
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Three-layer dielectric models for generalized Coulomb
potential calculation in ellipsoidal geometry

Changfeng Xue and Shaozhong Deng
Phys. Rev. E 83, 056709 — Published 19 May 2011

DOI: 10.1103/PhysRevE.83.056709

http://dx.doi.org/10.1103/PhysRevE.83.056709


EZ10643

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Three-layer dielectric models for generalized Coulomb potential

calculation in ellipsoidal geometry

Changfeng Xue1 and Shaozhong Deng2, ∗

1Department of Fundamental Sciences,

Yancheng Institute of Technology, Yancheng, Jiangsu 224051, PR China

2Department of Mathematics and Statistics,

University of North Carolina at Charlotte, Charlotte, NC 28223-0001, USA

Abstract

This paper concerns a basic electrostatic problem: How to calculate generalized Coulomb and

self-polarization potentials in heterogeneous dielectric media. In particular, with simulations of

ellipsoidal semi-conductor quantum dots and elongated bio-macromolecules being its target ap-

plications, this paper extends the so-called three-layer dielectric models for generalized Coulomb

and self-polarization potential calculation from the spherical and the spheroidal geometries to

the tri-axial ellipsoidal geometry. Compared to the simple step-like dielectric model, these three-

layer dielectric models can overcome the mathematical divergence in the self-polarization energy

by employing continuous radial dielectric functions. More specifically, in this paper, the novel

quasi-harmonic three-layer dielectric model for the ellipsoidal geometry is first discussed, and the

explicit analytical series solutions of the corresponding electrostatic problem are obtained in terms

of the ellipsoidal harmonics. Then, a robust numerical procedure working for general three-layer

dielectric models is developed. The key component of the numerical method is to subdivide the

transition layer of the underlying three-layer model into multiple sublayers, and then in each one of

them approximate the select dielectric function of the transition layer by one of the quasi-harmonic

functional form rather than simply by a constant value as one would normally do. As the result,

the numerical method has no numerical divergence.
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I. INTRODUCTION

As in [1], in this paper we are concerned with the calculation of the generalized Coulomb

potential energy Vc and the self-polarization potential energy Vs involving a dielectric object.

The generalized Coulomb potential energy Vc between two particles inside or outside a

dielectric object with the coordinates r and rs, and the charges e and es, respectively, can

be evaluated through Vc(r, rs) = eΦ(r, rs), where Φ(r, rs) is the electrostatic potential that

verifies the Poisson equation

∇ · ε(r)∇Φ(r, rs) = −4πesδ(r− rs). (1)

On the other hand, the self-polarization potential energy Vs of the particle e can be calculated

from Vc(r, rs) by taking r = rs and e = es, excluding the direct Coulomb interaction from

Φ(r, rs), and dividing by 2 as it corresponds to a self-energy, namely, Vs(r) = 1
2
eΦ(r, r).

In (1), ε(r) is the dielectric function which in general could be spatially dependent, and

δ(. . .) is the Dirac delta function, respectively. Two representative areas of application of

such an electrostatic problem include the simulation of semi-conductor quantum dots (QDs)

with finite confinement barriers [2–4], and the calculation of electrostatic interactions in the

so-called hybrid explicit/implicit solvation models for bio-molecular simulations [5].

For simplicity, in most theoretical studies of the underlying applications, macroscopic

dielectric constants εi and εo are assigned for the object (a QD or the dielectric cavity in

a hybrid solvation model) and the surrounding medium (the QD matrix or the implicit

solvent in the hybrid solvation model), respectively. In this case, explicit analytical series

solutions of the generalized Coulomb and the self-polarization potential energies exist for

both the spherical and the spheroidal geometries [6–9], but unfortunately, in addition to the

unphysicality of the sharp jump in the dielectric constant at the object surface, there is also

a major disadvantage of this step-like model. In particular, all induced polarization charges

will be localized at the object surface of zero width so both the real and the induced charges

can coincide at the same location, giving rise to a self-polarization energy that diverges at

the object surface.

To remove such mathematical divergence of the step-like dielectric model, the so-called

three-layer dielectric models have been proposed in which the step-like dielectric function is

replaced by a radially dependent continuous dielectric function ε(r) that changes smoothly

from the object value εi to the medium value εo within a thin transition layer around the
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object surface. As a consequence of using such a three-layer dielectric model, the induced

charges are spread along the transition layer and the mathematical divergence in the self-

polarization energy disappears. Moreover, in the case of the spherical geometry, a novel

three-layer dielectric model, called the quasi-harmonic model, has been proposed, the cor-

responding electrostatic problem still admitting explicit analytical series solutions [10, 11],

while for general three-layer dielectric models several procedures have been developed for

solving the problem numerically [4, 11–13]. Later, the quasi-harmonic three-layer dielectric

model and the robust numerical procedure particularly developed in [11] were extended to

the spheroidal geometry [1, 14].

In this paper, we shall further extend the quasi-harmonic three-layer dielectric model and

the robust numerical method for general three-layer dielectric models from the spheroidal

coordinates to one of the most general three-dimensional coordinates in which the Laplace

equation is separable [15], the tri-axial ellipsoidal coordinates [16–20]. This extension may be

needed since, for example, realistic quantum dots might be neither perfect spheres nor perfect

spheroids, while it has been shown that a small change in the external shape of a QD may

strongly influence the energy spectrum and other characteristics of such a semi-conductor

structure [21–24]. On the other hand, in the hybrid solvation models for bio-molecular

simulations, for non-spherical or non-spheroidal bio-macromolecules, from computational

point of view, it may be more beneficial to adopt ellipsoidal cavities that can conform

closely to the irregular shapes of the bio-molecules. What makes the proposed extension even

more important is the fact that, among the eleven coordinate systems in which the Laplace

equation (more precisely, the Helmholtz equation) is separable, the other ten coordinate

systems can be considered as degenerate forms of the ellipsoidal one [15].

The paper is organized as follows. In Section II, we briefly review the ellipsoidal coordi-

nates and the ellipsoidal harmonics. In Section III, we present the analytical solution of the

electrostatic problem with using the step-like dielectric model. Then the analytical solution

corresponding to the quasi-harmonic three-layer dielectric model is given in Section IV, and

a robust numerical method working for general three-layer dielectric models is described

in Section V. Finally, results of some illustrative numerical experiments are presented in

Section VI, and a few concluding remarks are given in Section VII.
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II. LAPLACE EQUATION IN ELLIPSOIDAL COORDINATES

In order to solve the Laplace equation in a domain bounded (internally or externally)

by a tri-axial ellipsoidal surface, it is convenient to formulate the problem in ellipsoidal

coordinates. Several definitions of these coordinates exist, and we adopt here Hobson’s

formalism [25] which appears to have become dominant in problems involving ellipsoidal

boundaries [16–19, 26, 27]. The ellipsoidal coordinates (ξ, µ, ν) corresponding to the point

(x, y, z) in the rectangular coordinates, generated by a reference ellipsoid

x2

a2
+

y2

b2
+

z2

c2
= 1, (2)

where a > b > c > 0 are its semi-axes, satisfy

x2

λ2
+

y2

λ2 − h2
+

z2

λ2 − k2
= 1, (3)

where λ stands for either ξ, µ, or ν. The two constants k and h are determined by the semi-

focal distances of the reference ellipsoid, namely, k =
√
a2 − c2 and h =

√
a2 − b2. Note that

every ellipsoidal coordinate has the physical dimension of distance, each one being defined

in the intervals 0 ≤ ν2 ≤ h2 ≤ µ2 ≤ k2 ≤ ξ2 < ∞. The surface of ξ = constant is a

tri-axial ellipsoid of semi-axes ξ,
√
ξ2 − h2 and

√
ξ2 − k2; in particular, ξ = a corresponds

to the reference ellipsoid (2). Recall that for spherical coordinates, a constant radius r

defines a single sphere. Therefore, analogously the variable ξ in the ellipsoidal coordinate

system is called radial and assumes only positive values, namely, ξ ∈ [k,∞). The surface

of µ = constant is a hyperboloid of one sheet and that of ν = constant a hyperboloid of

two sheets. Unlike the radial coordinate ξ, both angular coordinates µ and ν may also be

negative.

The transformation between the ellipsoidal and the Cartesian coordinates is [25]

x2 =
ξ2µ2ν2

k2h2
, (4a)

y2 =
(ξ2 − h2)(µ2 − h2)(h2 − ν2)

h2(k2 − h2)
, (4b)

z2 =
(ξ2 − k2)(k2 − µ2)(k2 − ν2)

k2(k2 − h2)
. (4c)

The Laplace equation is separable in the ellipsoidal coordinates. As a matter of fact, each
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of the three ellipsoidal variables satisfies the same Lamé differential equation

(
λ2 − h2

)
(λ2 − k2)

d2E(λ)

dλ2
+ λ

(
2λ2 − h2 − k2

) dE(λ)

dλ

+ [(h2 + k2) q − n(n+ 1)λ2]E(λ) = 0, (5)

where q is an arbitrary constant to be fixed appropriately [15].

The solutions of (5), Ep
n, are called Lamé functions of the first kind of degree n and

order p. Here both indices n and p are positive integers satisfying 2n + 1 ≥ p ≥ 1. For the

determination of the Lamé functions, see e.g., [15], for a short list of the Lamé functions of

the first kind, see e.g., [19], and for numerical computation of the Lamé functions, see e.g.,

[26, 28, 29]. In particular, Ref. [26] has all necessary details about computation of Lamé

functions including discussions on potential problems for accurate calculation and possible

solutions, which greatly helped the authors carry out this study successfully.

A general internal ellipsoidal harmonic which is a normal solution of the Laplace equation

and is regular at the origin may be written in terms of the Lamé product as

Ep
n(r) = Ep

n(ξ)E
p
n(µ)E

p
n(ν). (6)

Similarly, an external ellipsoidal harmonic which is regular at infinity is defined as

Fp
n(r) = F p

n(ξ)E
p
n(µ)E

p
n(ν), (7)

where F p
n(ξ) is the Lamé function of the second kind of degree n and order p, which is related

to the corresponding Lamé function of the first kind Ep
n(ξ) by [25]

F p
n(ξ) = (2n+ 1)Ep

n(ξ)

∫ ∞

ξ

dξ′

[Ep
n(ξ′)]2

√(
ξ′2 − h2

) (
ξ′2 − k2

) . (8)

Both the internal Ep
n(r) and the external Fp

n(r) ellipsoidal harmonics are linearly indepen-

dent and form a complete set of functions. Moreover, there exists an orthogonality relation

of the Lamé functions of the first kind as [19, 26]

∫ h

0

∫ k

h

Ep
n(µ)E

p
n(ν)E

p′

n′(µ)E
p′

n′(ν) (µ2 − ν2)√
(µ2 − h2) (k2 − µ2) (h2 − ν2) (k2 − ν2)

dµdν = γp
nδnn′δpp′, (9)

where the Kronecker delta δij = 1 when i = j and is zero otherwise, and the normalization

constant γp
n is

γp
n =

∫ h

0

∫ k

h

[Ep
n(µ)E

p
n(ν)]

2 (µ2 − ν2)√
(µ2 − h2) (k2 − µ2) (h2 − ν2) (k2 − ν2)

dµdν. (10)
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A list of normalization constants γp
n of low orders can be found in [19]. In particular,

γ1
0 = π/2 under the definition of (10).

Furthermore, as is well known, it is often essential in solving harmonic boundary-value

problems to have an expansion for the reciprocal distance (the basic potential given by the

Green’s function). Using the orthogonality relation (9), the expansion for the reciprocal

distance in the ellipsoidal coordinates can also be constructed [19], namely,

1

|r− rs|
=





∞∑

n=0

2n+1∑

p=1

KnpEp
n(rs)Fp

n(r), if ξ ≥ ξs,

∞∑

n=0

2n+1∑

p=1

KnpFp
n(rs)Ep

n(r), if ξ ≤ ξs,

(11)

where the coefficient Knp is

Knp =
π

2(2n+ 1)γp
n

. (12)

It is noteworthy that the orthogonality relation, the normalization constants, and accord-

ingly the expansion of the reciprocal distance all are given in a slightly different way in

[16, 18, 30], where the double integral involved is carried over the whole surface of the el-

lipsoid ξ = a (rather than
∫ h

0

∫ k

h
). As the consequence, the corresponding normalization

constant are eight times of those given by (10) [31], with γ1
0 = 4π. Therefore, if the normal-

ization constants presented in [16, 18, 30] are used, then

Knp =
4π

(2n+ 1)γp
n

. (13)

The Lamé functions Ep
n(ξ) and the products Ep

n(µ)E
p
n(ν) are analogous to the radial

functions Rm
l (r) and the surface spherical harmonics Y m

l (θ, φ) in the spherical harmonic

theory. For this reason, products of the form Ep
n(µ)E

p
n(ν) are called surface ellipsoidal

harmonics through this paper. It may also be noted that when ξ → ∞, Ep
n(ξ) ∼ c0ξ

n

and F p
n(ξ) ∼ Ep

n(ξ)/ξ
2n+1 ∼ c0/ξ

n+1 which corresponds to the r−(n+1)-potential term in the

spherical system [19].

To conclude this section, we introduce some shorthand notations in order to make later

formulations easier. We denote the summation
∑∞

n=0

∑2n+1
p=1 simply by

∑̂
. Also, for n =

0, 1, · · · , and p = 1, 2, · · · , 2n+1, we let unp(ξ) and vnp(ξ) be the ratios of the Lamé functions

of the first and the second kinds, namely,

unp(ξ) =
Ep

n(ξ)

F p
n(ξ)

and vnp(ξ) =
F p
n(ξ)

Ep
n(ξ)

, (14)
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and Ẽp
n(ξ) and F̃ p

n(ξ) be the logarithmic derivatives of the Lamé functions, namely,

Ẽp
n(ξ) =

Ep
n
′(ξ)

Ep
n(ξ)

and F̃ p
n(ξ) =

F p
n
′(ξ)

F p
n(ξ)

. (15)

III. ANALYTICAL SOLUTION FOR THE STEP-LIKE DIELECTRIC MODEL

The three-dimensional solution of the Poisson equation (1) is quite complicated to find

even by assuming the ellipsoidal geometry and only the radial ξ-dependence of ε(r). Nev-

ertheless, it can be solved analytically if the radial dependence of ε(r) corresponds to the

simple step-like model, as shown in Fig. 1, in which two constant dielectric permittivities

εi and εo are assigned for the ellipsoidal object and the surrounding medium, respectively.

Let the dielectric ellipsoid be centered at the origin and defined by (2). In terms of the

ellipsoidal coordinates (ξ, µ, ν) defined in Section II, the surface of the ellipsoid is given by

ξ = ξb = a. Then the step-like dielectric model is defined by

ε(ξ) =





εi, if ξ ≤ ξb,

εo, if ξ > ξb.
(16)

The explicit analytical solution of the corresponding electrostatic problem (1) has not been

published in the literature, to the best of the authors’ knowledge, and thus shall be discussed

first for the completeness of the paper.

ε
o

ε
i

x

y ξ=ξ
b
=a

a

b

FIG. 1: Schematic illustration of the step-like dielectric model: the dielectric constants of an

ellipsoid and the surrounding medium are εi and εo, respectively. The surface of the ellipsoid is

ξ = ξb = a. The graph shown represents the xy-cross section of the ellipsoid.

Let us begin by considering the case that the point charge es is located at the point

rs = (ξs, µs, νs) inside the ellipsoid. In this case, the electrostatic potential must be finite
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at infinity so the potential Φo outside the ellipsoid (ξb ≤ ξ) shall be expanded in terms

of the external harmonics Fp
n(r). On the other hand, the potential Φi inside the ellipsoid

(k ≤ ξ ≤ ξb) due to the point charge es alone is es/εi|r− rs|. We must superimpose on this

direct Coulomb potential a finite reaction potential due to the polarization of the dielectric,

which shall be expanded in terms of the internal harmonics Ep
n(r). In short, the electrostatic

potential Φo or Φi at a field point r = (ξ, µ, ν) outside or inside the ellipsoid, respectively,

due to a point charge es at the point rs inside the ellipsoid (so ξb > ξs ≥ k) takes the form

Φo(r, rs) =
es√
εiεo

∑̂
A(1)

np · KnpEp
n(rs)Fp

n(r), (17a)

Φi(r, rs) =
es

εi|r− rs|
+

es
εi

∑̂
B(1)

np · vnp(ξb)KnpEp
n(rs)Ep

n(r). (17b)

Note that here factors such as KnpEp
n(rs), es/εi and es/

√
εiεo are extracted from expansion

coefficients of the ellipsoidal harmonics explicitly so that, A
(1)
np and B

(1)
np , the remaining parts

of the expansion coefficients, depend neither on the source charge nor on the particular

dielectric values of εi and εo. Rather, as to be shown below, they depend only on the

ellipsoidal surface ξ = ξb and the dielectric mismatch ratio εr = εi/εo, and thus only need to

be calculated once even if there are many source charges present and the positions of these

charges change over time, a typical situation in hybrid-solvation bio-molecular simulations.

The unknown constant expansion coefficients A
(1)
np and B

(1)
np in (17) can be determined

by the boundary condition on the ellipsoidal surface ξ = ξb which, under the ellipsoidal

coordinates, is

Φo|ξ=ξb
= Φi|ξ=ξb

and εo
∂Φo

∂ξ

∣∣∣∣
ξ=ξb

= εi
∂Φi

∂ξ

∣∣∣∣
ξ=ξb

, (18)

the orthogonality relation of the surface ellipsoidal harmonics (9), and the known expansion

of the reciprocal distance in the ellipsoidal coordinates (11). Omitting all details, for n =

0, 1, · · · , and p = 1, 2, · · · , 2n+ 1, we can obtain



√
εr, −1

F̃ p
n(ξb), −√

εrẼ
p
n(ξb)




 A

(1)
np

B
(1)
np


 =


 1

√
εrF̃

p
n(ξb)


 . (19)

Similarly, if the source charge es is located at the point rs = (ξs, µs, νs) outside the

ellipsoid (so ξs ≥ ξb > k), the electrostatic potential Φo or Φi takes the form

Φo(r, rs) =
es

εo|r− rs|
+

es
εo

∑̂
A(2)

np · unp(ξb)KnpFp
n(rs)Fp

n(r), (20a)

Φi(r, rs) =
es√
εiεo

∑̂
B(2)

np · KnpFp
n(rs)Ep

n(r), (20b)
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where the expansion coefficients A
(2)
np and B

(2)
np are given by




√
εr, −1

F̃ p
n(ξb), −√

εrẼ
p
n(ξb)




 A

(2)
np

B
(2)
np


 =


 −√

εr

−Ẽp
n(ξb)


 . (21)

Recall that the self-polarization potential energy Vs(r) of the particle e is calculated from

the generalized Coulomb potential energy Vc(r, rs) = eΦ(r, rs) by taking r = rs and e = es,

excluding the direct Coulomb interaction from Φ(r, rs), and then dividing by 2, namely,

Vs(r) =
1
2
eΦ(r, r). From (17b) and (20a), we obtain

Vs(r) =





e2

2εo

∑̂
A(2)

np · unp(ξb)KnpFp
n
2(r), if ξ ≥ ξb,

e2

2εi

∑̂
B(1)

np · vnp(ξb)KnpEp
n
2(r), if ξ < ξb.

(22)

IV. ANALYTICAL SOLUTION FOR THE QUASI-HARMONIC DIELECTRIC

MODEL

The major problem of employing the step-like dielectric model and the corresponding

analytical solution (22) to calculate the self-polarization energy lies in the fact that it diverges

at the ellipsoidal surface ξ = ξb. In order to overcome such mathematical divergence, a

natural consideration is to introduce a thin transition layer of finite width in the ξ-direction,

say 2δ, centered at ξ = ξb with a continuous radial dielectric profile, say ε(ξ), separating

the two dielectric continua εi and εo, leading to a three-layer dielectric model, as shown in

Fig. 2. For the inner layer of ξ ≤ ξb − δ, the dielectric constant takes the value εi, while for

the outer layer of ξ ≥ ξb + δ, the dielectric constant takes the value εo. Between them, for

the intermediate transition layer of ξb − δ < ξ < ξb + δ, one can choose any analytical and

physically plausible continuous profile for ε(ξ) to connect these two extreme values. Two

natural choices of ε(ξ) include the linear profile defined by

ε(ξ) =





εi, if ξ ≤ ξI ,

εi + εo
2

+
εi − εo
2δ

(ξb − ξ), if ξI < ξ < ξO,

εo, if ξ ≥ ξO,

(23)
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and the cosine-like profile given by

ε(ξ) =





εi, if ξ ≤ ξI ,

εi + εo
2

+
εi − εo

2
cos

(
ξ − ξI
2δ

π

)
, if ξI < ξ < ξO,

εo, if ξ ≥ ξO,

(24)

respectively, where ξI = ξb − δ and ξO = ξb+ δ represent the inner and the outer boundaries

of the transition layer, respectively.

ε
o

ε
i

x

yξ=ξ
b

ξ=ξ
b
−δ

ξ=ξ
b
+δ

ε(ξ)

FIG. 2: Schematic illustration of a three-layer dielectric model: The inner layer (ξ ≤ ξb − δ) has

a dielectric constant of εi, while the outer layer (ξ ≥ ξb + δ) has a dielectric constant of εo. The

intermediate transition layer (ξb−δ < ξ < ξb+δ) assumes a continuous dielectric permittivity profile

ε(ξ) that connects εi and εo. The graph shown represents the xy-cross section of the ellipsoid.

As indicated earlier, for general three-layer dielectric profiles ε(ξ) including the linear and

the cosine-like ones, it does not seem feasible to find an explicit analytical solution for the

Poisson equation (1) since it is a second-order differential equation with a variable coefficient.

However, an explicit analytical solution can be obtained for the following quasi-harmonic

three-layer dielectric profile:

ε(ξ) =





εi, if ξ ≤ ξI ,
[
α + βF 1

0 (ξ)
]2
, if ξI < ξ < ξO,

εo, if ξ ≥ ξO,

(25)

where

α =
c
√
εo − d

√
εi

c− d
and β =

√
εi −

√
εo

c− d
, (26)
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with

c = F 1
0 (ξI) and d = F 1

0 (ξO) . (27)

The reason why ε(ξ) defined in (25) is called “quasi-harmonic” is because it is not harmonic

by itself but
√
ε(ξ), being a linear combination of two harmonic eigen-functions E1

0(ξ) ≡ 1

and F 1
0 (ξ), is harmonic. The three three-layer dielectric models mentioned so far together

with the step-like model are illustrated in Fig. 3. Note that in terms of the Jacobi elliptic

function sn(. . .), we have [15]

F 1
0 (ξ) =

∫ ∞

ξ

dξ′√
(ξ′2 − k2)(ξ′2 − h2)

=
1

k
sn−1

(
k

ξ
,
h

k

)
, (28)

Also note that

F 1
0
′
(ξ) = − 1√

(ξ2 − k2)(ξ2 − h2)
. (29)

ξ
b
−δ ξ

b
+δk ξ

b

ε
i

ε
o

FIG. 3: (Color online) Illustration of several three-layer dielectric models together with the step-

like model, assuming εi < εo. Dot-dashed line, the step-like model; dotted line, the linear model;

dashed line, the cosine-like model; and solid line, the quasi-harmonic model. This particular graph

is for a = 4, b = 3, c = 2, δ = 0.2, εi = 2 and εo = 80.

Before we proceed, it should be emphasized that, while similar potential problems in

the ellipsoidal geometry have been investigated in many different realms by many different

researchers, and the basic techniques to be used in this paper are no different from those

used to solve many other problems, to the best of the authors’ knowledge, most of the works

in the literature either assume the step-like dielectric profile or consider problems involving

multiple homogeneous confocal ellipsoidal shells. In particular, we are unaware of any work
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that considers the three-layer dielectric models in the ellipsoidal geometry. While there is

nothing special about the linear and the cosine-like three-layer models, at present the quasi-

harmonic dielectric model appears to be the only three-layer model such that the resulting

Poisson equation (1) admits explicit analytical series solutions. Most importantly, as to be

described in Section V, based on the proposed quasi-harmonic three-layer dielectric model, a

robust numerical method can be developed that essentially can be used to solve the Poisson

equation (1) with any radially dependent dielectric function.

The explicit analytical series solution to the Poisson equation (1) corresponding to the

above quasi-harmonic dielectric model is easy to find. First, let us consider the case when

the point charge es is located inside the inner layer (ξs ≤ ξI = ξb − δ). Accordingly, the

Poisson equation (1) becomes

∇ · εi∇Φi(r, rs) = −4πesδ(r− rs), if ξ ≤ ξI , (30a)

∇ · ε(ξ)∇Φt(r, rs) = 0, if ξI < ξ < ξO, (30b)

∆Φo(r, rs) = 0, if ξ ≥ ξO, (30c)

where Φi,Φt, and Φo stand for the electrostatic potential in the inner, the transition, and

the outer layers, respectively.

At the two boundaries of the transition layer, the continuity of the potential and the

normal flux requires that

Φi|ξ=ξI
= Φt|ξ=ξI

and
∂Φi

∂ξ

∣∣∣∣
ξ=ξI

=
∂Φt

∂ξ

∣∣∣∣
ξ=ξI

, (31)

Φo|ξ=ξO
= Φt|ξ=ξO

and
∂Φo

∂ξ

∣∣∣∣
ξ=ξO

=
∂Φt

∂ξ

∣∣∣∣
ξ=ξO

. (32)

The key in finding the analytical solution for the Poisson equation (1) corresponding to

the quasi-harmonic model is the following important observation [10, 32].

Theorem 1 If the variable coefficient ε(r) in the quasi-harmonic equation

∇ · [ε(r)∇φ(r)] = 0 (33)

satisfies ∆
√

ε(r) = 0, then

∆
[√

ε(r)φ(r)
]
= 0. (34)
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Similarly, if the variable coefficient ε(r) in the quasi-elliptic equation

∇ · [ε(r)∇φ(r)] = ρ(r) (35)

satisfies ∆
√

ε(r) = 0, then

∆
[√

ε(r)φ(r)
]
= ρ(r)/

√
ε(r). (36)

Since by construction, ∆
√
ε(ξ) = 0 in the transition layer, the Poisson equation (30b)

can be re-written as a Laplace equation

∆
[√

ε(ξ)Φt(r, rs)
]
= 0, (37)

whose solution
√

ε(ξ)Φt(r, rs) shall be expanded in terms of both the internal and the

external harmonics. Consequently, the potential Φt can be expressed as

Φt(r, rs) =
es√
ε(ξ)

∑̂
[CnpEp

n(r) +DnpFp
n(r)] , (38)

or, when the charge es is also located inside the transition layer, as

Φt(r, rs) =
es√

εsε(ξ)|r− rs|
+

es√
ε(ξ)

∑̂
[CnpEp

n(r) +DnpFp
n(r)] , (39)

where εs = ε(ξs), and Cnp and Dnp are undetermined constant expansion coefficients.

For the purpose of simplifying mathematical formulations, now we actually write the

potentials in the three layers as

Φo(r, rs) =
es√
εiεo

∑̂
A(1)

np · KnpEp
n(rs)Fp

n(r), (40a)

Φi(r, rs) =
es

εi|r− rs|
+

es
εi

∑̂
B(1)

np · KnpEp
n(rs)Ep

n(r), (40b)

Φt(r, rs) =
es√
εiε(ξ)

∑̂
KnpEp

n(rs)
[
C(1)

np Ep
n(r) +D(1)

npFp
n(r)

]
. (40c)

Here, the constant expansion coefficients A
(1)
np , B

(1)
np , C

(1)
np , and D

(1)
np can be determined by

the boundary conditions (31)-(32), together with the orthogonality relation (9), and the

expansion of the reciprocal distance (11). Omitting all details, we have

M×




A
(1)
np

B
(1)
np

C
(1)
np

D
(1)
np




=




−F p
n(ξI)

0

−F p
n
′(ξI)

0




, (41)
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where

M =




0, Ep
n(ξI), −Ep

n(ξI), −F p
n(ξI)

F p
n(ξO), 0, −Ep

n(ξO), −F p
n(ξO)

0, Ep
n
′(ξI), −Ep

n
′(ξI) +

βF 1
0
′
(ξI)√
εi

Ep
n(ξI), −F p

n
′(ξI) +

βF 1
0
′
(ξI)√
εi

F p
n(ξI)

F p
n
′(ξO), 0, −Ep

n
′(ξO) +

βF 1
0
′
(ξO)√
εo

Ep
n(ξO), −F p

n
′(ξO) +

βF 1
0
′
(ξO)√
εo

F p
n(ξO)




.

(42)

Similarly, if es is located inside the outer layer (ξs ≥ ξO = ξb + δ), we can write

Φo(r, rs) =
es

εo|r− rs|
+

es
εo

∑̂
A(2)

np · KnpFp
n(rs)Fp

n(r), (43a)

Φi(r, rs) =
es√
εoεi

∑̂
B(2)

np · KnpFp
n(rs)Ep

n(r), (43b)

Φt(r, rs) =
es√
εoε(ξ)

∑̂
KnpFp

n(rs)
[
C(2)

np Ep
n(r) +D(2)

npFp
n(r)

]
, (43c)

where the constant expansion coefficients A
(2)
np , B

(2)
np , C

(2)
np , and D

(2)
np can be calculated by

M×




A
(2)
np

B
(2)
np

C
(2)
np

D
(2)
np




=




0

−Ep
n(ξO)

0

−Ep
n
′(ξO)




. (44)

Finally, when es is located inside the transition layer (ξI < ξs < ξO), we can write

Φo(r, rs) =
es√
εsεo

∑̂
Knp

[
A(3)

npFp
n(rs) + A(4)

npEp
n(rs)

]
Fp

n(r), (45a)

Φi(r, rs) =
es√
εsεi

∑̂
Knp

[
B(3)

np Fp
n(rs) +B(4)

np Ep
n(rs)

]
Ep
n(r), (45b)

Φt(r, rs) =
es√

εsε(ξ)|r− rs|
+

es√
εsε(ξ)

∑̂
Knp

[(
C(3)

np Fp
n(rs)

+C(4)
np Ep

n(rs)
)
Ep
n(r) +

(
D(3)

npFp
n(rs) +D(4)

np Ep
n(rs)

)
Fp

n(r)
]
. (45c)

Here, the constant expansion coefficients A
(3)
np , B

(3)
np , C

(3)
np , and D

(3)
np are determined by

M×




A
(3)
np

B
(3)
np

C
(3)
np

D
(3)
np




=




Ep
n(ξI)

0

Ep
n
′(ξI)−

βF 1
0
′
(ξI)√
εi

Ep
n(ξI)

0




, (46)
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while A
(4)
np , B

(4)
np , C

(4)
np , and D

(4)
np are determined by

M×




A
(4)
np

B
(4)
np

C
(4)
np

D
(4)
np




=




0

F p
n(ξO)

0

F p
n
′(ξO)−

βF 1
0
′
(ξO)√
εo

F p
n(ξO)




. (47)

Likely, it should be mentioned that in the above equations, all constant expansion coef-

ficients depend only on the two ellipsoidal boundaries ξ = ξI and ξ = ξO of the transition

layer as well as the dielectric mismatch ratio εr = εi/εo. Therefore, once the width of the

transition layer is chosen, these coefficients have to be calculated only once even when there

are many charges present and they move over time.

The practical implementation of the above analytical series solution additionally requires

truncating the infinite summation at a finite n value, say N , which could be very large in

order to reach convergence or high accuracy. Also, the magnitude of the Lamé functions may

increase exponentially with the argument ξ and easily exceed the capacity of a computer

especially when their orders are high. Therefore, to avoid potential overflow and computer

cutoff errors, we further carry out more convenient rewritings of the previous solution so

that the matrices of the resulting systems for the expansion coefficients involve only the

ratios of the Lamé functions and the logarithmic derivatives of these functions. To this end,

in addition to (14) and (15), we let

γnp = unp(ξI)vnp(ξO). (48)

Then, when the charge es is located inside the inner layer, the potentials in the three

layers are re-written as

Φo(r, rs) =
es√
εiεo

∑̂
A(1)

np · KnpEp
n(rs)Fp

n(r), (49a)

Φi(r, rs) =
es

εi|r− rs|
+

es
εi

∑̂
B(1)

np · vnp(ξI)KnpEp
n(rs)Ep

n(r), (49b)

Φt(r, rs) =
es√
εiε(ξ)

∑̂
KnpEp

n(rs)
[
C(1)

np vnp(ξO)Ep
n(r) +D(1)

npFp
n(r)

]
, (49c)
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where the expansion coefficients A
(1)
np , B

(1)
np , C

(1)
np , and D

(1)
np are now calculated by

M(1) ×




A
(1)
np

B
(1)
np

C
(1)
np

D
(1)
np




=




−1

0

−F̃ p
n(ξI)

0




, (50)

with

M(1) =




0, 1, −γnp, −1

1, 0, −1, −1

0, Ẽp
n(ξI),

[
−Ẽp

n(ξI) +
βF 1

0
′
(ξI)√
εi

]
γnp, −F̃ p

n(ξI) +
βF 1

0
′
(ξI)√
εi

F̃ p
n(ξO), 0, −Ẽp

n(ξO) +
βF 1

0
′
(ξO)√
εo

, −F̃ p
n(ξO) +

βF 1
0
′
(ξO)√
εo




. (51)

Similarly, when the charge es is located inside the outer layer, the potentials are re-written

as

Φo(r, rs) =
es

εo|r− rs|
+

es
εo

∑̂
A(2)

np · unp(ξO)KnpFp
n(rs)Fp

n(r), (52a)

Φi(r, rs) =
es√
εoεi

∑̂
B(2)

np · KnpFp
n(rs)Ep

n(r), (52b)

Φt(r, rs) =
es√
εoε(ξ)

∑̂
KnpFp

n(rs)
[
C(2)

np Ep
n(r) +D(2)

np unp(ξI)Fp
n(r)

]
, (52c)

where the expansion coefficients A
(2)
np , B

(2)
np , C

(2)
np , and D

(2)
np are now determined by

M(2) ×




A
(2)
np

B
(2)
np

C
(2)
np

D
(2)
np




=




0

−1

0

−Ẽp
n(ξO)




, (53)

with

M(2) =




0, 1, −1, −1

1, 0, −1, −γnp

0, Ẽp
n(ξI), −Ẽp

n(ξI) +
βF 1

0
′
(ξI)√
εi

, −F̃ p
n(ξI) +

βF 1
0
′
(ξI)√
εi

F̃ p
n(ξO), 0, −Ẽp

n(ξO) +
βF 1

0
′
(ξO)√
εo

,

[
−F̃ p

n(ξO) +
βF 1

0
′
(ξO)√
εo

]
γnp




. (54)
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Finally, when the charge es is located inside the transition layer, we can write

Φo(r, rs) =
es√
εsεo

∑̂
Knp

[
A(3)

npunp(ξI)Fp
n(rs) + A(4)

npEp
n(rs)

]
Fp

n(r), (55a)

Φi(r, rs) =
es√
εsεi

∑̂
Knp

[
B(3)

np Fp
n(rs) +B(4)

np vnp(ξO)Ep
n(rs)

]
Ep
n(r), (55b)

Φt(r, rs) =
es√

εsε(ξ)|r− rs|
+

es√
εsε(ξ)

∑̂
{Knp

×
[(
C(3)

np γnpFp
n(rs) + C(4)

np vnp(ξO)Ep
n(rs)

)
Ep
n(r)

+
(
D(3)

np unp(ξI)Fp
n(rs) +D(4)

np γnpEp
n(rs)

)
Fp

n(r)
]}

. (55c)

Here, the expansion coefficients A
(3)
np , B

(3)
np , C

(3)
np , and D

(3)
np are now determined by

M(1) ×




A
(3)
np

B
(3)
np

C
(3)
np

D
(3)
np




=




1

0

Ẽp
n(ξI)−

βF 1
0
′
(ξI)√
εi

0




, (56)

while the expansion coefficients A
(4)
np , B

(4)
np , C

(4)
np , and D

(4)
np are now determined by

M(2) ×




A
(4)
np

B
(4)
np

C
(4)
np

D
(4)
np




=




0

1

0

F̃ p
n(ξO)−

βF 1
0
′
(ξO)√
εo




. (57)

Accordingly, from (49b), (52a) and (55c), the self-polarization potential energy of a

charged particle e at the location r can be arrived at as follows.

Vs(r) =





e2

2εo

∑̂
A(2)

np · unp(ξO)KnpFp
n
2(r), if ξ ≥ ξO,

e2

2εi

∑̂
B(1)

np · vnp(ξI)KnpEp
n
2(r), if ξ ≤ ξI ,

e2

2ε(ξ)

∑̂
Knp

[
γnp

(
C(3)

np +D(4)
np

)
Ep
n(r)Fp

n(r)

+vnp(ξO)C
(4)
np Ep

n
2(r) + unp(ξI)D

(3)
npFp

n
2(r)

]
, if ξI < ξ < ξO.

(58)
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V. NUMERICAL METHOD FOR GENERAL THREE-LAYER DIELECTRIC

MODELS

The Poisson equation (1) corresponding to a general three-layer dielectric model does

not admit an easy explicit analytical solution and thus needs to be solved numerically. One

could develop a numerical procedure similar to that proposed by Bolcatto et al. in [4] for

the spherical geometry. First, the transition layer is subdivided into multiple sublayers,

and then in each one of them the select dielectric function is approximated by a constant

value such as the mean value of the dielectric function in this sublayer. As the result,

the original continuous radial dielectric profile is approximated by a piecewise constant

one, and consequently, the original Poisson equation with the continuous radial dielectric

profile reduces to one in layered dielectric ellipsoids, whose solution can then be found in

the same way as for the Poisson equation in layered spheres [4, 13, 33–36]. However, this

approach has a fundamental limitation: as it discretizes a continuous dielectric function

ε(ξ) into a piecewise constant one within the transition layer, and the ultimate effect of such

discretization is to approximate a continuous self-polarization potential energy by one with

divergence at every interface between those sublayers, new numerical divergence emerges.

Therefore, as in [1, 11], we employ an ideally only slightly more complicated but com-

putationally much more robust numerical procedure. Basically, the procedure first still

divides the transition layer, ξb − δ < ξ < ξb + δ, into multiple, say L − 1, sublayers,

[ξl−1, ξl], l = 1, 2, . . . , L − 1, with ξ0 = ξb − δ and ξL−1 = ξb + δ. For convenience, also set

ξ−1 = k and ξL = ∞. For each index l = −1, 0, . . . , L, denote by el the dielectric con-

stant at ξ = ξl, namely, el = ε(ξl). Note that e−1 = e0 = εi and eL−1 = eL = εo. Then

in each sublayer [ξl−1, ξl], l = 0, 1, . . . , L, the dielectric function ε(ξ) is approximated by a

quasi-harmonic one of the form (25) that connects el−1 and el, namely, by

εl(ξ) =
[
αl + βlF

1
0 (ξ)

]2
, ξl−1 ≤ ξ ≤ ξl, l = 0, 1, . . . , L,

where

αl =
cl
√
el − dl

√
el−1

cl − dl
and βl =

√
el−1 −

√
el

cl − dl
, (59)

with

cl = F 1
0 (ξl−1) and dl = F 1

0 (ξl) . (60)

Note that now the approximating dielectric profile remains continuous. As the result, the
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self-polarization potential energy has no numerical divergence, and, as the number of sub-

layers used to discretize the transition layer increases, the numerical solution shall converge

to the exact solution of the Poisson equation.

Next, in each sublayer the solution of the Poisson equation is expressed as

Φl(r, rs) =
es√
εl(ξ)

∑̂ [
C(l)

npEp
n(r) +D(l)

npFp
n(r)

]
, if ξl−1 ≤ ξ ≤ ξl. (61)

Finally, by using a recursive method in analogy to the analysis of transmission lines [1, 4,

11, 13, 33–36], those constant expansion coefficients C
(l)
np and D

(l)
np can be determined from

the following interface conditions for l = 1, 2, . . . , L,

Φl−1|ξ=ξ−
l−1

= Φl|ξ=ξ+
l−1

and
∂Φl−1

∂ξ

∣∣∣∣
ξ=ξ−

l−1

=
∂Φl

∂ξ

∣∣∣∣
ξ=ξ+

l−1

.

As the result of the above procedure, explicit numerical formulas for solving the Poisson

equation (1) for general three-layer dielectric models can be obtained. More precisely, the

generalized Coulomb potential at a point r in the l-th sublayer due to a point charge es at

another point rs in the k-th [37] sublayer can be calculated by

Φlk(r, rs) =
es√

εl(ξ)εk(ξs)

∑̂
KnpY

p
n (µs, νs)Y

p
n (µ, ν)×

Wnp,lk(ξ, ξs)

(1− pnp,kkqnp,kk)
, (62)

where the functions Wnp,lk(ξ, ξs) are given by

Wnp,lk(ξ, ξs) = [pnp,kkE
p
n(ξ>) + F p

n(ξ>)] [E
p
n(ξ<) + qnp,lkF

p
n(ξ<)] Ĉ

l
np (63)

if l < k,

Wnp,lk(ξ, ξs) = [pnp,kkE
p
n(ξ>) + F p

n(ξ>)] [E
p
n(ξ<) + qnp,kkF

p
n(ξ<)] (64)

for l = k, and

Wnp,lk(ξ, ξs) = [pnp,lkE
p
n(ξ>) + F p

n(ξ>)] [E
p
n(ξ<) + qnp,kkF

p
n(ξ<)] D̃

l
np (65)

when l > k. Here, ξ< (ξ>) is the smaller (greater) between ξ and ξs,

pnp,lk = T k
npvnp(ξl) and qnp,lk = Rk−1

np unp(ξl−1), (66)

[37] To be consistent with previous publications, here we have used k as an index although it is also used to

represent
√
a2 − c2 in the paper.

19



and

Ĉ l
np =

k−1∏

j=l

Tnp,j+1

1− Rnp,j+1R
j−1
np γnp,j

, (67a)

D̃l
np =

l∏

j=k+1

Tnp,j

1− Rnp,jT
j
npγnp,j

. (67b)

In the previous formulations, γnp,l = unp(ξl−1)vnp(ξl), l = 0, 1, · · · , L. In particular,

γnp,0 = γnp,L = 0. Rnp,l and Tnp,l, identified as the interface parameters associated to the

interface ξ = ξl−1, are given by

Rnp,l = (βl − βl−1)F
1
0
′
(ξl−1)/∆np,l, (68a)

Tnp,l =
√
el−1

[
F̃ p
n(ξl−1)− Ẽp

n(ξl−1)
]
/∆np,l, (68b)

∆np,l =
√
el−1

[
F̃ p
n(ξl−1)− Ẽp

n(ξl−1)
]
− (βl − βl−1)F

1
0
′
(ξl−1). (68c)

On the other hand, Rl
np and T l

np, identified as the interface reflection and the transmission

coefficients associated to the interface ξ = ξl−1, are given through the following recursive

expressions

Rl−1
np = Rnp,l +

T 2
np,lR

l−2
np γnp,l−1

1− Rnp,lRl−2
np γnp,l−1

with R−1
np = 0, (69)

T l−1
np = Rnp,l +

T 2
np,lT

l
npγnp,l

1−Rnp,lT l
npγnp,l

with TL
np = 0. (70)

Consequently, the self-polarization energy of a charged particle e at a point r in the l-th

sublayer where 0 ≤ l ≤ L, denoted by V l
s (r), can be calculated by V l

s (r) = 1
2
eΦll(r, r). In

accordance with (62), the self-energy reads

V l
s (r) =

e2

2εl(ξ)

∑̂{KnpE
p
n
2(µ)Ep

n
2(ν)

(1− pnp,llqnp,ll)

×
[
pnp,llE

p
n
2(ξ) + pnp,llqnp,llE

p
n(ξ)F

p
n(ξ) + qnp,llF

p
n
2(ξ)

]}
.

(71)

VI. ILLUSTRATIVE NUMERICAL EXPERIMENTS

In this section, we apply the analytical solution for the proposed quasi-harmonic dielectric

model as well as the proposed numerical solution for general three-layer dielectric models to

the calculation of the self-polarization energy of a tri-axial ellipsoidal quantum dot (QD), in

which the dielectric constant inside the dot is typically higher than that of the surrounding
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matrix. In particular, we consider the ellipsoidal QD given by x2/a2 + y2/b2 + z2/c2 = 1

with a = 20 Å, b = 15 Å, c = 10 Å and εi = 12.6 (GaAs), and assume that it is embedded in

vacuum (εo = 1). In all simulations, the imposed upper limit of n is set to N = 100. Unless

otherwise specified, all analytical results and illustrative plots are based on the calculation

of the self-polarization energies of 1000 unit charges (in atomic unit) uniformly distributed

(in terms of the ξ-dependent distance) along the line segment OP with two endpoints O =

(0, 0, 0) and P = (26, 24, 18). Furthermore, when the numerical solution is involved, the

number of sublayers used to discretize the transition layer is set to L = 1000.

A. Self-energy for the step-like dielectric model

Figure 4(a) shows the self-polarization energy profile and Fig. 4(b) shows the contour

graph of the electrostatic potential distribution on the x-y plane due to a unit point charge

inside the QD at the point rs = (10, 7.5, 5), respectively, corresponding to the simple step-

like model. It is well known that under the step-like model, when the source charge is placed

in the region with a lower dielectric constant, the induced charges have the opposite sign

as the source charge and then the interaction between the source and the induced charges

is attractive. On the contrary, if the source charge is located in the region with a higher

dielectric constant, the induced charges have the same sign as the source charge and then the

interaction is repulsive. Here εi > εo, so as shown in Fig. 4(a), the self-polarization energy

is positive inside the dot but negative outside. Moreover, as the source charge moves to the

QD boundary, the self-energy increases rapidly in magnitude, leading to divergence at the

QD boundary. On the other hand, Fig. 4(b) clearly shows that, under the step-like model,

the resulting electrostatic potential is continuous but its normal derivative is discontinuous

across the boundary, as required by the boundary condition (18).

B. Self-energy for the quasi-harmonic dielectric model

Figure 5(a) shows the self-polarization energy profile and Fig. 5(b) shows the contour

graph of the electrostatic potential distribution on the x-y plane due to a unit point charge

inside the QD at the point rs = (10, 7.5, 5), respectively, corresponding to the proposed quasi-

harmonic model with δ = 2 Å. As can be seen from Fig. 5(a), under the quasi-harmonic
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FIG. 4: (Color online) (a) Self-polarization energy Vs of unit charges along the line segment OP ,

and (b) the contour graph of the electrostatic potential distribution on the x-y plane due to a unit

point charge at rs = (10, 7.5, 5) inside the ellipsoidal QD, corresponding to the step-like model.

model, as the source charge moves from the center to the outside of the dot along the

line segment OP , the self-polarization energy first increases and reaches its maximum value

at the inner boundary of the transition layer. Then, it gradually decreases from positive

to negative (but with higher and higher rate) within the transition layer. Once the self-

energy reaches its minimum value at the outer boundary of the transition layer, it gradually

increases to zero (but with lower and lower rate). As a result, the mathematical divergence

present in the step-like model is overcome. Also, although the quasi-harmonic dielectric

model leads to singularity in the self-polarization potential energy at both boundaries of the

transition layer, precisely where the derivative of ε(r) is discontinuous, fortunately this kind

of singularity is integrable. On the other hand, Fig. 5(b) clearly shows that, under the quasi-

harmonic model, both the electrostatic potential and its normal derivative are continuous

across the boundaries of the transition layer, as required by the boundary conditions (31)

and (32).

Figure 6 shows the self-polarization energy profile of unit charges along the line segment

OP corresponding to the quasi-harmonic model with several different thickness of the tran-

sition layer, namely, δ = 2 Å, 1 Å, and 0.5 Å, respectively. Clearly, it is observed that,

as the transition layer decreases in size, the self-polarization energy given by the analytical

solution for the quasi-harmonic model reduces to that for the step-like model.
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FIG. 5: (Color online) (a) Self-polarization energy Vs of unit charges along the line segment OP ,

and (b) the contour graph of the electrostatic potential distribution on the x-y plane due to a unit

point charge at rs = (10, 7.5, 5) inside the ellipsoidal QD, corresponding to the quasi-harmonic

model with δ = 2 Å. Note that in this case, rs = (10, 7.5, 5) is actually inside the transition layer.
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FIG. 6: (Color online) Self-polarization energy Vs of unit charges along the line segment OP

corresponding to the quasi-harmonic model with δ = 2 Å, 1 Å, and 0.5 Å, respectively.

C. Convergence of the proposed numerical method as L → ∞

To investigate the convergence of the proposed numerical method in terms of L, the

number of sublayers to discretize the transition layer in a three-layer dielectric model, here

we consider its application to the linear and the cosine-like dielectric models with δ = 2 Å.
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We calculate the self-polarization energies of 1000 unit charges equally spaced along the line

segment OP , and the numerical results are compared to those obtained by the proposed

numerical method using L = 3, 000 to calculate the L2-relative errors in the self-polarization

energy, which are displayed in Fig. 7. More precisely, the L2-relative error E in the self-

polarization energy is defined as

E =

√√√√√√√

∑
1≤i≤1000

(
V

(L)
s (ri)− V

(3000)
s (ri)

)2

∑
1≤i≤1000

(
V

(3000)
s (ri)

)2 , (72)

where V
(L)
s (ri) denotes the computed self-polarization energy of a unit charge at ri by using

the numerical method with L sublayers. As can be seen, the results clearly demonstrate the

convergence of the proposed numerical method as L → ∞. Based on this, it is reasonable to

believe that, for general three-layer dielectric models, the proposed numerical method should

be able to recover the exact solution of the corresponding Poisson equation as L → ∞.
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FIG. 7: (Color online) L2-relative error E in the self-polarization energy corresponding to the

linear and the cosine-like models with δ = 2 Å, respectively, using the proposed numerical method

with various L values.

Next, in Fig. 8 we show the self-polarization energy for the QD corresponding to the

foregoing three three-layer dielectric models with δ = 2 Å, respectively. It is evident that the

choice of different dielectric permittivity profiles for the dielectric transition layer modifies

both the strength and the functional form of the potentials, although all three forms of

ε(ξ) can eliminate the mathematical divergence present when δ = 0. However, since the
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derivative of ε(ξ) in both the quasi-harmonic and the linear models is discontinuous at the

both boundaries of the transition layer, the self-polarization energy corresponding to these

two models exhibits differential singularity at these locations as well.
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FIG. 8: (Color online) Self-polarization energy Vs as a function of r for several three-layer dielec-

tric models with δ = 2 Å. Solid line, the quasi-harmonic model with using the analytical solution;

dashed and dot-dashed lines, the cosine-like and the linear models with using the proposed numer-

ical method.

D. The dielectric ellipsoid approaches a sphere.

Finally, let us examine the case when the dielectric ellipsoid approaches a sphere for the

sake of further validation of the results obtained in the present paper. While it may be

possible to theoretically prove that (58) will reduce to Eq. (11) of Ref. [11] and (71) to

Eq. (46) of Ref. [11], we shall compare these equations numerically in order to avoid long,

tedious mathematics. To this end, we consider a spherical QD given by x2 + y2 + z2 =

102 but still assume εi = 12.6 and εo = 1. We calculate the self-polarization energies of

200 unit charges (in atomic unit) uniformly distributed along the line segment with two

endpoints (0, 0, 0) and (0, 0, 20) corresponding to the quasi-harmonic and the cosine-like

three-layer dielectric models, respectively. The results are displayed in Fig. 9. In all of these

simulations, the width of the transition layer is fixed with δ = 5 Å, and when the numerical

methods are involved, the number of sublayers used to discretize the transition layer is set

to L = 1000. However, the imposed upper limit of n is set to N = 4000 when the QD is
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regarded as a sphere and N = 62 as an ellipsoid, respectively. Also, it should be pointed

out that, when treating the spherical QD as a limiting case of an ellipsoid, we actually use

x2/10.012 + y2/102 + z2/9.992 = 1 so that the two semi-focal distances k and h do not

become zero; otherwise the formulae obtained for the ellipsoidal geometry cannot be used

directly. As can be seen, the numerical results obtained by treating the spherical QD as a

limiting case of an ellipsoid, and thus applying the formulae presented in the present paper,

are in excellent agreement with those obtained by directly using the formulae developed in

Ref. [11] for the spherical geometry, suggesting once again the correctness of the analytical

solution for the quasi-harmonic three-layer model as well as the robustness of the numerical

method for general three-layer models presented in this paper for the ellipsoidal geometry.
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FIG. 9: (Color online) Self-polarization energy Vs of unit charges along the line segment with two

endpoints (0, 0, 0) and (0, 0, 20) when a spherical QD given by x2 + y2 + z2 = 102 is considered.

The dash-dotted lines are the results calculated by directly using the analytical solution of the

quasi-harmonic three-layer model and the robust numerical method for general three-layer models

in the spherical geometry developed in Ref. [11], while the solid lines are the results obtained

by treating the spherical QD as a limiting case of an ellipsoid, and thus applying the formulae

presented in the present paper. In the latter case, a small perturbed spherical QD given by

x2/10.012 + y2/102 + z2/9.992 = 1 is actually used in order that the two semi-focal distances k

and h of the resulting ellipsoid do not become zero. δ = 5 Å. (a) Analytical solutions for the

quasi-harmonic three-layer models in the spherical and the ellipsoidal geometries; (b) Numerical

solutions for the cosine-like three-layer models in these two geometries.
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VII. CONCLUDING REMARKS

The novel quasi-harmonic three-layer dielectric model for calculating generalized Coulomb

and self-polarization potentials in heterogeneous dielectric media has been extended to the

ellipsoidal geometry. The explicit analytical series solutions for the corresponding Poisson

equation in terms of the ellipsoidal harmonics have been developed. The quasi-harmonic

dielectric model can overcome the inherent mathematical divergence in the self-polarization

energy that exists in the simple step-like dielectric model. Furthermore, a robust numerical

procedure working for general three-layer dielectric models has been presented. The key

component of this numerical method is to subdivide the transition layer of the underlying

three-layer model into multiple sublayers, and then in each one of them approximate the

select dielectric function of the transition layer by one of the quasi-harmonic functional form.

The results presented in this paper can find their applications in many areas that involve

the calculation of the generalized Coulomb potential such as simulations of ellipsoidal semi-

conductor quantum dots, molecular dynamics simulations of elongated, non-spherical or

non-spheroidal bio-macromolecules, etc.
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