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Abstract:  

This paper aims to investigate Gaussian colored noise-induced stochastic 

bifurcations, and the dynamical influence of correlation time and noise intensity in a 

bistable Duffing-van der Pol oscillator. By using the stochastic averaging method, one 

can obtain the stationary probability density function of amplitude for the Duffing-van 

der Pol oscillator theoretically and reveal interesting dynamics under the influence of 

Gaussian colored noise. Stochastic bifurcations are discussed through a qualitative 

change of the stationary probability distribution, which indicates that system 

parameters, noise intensity and noise correlation time can be treated as bifurcation 

parameters respectively. They also imply that the effects of multiplicative noise are 

rather different from that of additive noise. The results of direct numerical simulation 

verify the effectiveness of the theoretical analysis. Moreover, the largest Lyapunov 

exponent calculations indicate that the P-bifurcation and D-bifurcation have no direct 

connection.  
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I. Introduction 

Various physical, chemical, and biological processes can be modeled as   

nonlinear dynamical systems in which oscillatory motions are influenced by internal 
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or external noise [1-3]. The investigation of the influence of random forces on 

dynamical behaviors, especially bifurcation phenomena, is one of the intensively 

developing research subjects [4-14]. However, the theory of stochastic bifurcations is 

still in its infancy [15]. There are few rigorous general theorems and criteria to detect 

stochastic bifurcations, which are often only verified by computer simulations, or for 

some particular models. In fact, it is much harder to deal with stochastic bifurcation 

problems than deterministic bifurcation problems. The definition of deterministic 

bifurcation is based upon the sudden change of topological properties of the phase 

portraits, while stochastic bifurcations may be characterized with a qualitative change 

of the stationary probability distribution, e.g., a transition from unimodal to bimodal 

distribution. At present, there are mainly two definitions for stochastic bifurcations. 

One is based on the sudden change of shape of the stationary probability density 

function—the so-called phenomenological (P)-bifurcation; and the other is based on 

the sudden change of sign of the largest Lyapunov exponent—the so-called dynamical 

(D)-bifurcation [15]. D-bifurcation is a dynamical concept, which is similar in nature 

to deterministic bifurcations, while P-bifurcation is a static concept. Unfortunately 

these two definitions do not agree well, and this means a new definition of stochastic 

bifurcation may be explored.  

As we know, random noise may induce shift of the bifurcations with respect to 

different control parameter values compared to their deterministic counterparts. New 

types of dynamics can be found in the presence of random excitations, generally 

referred to the noise-induced effects. The Gaussian white noise in most theoretical 

studies is employed as the random driving force due to its mathematical simplicity, 

while realistic models of physical systems require considering colored noise. There 

has been a growing interest in the theoretical study of nonlinear dynamical systems 

subject to colored noise with finite correlation time scale [16-17]. It has been realized 

that colored noise gives rise to new intriguing effects such as the reentrant 

phenomenon in a noise-induced transition [18] and a resonant activation in bistable 

systems [19]. 

The Duffing-van der Pol oscillator is a prototypical system in modeling certain 

physical phenomena and its “simple” nonlinear structure has given rise to thorough 

studies of its dynamical behaviors [20,21]. The Gaussian white noise was firstly 

reported to create a purely noise-induced D-bifurcation with a single attractor in the 

Duffing-van der Pol system [12]. Stochastic bifurcation has been recently discussed 
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for a self-sustained bistable Duffing-Van der Pol oscillator subject to additive 

Gaussian white noise in Ref. [13]. It is desirable to understand stochastic bifurcations 

in the bistable Duffing-Van der Pol oscillator driven by Gaussian colored noise. 

In this paper, we explore effects of additive and multiplicative Gaussian colored 

noises on a bistable Duffing-Van der Pol oscillator. Furthermore, one can find the 

relation of stochastic bifurcation and noise correlation time on the dynamical 

properties. Based on the stochastic averaging method to separate fast and slow 

variables of the oscillator, the bifurcation analysis will be presented, taking the system 

parameters and statistical characteristics of noise (e.g., noise intensity and noise 

correlation time) as bifurcation parameters. Two types of qualitative changes are 

observed and bifurcation diagrams of the system in different parameter planes are 

presented. We find that the effects of multiplicative noise and that of additive noise 

are quite different (or not directly related). 

This paper is organized as follows. In Section II, the stochastic averaging method 

is carried out to obtain the stationary probability density function of amplitude for the 

noisy Duffing-van der Pol oscillator theoretically. Then the stochastic P-bifurcations 

will be discussed in Section III. Here we analyze the influence of the noise correlation 

time and noise intensity on stochastic P-bifurcations in two cases of additive noise 

and multiplicative noises. Finally, Section IV is devoted to concluding remarks and 

discussions. 

II. Stationary probability distribution of a bistable oscillator with 

Gaussian colored noise 

In this section, we consider a bistable Duffing–Van der Pol oscillator with colored 

Gaussian noise: 

2 4 3
1 2 0( ) ( ) ( ), 0,ix x x x x x t x tε β β β η ξ β− + − + + = + ≥

ii i
           (1) 

where ε , 0β , 1β  and 2β are real parameters( 0β is a small parameter), while ( )tη  

and ( )tξ  are Gaussian colored noises with zero mean and correlation 
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Here 1 2,τ τ  and 1 2,D D  denote the correlation time and intensity of the colored 

noises ( )tη  and ( )tξ , respectively. 

In the deterministic case ( 1 2 0D D= = ), when 1

2

0
8
β ε
β

− < < , the system Eq.(1) is 

characterized with a bistable behavior: two attractors are in the phase plane: a stable 

focus at the origin and a stable limit cycle, as Fig.1 shows. Thus, the bistability region 

is restricted to a saddle-node bifurcation of cycles at 1 2/ 8ε β β= − , and a subcritical 

Andronov-Hopf bifurcation at 0ε = . Furthermore, the parameter 0β  defines the 

anisochronicity of oscillations: for 0 0β =  the nonisochronicity of system Eq.(1) is 

quite small. 
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Fig.1. (Color online) Two attractors of system Eq.(1) for D=0 when 1 20.11, 1.0ε β β= − = = . 

When 1 0D ≠ and/or 2 0D ≠ , we assume that the noise intensity is small and 

introduce a change of variables, 

( ) cos , ( ) sin , .x t a x t a tθ θ θ ϕ= = − = +
i

                     (3) 

Substituting Eq.(3) into Eq.(1), we can obtain  

2 2 2 4 4 3 3
1 2 0

2 2 4 4 2 4 2
1 2 0

sin ( cos cos ) cos sin sin ( ) sin cos ( )
cossin cos ( cos cos ) cos ( ) cos ( )

a a a a a t a t

a a a t t
a

θ ε β θ β θ β θ θ θη θ θξ
θϕ θ θ ε β θ β θ β θ η θξ

⎧ = + − + − −⎪
⎨

= + − + − −⎪
⎩

i

i

(4) 

Apply the stochastic averaging method [22-23], we can obtain the following pair of 

stochastic equations for the amplitude ( )a t  and phase ( )tϕ :  
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3 5 2
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(5) 

where 1( )W t  and 2 ( )W t  represents independent normalized Wiener processes. 

Clearly, da  does not depend on ϕ , thus we can develop a probability density for a , 

rather than a joint density for a  and ϕ .  

The probability density function 0 0( , , )p a t a t for amplitude is governed by the 

Fokker-Planck-Kolmogorov equation, 
3 5
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Let ( , ) 0P a t
t

∂ =
∂

, according to Zhu [22], the stationary solution of Eq.(6) is 

( )( ) exp 2 ,
( ) ( )
N A ap a da

B a B a
⎡ ⎤

= ⎢ ⎥
⎣ ⎦
∫                               (7) 
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                   (8) 

where N  is a normalization constant. 

III.  Stochastic bifurcations   

This section is devoted to discussing stochastic bifurcations through qualitative 

changes of the stationary probability density ( )p a . The exact probability densities 

are presented in the case of additive noise, and the case of combined multiplicative 

noise and additive noise, respectively. The number and the extrema of the stationary 

densities have been carefully examined.  

A. The case of additive colored noise 
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We first consider the system (1) with only additive colored noise 

with 2 10, 0D D= ≠ . By Eq.(7) and Eq.(8), we get  

2
2 2 4 61

1 1 2
1

1( ) (1 ) exp (24 3 ) ,
48

p a N a a a a
D
ττ ε β β

⎡ ⎤+= + + −⎢ ⎥
⎣ ⎦

               (9) 

where N  is a normalization constant. 

In the limit 1 0τ → , the colored noise ( )tη tends to a white noise, and this case 

was discussed in [13]. From Eq.(9), we find that the shape of amplitude in Eq.(5) does 

not depend on the phase ϕ  and system parameter 0β . 

Moreover, let ( ) 0p a
a

∂ =
∂

, the extrema of the distribution Eq.(9) are the roots of  

6 4 21 1
2

2 2 2 1

882 0,
(1 )m m m

Da a aβ ε
β β β τ

− − − =
+

                       (10) 

where ma is the amplitude corresponding to the extremum of distribution Eq. (9) and 

m  is the index number of the extremum. The number of real roots of Eq.(10) is either 

one or three for different parameters, which represents the unimodal distribution and 

the bimodal distribution of the amplitude, respectively. This effect means a type of 

stochastic bifurcation will take place. It is necessary to note that the transitions 

between the unimodal and the bimodal stationary probability density are also referred 

to as the noise-induced transitions, and stochastic bifurcation discussed here is closely 

connected to the noise induced transition [24]. 

In the parameter plane of 1D and 1τ , Fig.2 (a) displays the bifurcation graph of the 

system (5) from the analysis of Eq.(10) with parameters 0.14ε = − , and 1 2 1.0β β= = , 

The stationary amplitude distribution is bimodal in the tinted region and unimodal in 

the colourless region. The lines 1l and 2l  represent the appearance and disappearance 

of one of the maxima of ( )p a  which bounds the region corresponding to stochastic 

P-bifurcation. Increasing 1τ , the bimodality region will shift to larger values of 1D  

and will become wider. The numerical solutions of the oscillator Eq.(1) could be 

obtained by order-2 stochastic Runge-Kutta algorithm [25] with the initial conditions 

0 0, (0) 0.2, (0) 0.1t x x= = =
i

, take the parameter 0 0.1β = and the time step 0.01tΔ =  

in numerical calculations. As 2 2( ) ( ) ( )a t x t x t= +
i

, then the stationary probability 
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density function ( )p a  can be obtained by Monte-Carlo simulation method with 

simulation data length 710N = . With parameters 1 0.5, 0.14,τ ε= = − 1 2 1.0β β= =  we 

demonstrate the figure of stationary probability density for amplitude versus different 

noise intensity 1D  in Fig.2 (b). One can observe that the amplitude distribution has 

only one maximum situated in the vicinity of zero when the noise intensity is small. 

As 1 0.0182D ≈ (see a point A  in Fig.2 (a)), a transition from a unimodal to a 

bimodal distribution occurs, and for 1 0.03D ≈ (the point B in Fig.2 (a)) the second 

stochastic bifurcation will appear. The amplitude distribution becomes unimodal 

again, but its maximum is shifted toward larger amplitude values, as curve 3 in Fig.2 

(b) depicts. 
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Fig.2. (Color online) Stochastic P-bifurcations in the Duffing–Van der Pol oscillator [Eq.(1) 

and Eq.(5)]. (a). Bifurcation diagram of the system (5) in the parameter plane 1 1( , )D τ  for 

1 20.14, 1.0ε β β= − = = . Point A and point B are intersection points of the horizontal dash line 

1 0.5τ =  and 1l , 2l , respectively. (b). Stationary probability density of amplitude for 

1 0.5, 0.14τ ε= = − , 1 2 1.0β β= =  and different values of noise intensity. The solid lines denote the 

algebraic calculations using formula Eq.(9), whereas the normalization constant N  is defined 

numerically; The circles represent the numerical solutions for the oscillator Eq.(1). 

Additionally, fix 1 0.05D = , 1 2 1.0β β= = , we consider the influence of noise 

correlation time on stochastic P-bifurcation. The bifurcation diagram of the system (5) 

in the parameter plane 1( , )ε τ  is given in Fig.3 (a). Similar discussions as Fig.2 (a) in 

previous words, the stationary amplitude distribution is bimodal in the tinted region 

and unimodal in the gap region. The lines 3l  and 4l  are boundaries of the tinted 

region, which mean stochastic P-bifurcations. Decreasing the value ofε , the bimodal 

region shifts to smaller values of 1τ  and becomes narrow. If ε  is further decreasing 
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(e.g., for 1 0.155ε ε< ≈ − ), then the bimodality region does not exist any more and P- 

bifurcation can not be observed for any correlation time. For the fixed noise intensity 

1 0.05D =  and parameter 0.11ε = − , Fig.3 (b) shows the Stationary probability 

density of amplitude with different values of correlation time 1τ . In this case, there are 

two attractors in the deterministic system, see Fig.1. For small correlation time (below 

the point C in Fig.3(a)), the amplitude distribution has only one peak, as curve 1 in 

Fig.3(b) shows, and for 1.72cτ ≈ , a transition from a unimodal to a bimodal 

distribution occurs which can be found in curve 2 of Fig.3(b). Additionally, it could be 

worth noticing that the Stationary probability density ( )p a  keeps bimodal as 1τ  

increases ( 1 cτ τ> ). However, value of the peak correspond to lager amplitude become 

very small if the correlation time is large (e.g., for 1 6.0τ > ), as curve 3 in Fig.3(b) 

shows. The phase trajectory visits more and more frequently the regions close to the 

origin, and the nonlinearity of the system becomes weak. 
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Fig.3. (Color online) Stochastic P-bifurcations in the Duffing–Van der Pol oscillator [Eq.(1) 

and Eq.(5)] for 1 1 20.05, 1.0D β β= = = . (a). Bifurcation diagram of the system (5) in the 

parameter plane 1( , )ε τ . Point C is the intersection point of the vertical dash line 0.11ε = − and 4l . 

(b). Stationary probability density of amplitude for 10.11, 0.05Dε = − =  and different values of 

correlation time. The solid lines and the circles have the same meanings as Fig.2 (b). 

B. The case of multiplicative and additive colored noises 

With 1 20, 0D D= ≠  The random noisy oscillator will be reduced to a 

Duffing–Van der Pol system excited by the multiplicative noise, and the stationary 

probability density function due to Eq.(7) for amplitude can be obtained as  
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2 41
1 24( ) exp ,

32
L a ap a Na

L

ε β β+ ⎡ ⎤−= ⎢ ⎥
⎣ ⎦

                         (11) 

where 2
2

24(1 4 )
DL

τ
=

+
, and N  is a normalization constant. 

Let ( ) 0p a =
i

, the extrema of the distribution Eq.(11) are the roots of 

4 21

2 2

2 8( ) 0.m m
La aβ ε

β β
+− − =                             (12) 

The real positive root of Eq.(12) is 
2

1 1
2

2 2 2

8( )Lβ β ε
β β β

++ + for Lε > − , and then 

the probability density function in Eq.(11) has a maximum [curve 2 in Fig.4(a)]. With 

Lε ≤ −  there are two real positive roots of Eq.(12), and the probability density ( )p a  

has the minimum and maximum respectively, whose shape is similar to a crater, as 

curve 1 in Fig.4(a). Thus, a transition from a crater-like density to a unimodal density 

are observed, which can be defined as a type of P-bifurcations and this is completely 

different from the case of additive noise. It should be noticed that Eq.(11) is an 

singular integral which is singular at 0a = for Lε < − . However, on the basis of the 

convergence criterion of singular integral, we can find Eq.(11) is integrable in the 

condition of 2Lε > − . For 0.01ε = −  the bifurcation diagram of the system (5) in 

the parameter plane 2 2( , )Dτ  is given in Fig.4 (b), where in region II, the stationary 

amplitude is crater-like distribution, and region I represents the unimodal distribution. 

The line 5l  denoted the boundary of region I and region II corresponding to 

stochastic P-bifurcations.  
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Fig.4. (Color online) Stochastic P-bifurcations in the Duffing–Van der Pol oscillator excite 

by multiplicative noise for 0.01ε = − . (a). Stationary probability density for 2 1 20.5, 0.1τ β β= = =  
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and different 2D . (b). Bifurcation diagram of the system (5) in the parameter plane 2 2( , )Dτ . The 

line 5l  is the boundary of region I and region II.  

If 1 20, 0D D≠ ≠ , system (1) will be driven by a combination of multiplicative 

and additive colored noises.  

According to Eq.(7) and Eq.(8), we have 
2 2 2 4 2

1 2 2( ) ( ) exp (4 2 ) / 32 ,Qp a Na K La La Ka La Lβ β β⎡ ⎤= + + −⎣ ⎦       (13) 

where 2 2 31 2
1 22 2

1 2

, , (8 2 ) /16 .
1 4(1 4 )

D DK L Q L KL K Lε β β
τ τ

= = = − −
+ +

 

Similarly, let ( ) 0p a =
i

, the extrema of the distribution Eq.(13) are the roots of the 

equation 
6 4 2 0,m m ma ha ma n− − − =                                (14) 

with 
3 3 2

1 1 2
2

2 2 2

2 16 8 2 8, , .QL L KL K Kh m n
L

β β β
β β β

+ + += = =  

Taking 1 2 1 2 1 20.01, 0.1, 0.01, 0.01, 5.0, 1.0D Dε β β τ τ= − = = = = = = , the roots of 

Eq.(14) are 0.215, 0.67,1.23, which represent corresponding amplitude of maximum, 

minimum and maximum of the stationary probability density in Eq.(13), respectively, 

as curve 1 in Fig.5(a) shows. The curve 2 in Fig.5 (a) is unimodal for 2 0.1D = and 

other parameters are the same as curve 1. Thus, there will be a stochastic 

P-bifurcation when the multiplicative noise intensity 2D  increases from 0.01 to 0.1. 

Fix 1 2 1 2 10.01, 0.05, 0.005, 0.06, 2.0D Dε β β τ= − = = = = = , the stationary amplitude 

distribution in Eq.(13) with different 2τ  are shown in Fig.5(b), where ( )p a  is 

unimodal for 2 0.5τ = , see curve 1 in Fig.5(b). As 2τ  increases to 1.0, the stationary 

probability density function will be bimodal, it turns to unimodal if 2 1.5τ = , as 

shown in Fig.5(b) curve 2&3. In other words, twice stochastic P-bifurcations take 

place when multiplicative noise correlation time 2τ  increases. Therefore, the type of 

stochastic P-bifurcations induced by multiplicative noise will vary when the system is 

excited by additive noise as well. For instance, a transition between crater-like density 

and a unimodal density will be changed as a transition between unimodal density and 

a bimodal density. Moreover, according to the number of the real roots of Eq.(14), 

bifurcation diagrams in different planes can be obtained but we omit here. 
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Fig.5.(Color online) Stationary probability density for 0.01ε = −  and appropriate parameters. 

The solid lines denote the algebraic calculations using formula Eq.(13), whereas the normalization 

constant N  is defined numerically; The circles represent the numerical solutions for the 

oscillator Eq.(1) by the same algorithm as Fig.1(b). (a) 1 2 1 1 20.1, 0.01, 5.0, 1.0Dβ β τ τ= = = = = , 

different values of 2D ;(b) 1 2 1 2 10.05, 0.005, 0.06, 2.0D Dβ β τ= = = = = , different values of 2τ . 

It is worthy to note that the averaged model Eq.(5) does not reflect the properties 

of the original system completely for large values of noise intensity and correlation 

time. However, it can be found that the analytical solutions agree well with the 

numerically results from figures we presented in this paper. Additionally, the 

bifurcation diagrams are related not only to the averaged model, but also to the 

original system and do not depend on the parameter of anisochronicity 0 0β ≥ . Here 

we point out that one can find appropriate parameter ranges for 1 2 1 2 1 2, , , , , ,D Dε β β τ τ  

from expressions of the stationary probability density ( )p a (see Eq.(9), Eq.(11), 

Eq.(13)). 

Now we apply the numerical algorithm in [26,27] to calculate the largest Lyapunov 

exponent of the initial system Eq.(1) and the averaged system Eq.(5) numerically for 

the additive noise case with 1 20.14, 1.0ε β β= − = = , which are shown in Fig.6. The 

figures show the top Lyapunov exponent 1λ remains negative for 

any 1 1( , ) (0 0.05,0 4.0)D τ ∈ ∼ ∼ , so the stochastic bifurcation can not be found based 

on the sudden change of sign of the largest Lyapunov exponent. Additionally, 

P-bifurcation is nearly independent from 0β , while for D-bifurcation this parameter is 

crucial, i.e. P-bifurcation is not necessarily accompanied by D- bifurcation.  
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Fig.6. (Color online) The largest Lyapunov exponent 1λ  in the 1 1( , )D τ  plane of the 

additive noise case for 1 20.14, 1.0ε β β= − = = , respond to Fig.2(a). (a) The largest Lyapunov 

exponent of the original system Eq.(1) ; (b) The largest Lyapunov exponent of the averaged 

system Eq.(5). 

IV. Concluding remarks 

In this paper, we have presented results about stochastic bifurcations in a 

self-sustained bistable Duffing-Van der Pol oscillator with additive and/or colored 

noise. By applying a method of stochastic averaging based on a perturbation 

technique, we obtain the stationary probability density function of amplitude for the 

noisy oscillator. Two types of qualitative change are found, namely, a transition from 

unimodal density to a bimodal density and a transition from crater-like density to a 

unimodal density. The stochastic bifurcations based on the qualitative change of 

stationary measures are observed by discussing the extrema of the distribution. 

Bifurcation diagrams of the system in various parameter planes are obtained, and 

from which we point out that not only system parameters and noise intensity can be 

treated as the bifurcation parameter, but also the change of noise correlation time 

could induce stochastic bifurcations. Besides, the investigations show the effects of 

the multiplicative noise are different from that of additive noise. In addition, the 

D-bifurcation via the change of the largest Lyapunov exponent appears not to agree 

well with the results of P-bifurcation, and we remark that there is no direct connection 

between these two stochastic bifurcations.  
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