53], the effect of the round-off error is enhanced, but the relative density fluctuation

δρ/ρ0 is reduced, hence the stability might be improved.

We should also emphasize that the numerical stability must be discussed in connection

with accuracy and computational efficiency. That is, one must not pursue stability at the

expense of accuracy and efficiency, and especially accuracy. To optimize the computational

efficiency, U should be maximized, for a larger U effectively leads to a larger CFL number,

as discussed previously in Sec. IIIA. However, the truncation error due to u3 terms grow

as U increases [9], which can be eliminated only with a larger discrete velocity set, e.g.,

D2Q21 model [54]. With these considerations in mind, one should use the maximal value

of U without compromising accuracy. With U properly chosen, the issue of optimizing the

stability becomes minimizing the viscosity ν. However, one should not relentlessly push the

lower limit of ν, otherwise the results of direct numerical simulations become dubious if the

grid Reynolds number Re∗ := Uδx/ν becomes too large. Thus, one must strike a balance

between accuracy, efficiency, and stability, and in that order.

To compare computational speed of different LB schemes, we use a mesh of size N2 = 1292

with the Reynolds numbers Re = 1, 000, 1,500, 1,800, and 2,000. All the computations are

carried out on an Intel Xeon (x86-64) processor with two dual core of 2.992GHz and 8GB

RAM. The codes are written in C and compiled with the Intel compiler icpc. Table XII

provides the number of iterations (Nt) and the CPU times (TCPU) for the LB schemes to

attain a steady state according to the criterion of Eq. (21), and the ratios (RT) between the

CPU times of the MRT, TRT, and ELBE schemes versus the LBGK scheme, of which the

CPU time is the shortest. Clearly we can see in Table XII that the number of iterations

to reach steady state Nt ∝ NRe/U . The results also show that, while the TRT-LB and

MRT-LB schemes are about 15% and 25% slower than the LBGK scheme in terms of CPU

time, respectively, the ELBE scheme is about 2.5 times slower. We also note that with the

mesh size of N2 = 1292, both the ELBE and LBGK do not converge for Re = 2, 000.
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TABLE XII. The number of iterations Nt and CPU time TCPU (seconds) for different LB schemes to

attain the steady state with different values of the Reynolds number Re. N2 = 1292. The numbers

in parentheses () are the ratio RT of the CPU times of the TRT, MRT, and ELBE schemes vs.

that of the LBGK scheme. “—” indicates the simulation does not converge.

Re 1,000 1,500 1,800 2,000

Nt TCPU RT Nt TCPU RT Nt TCPU RT Nt TCPU

LBGK 413,000 194.12 (1) 645,000 296.11 (1) 785,000 354.63 (1) —

TRT 413,000 217.77 (1.12) 643,000 338.75 (1.14) 782,000 413.48 (1.17) 874,000 460.34

MRT 413,000 235.96 (1.22) 645,000 366.74 (1.24) 785,000 443.76 (1.25) 878,000 498.29

ELBE 415,000 491.39 (2.53) 648,000 766.60 (2.59) 790,000 930.06 (2.62) —

IV. CONCLUSIONS AND DISCUSSION

In this work we conduct a comparative study of several lattice Boltzmann schemes includ-

ing the MRT-LB, TRT-LB, ELBE, and LBGK D2Q9 models, in terms of accuracy, numerical

stability, and computational efficiency. As a benchmark test, we use the lid-driven square

cavity flow in 2D with the Reynolds numbers Re = 100, 400, and 1,000, for which the flow

is steady and laminar. We compare the LB solutions with the solutions obtained by us-

ing the pseudo-spectral multigrid method with singularity subtraction technique [18]. The

evidence shows that the MRT-LB and TRT-LB schemes are superior over the ELBE and

LBGK schemes in terms of accuracy, stability, and computational efficiency.

We made the following observations through this study. First, all the LB schemes are

capable of capturing the gross hydrodynamic features of the flow. We compare the contours

of the pressure field p, the stream function ψ, and the vorticity field ω computed by using

the LB schemes with those by using the PS-MG method [18], and find that they agree well

with each other. The LB schemes can reproduce quantitatively accurate results, such as the

locations and intensities of the primary, secondary, and even tertiary vortexes. Both the

MRT-LB and the TRT-LB schemes can capture the tertiary vortex at Re = 1, 000 with a

mesh of size N2 = 1292, while both the ELBE and LBGK schemes require a finer mesh of

size N2 = 2572 to observe the tertiary vortex.

Second, we observe that one major source of errors in the LB simulations comes from

boundary conditions, and this problem is particularly severe for the ELBE and LBGK
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schemes coupled with the bounce-back boundary conditions. The problem is two-fold: with

the relaxation parameter τ close to 1/2, flow fields near no-slip boundaries oscillate severely

with high frequencies, and with τ ≫ 1, the boundary locations move away from supposed

positions considerably and are τ -dependent. Both these defects can be overcome by using

the MRT models.

Third, all the LB schemes (MRT, TRT, ELBE, and LBGK) exhibit a self-consistent con-

vergence behavior of a second-order scheme, as expected [29]. The solutions of the velocity

u, the vorticity ω, and the pressure p obtained by using a particular LB scheme converge

to unique limiting states as the resolution N increases with expected convergence speed.

However, the LB solutions of u, ω, and p do not necessarily converge to the correspond-

ing solutions of the pseudo-spectral method [18]. When compared with the PS solution of

the velocity field u on the entire flow domain, both the MRT-LB and TRT-LB schemes

are shown to be only marginally of second-order convergence, so is the LBGK scheme at

Re = 1, 000, while the ELBE scheme is only of first-order. However, when compared with

the PS solution of the velocity field u in the interior flow domain, the MRT-LB, TRT-LB,

and LBGK schemes are clearly of second-order convergence, and the ELBE scheme is only of

first-order convergence, excepted for the case of Re = 100. At Re = 100, both the MRT-LB

and TRT-LB schemes are of first-order convergence, while neither the ELBE scheme nor

the LBGK scheme converges at all. In particular, it is interesting to note that the vorticity

field obtained by using the MRT-LB and TRT-LB schemes, and the LBGK scheme in some

cases, is of second-order convergence, and the convergence speed is consistently better than

that of the velocity field, while the convergence speed for the ELBE is only of first-order. In

most cases, the pressure field p obtained by the LB schemes either converges very slowly or

does not converge at all to the PS solution.

Fourth, we note that the ELBE scheme does not in anyway improve the stability of the

LBGK scheme, while its computational cost is almost tripled. In terms of accuracy, the

ELBE scheme is even inferior to the LBGK scheme. One reason that the ELBE cannot

improve the stability is that, when τ is approaching 1/2, the ELBE does not have sufficient

dissipation to damp density fluctuations in the system [9], and the interactions of the acoustic

waves generated by density fluctuations can instigate numerical instabilities. To overcome

this shortcoming of the ELBE scheme, an adjustable bulk viscosity can be introduced [26].

This approach basically adopts the MRT technique, but only half-heartily, while clinging to
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all other deficiencies inherent to the ELBE/SRT methodology. We do not test the ELBE

with a variable relaxation time [53, 55] which is supposed to guarantee numerical stability,

because it is computationally inefficient and unphysical with a viscosity depending on space

and time — a stable but inaccurate, unphysical, and inefficient scheme is simply not a viable

one.

Fifth, in terms of CPU time the LBGK scheme is only about 25% and 15% faster than

the MRT and TRT schemes, respectively. However, given the inherent deficiencies in the

LBGK scheme, this insignificant saving in CPU time is besides the point, because the LBGK

scheme with the bounce-back boundary conditions cannot yield convergent results as the

mesh size N increases. Furthermore, for most LB algorithms which are light in floating point

operations (FLOP), the computational speed is limited by memory bandwidth and cache

size, thus the difference in the computational speed due to insignificantly different number

of FLOP will diminish. Thus, 25% difference in CPU time is not a valid justification to use

the LBGK scheme.

Finally, we would like to discuss the choice of the relaxation rates {si} in the MRT-LBE.

Often, critics of the MRT methodology complain its “complexity,” and one aspect of the

complexity is that it appears no analytic guidelines to determine the relaxation rates. These

criticisms are not entirely valid. First of all, the MRT collision model is a linear one, of

which the LBGK model is a special case, and it is well understood in kinetic theory and

there exists a vast literature on the subject (cf., e.g., [21] and references therein).

Within the context of the LBE, certain guidelines do exist. In kinetic theory, hydrody-

namic time scales of the conserved modes are vastly separated from those of kinetic (non-

conserved) modes, that is, time scales of kinetic (non-conserved) modes are much shorter

than the hydrodynamic ones. This vast separation of time scales is not satisfied in the LBE

for it has very limited number of modes which are closely coupled together through rela-

tive simple algebraic relationships defined by the LBE (2), so the range of these relaxation

rates is rather limited, and the dynamics of kinetic modes in the LBE has severe effects on

boundary conditions and numerical stability. It is difficult to determine, analytically and a

priori, optimal relaxation rates in terms of both accuracy and stability. This is especially

true for 3D models with a large number of discrete velocities (or the moments).

While it is relatively easy to obtain relaxation rates for optimal linear stability [9], it

is not so for nonlinear stability. It is also not easy to analytically determine the effects of
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relaxation rates on the boundary conditions in general (cf. [14]). However, one can still

determine the relaxation rates which can be used to yield reasonable accuracy and stability.

In this regard, the TRT-LBE is the simplest alternative which improves both accuracy and

numerical stability. The point to emphasize is that the MRT formalism allows improvements

by adjusting the relaxation rates, which is not possible for the models with single relaxation

time. We note that a thorough and detailed investigation of the effects of the relaxation

rates on the accuracy and stability is beyond the scope of this work and should be a subject

of future studies.

The results of this study demonstrate that there are at least three relaxation rates, sν ,

sq, and se, which have significant effects on accuracy and numerical stability of the MRT-

LBE. Therefore, to optimize accuracy and numerical stability, it is necessary to have three

adjustable degrees of freedom in the MRT-LBE provided by sν , sq, and se, which determine

the value of the shear viscosity ν (or the Reynolds number Re), the accurate locations of the

Dirichlet boundary conditions, and the bulk viscosity ζ (cf. Eq. (10b)). If numerical stability

is not a consideration, one should use the TRT-LBE [5–7], that is, the odd-order moments

are relaxed by the rate sq(sν) (cf. e.g., Eq. (11) and [14, 56] and references therein), while

the even-order moments are relaxed with the rate sν . With three adjustable relaxation rates,

the MRT-LBE provides minimal degrees of freedom required by accuracy and stability, and

can enhance the computational efficiency ultimately.

In summary, our conclusion is that, while it may be theoretically interesting, the ELBE

scheme is so inferior to the MRT scheme in terms of accuracy, numerical stability, and com-

putational efficiency that it must not be used as a practical scheme for numerical simulations.

We also note that one important and challenging issue in the LBE is to improve accuracy

of the pressure field p. In this regard, investigation of the artificial compressibility method

[31, 32] may offer some new insights.
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