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Spiral Defect Drift in the Wave Fields of Multiple Excitation Patterns

Sumana Dutta and Oliver Steinbock*
Florida State University, Department of Chemistry and Biochemistry, Tallahassee, Florida 32306-4390

Spiral waves in excitable systems decay to drifting defects if forced by high-frequency wave trains.
Using the Barkley model, we analyze the drift velocity in planar wave trains as a function of wave
frequency. Within two antiparallel, planar wave trains of equal frequency a defect is pushed into the
collision region where it stops. Within two circular wave fields, however, it continues its drift in a
direction perpendicular to the axis connecting the pacemakers. Depending on the forcing frequency
and the initial position, this motion occurs either away from or towards the pacemaker axis. Three
circular wave fields can be used to position the defect at a unique point close to the center of the
pacemaker triangle. The results are also observed in experiments with the Belousov-Zhabotinsky
reaction.
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I. INTRODUCTION

Excitation waves are a widespread phenomenon in non-
linear systems and continue to attract scientific inter-
est, especially in the context of reaction-diffusion media.
Classic examples include propagating reaction zones on
catalytic surfaces [1], spreading messenger signals in ag-
gregating microorganisms [2], and propagating action po-
tentials in the human heart [3]. Recent studies also iden-
tified excitation waves as a self-defense mechanism of bee
populations [4] and the cause of traveling color bands in
the skin of certain mice [5]. All of these wave phenom-
ena show essentially constant front velocities and pulse
shapes. In addition, interference phenomena are absent
as colliding waves annihilate similar to wildfire fronts.
In spatially two-dimensional systems, excitation waves

can organize rotating vortices in which the excitation
front is an Archimedean spiral of constant pitch. In
these large-scale patterns, the spiral tip is the primary
pacemaker. Its frequency as well as its trajectory (e.g.,
circles and epicycles) are characteristic for a given sys-
tem, although some systems can show multistable vortex
solutions [6, 7]. The spiral tip is also a phase singularity
and as such has certain particle-like characteristics [8].
Furthermore, the creation and annihilation of spirals oc-
curs via counter-rotating pairs [9]. Alternatively, spirals
may vanish at the system boundaries [10, 11].
Over the past decades numerous approaches have been

explored to reposition spiral tips and to induce their an-
nihilation [12–15]. These efforts are motivated partly by
the hope to remove rotating action potentials in the hu-
man heart where they are believed to cause tachycar-
dia and fibrillation [3, 16, 17]. One approach employs
spatially homogeneous variations of system parameters
to induce resonant or entrained drift of the spiral tip
[18, 19]. This method and related feedback algorithms
[20] have been demonstrated primarily for the photosen-
sitive Belousov-Zhabotinsky (BZ) reaction [21]. Other
approaches involve parameter gradients (e.g., in temper-
ature) [22] and vectorial perturbations such as applied
electric fields [23]. Unfortunately, it is technically chal-

lenging or impossible to apply these methodologies to the
human heart.
A technically simpler but dynamically more indirect

way to induce spiral drift was suggested by the Pushchino
group in the mid 1980s [13, 14]. In their studies, spiral
waves are perturbed by periodic wave trains of frequen-
cies higher than the frequency of the spiral. A simple way
to generate these wave trains is to trigger concentric tar-
get patterns from small oscillating or periodically forced
regions. With every collision, the demarkation line be-
tween the spiral arm and the target waves shifts towards
the “slower” spiral tip. When the forcing waves reach
the spiral core region, the tip fails to complete its orbit
and deteriorates to a mere defect of the growing target
pattern. In contrast to the non-translating spiral tip,
the defect undergoes translation within the surrounding
pattern. In numerical simulations and kinematic mod-
els, Krinsky et al. showed that this drift can move the
defect away or - perhaps more surprisingly - also closer
to the fast pacemaker [24]. This drift phenomenon has
also been observed in the BZ reaction and in experiments
involving colonies of amoeba and slices of cardiac tissue
[25–29]. Notice that after cessation of the wave forcing
all non-annihilated defects regrow into large spiral wave
patterns.

Here we revisit spiral wave defects and their drift dy-
namics using the Barkley model [30] and experiments em-
ploying the autocatalytic BZ reaction. We show that the
dependence of the drift direction on the forcing period
can be more complex than reported earlier. In addition,
we analyze the drift dynamics in the presence of several
pacemakers and establish some simple rules for predict-
ing defect drift along the collision regions between those
trigger sites.

II. MODEL

For our simulations we numerically integrate the
Barkley model
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FIG. 1: Simulation of spiral defects in planar wave trains.
The frames show the superposition of several snapshots of the
V -concentration pattern obtained during approximately one
rotation of the defect. The time between subsequent snapshot
is 1.5 (dimensionless time units) and the wave from the first
snapshot in each frame is labeled as “1”. The forcing waves
travel in +y direction. The frequency ratio between the forc-
ing waves and the unperturbed spiral wave is 0.80 in (a) and
0.95 in (b). The defect drifts towards the upper left in (a)
and towards the (lower) right in (b).
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In these coupled reaction-diffusion equations U and V
are time-dependent variables. We focus strictly on the
case of equal diffusion coefficients (DU = DV = 1). Also
the parameters a = 1.1, b = 0.18, and ǫ = 0.02 are
kept constant. The latter values induce excitable point
dynamics around a stable steady state. In this system,
spiral waves exist and their tips rotate along circular tra-
jectories. These dynamics are referred to as rigid rota-
tion. We identify the spiral tip as the intersections of the
u=0.5 and v = a/2 − b = 0.37 isoconcentration curves.
Our simulations employ Euler integration with a time
step of 5 × 10−3. The Laplacians are computed using
the five-point stencil. The system is surrounded by Neu-
mann boundaries and resolved with at least 250 × 250
but typically 500 × 500 grid points at a grid spacing of
0.2. Target patterns and planar wave trains are initiated
by periodically increasing the value of the activator U
within small regions and thin stripes, respectively.

III. COMPUTATIONAL RESULTS

Figure 1 shows two typical examples of spiral defects
being forced by planar waves traveling in +y direction.
The images are the superposition of six (a) and seven
(b) successive V -concentration snapshots obtained dur-
ing approximately one rotation cycle of the defect. They

are computed as the local maxima of these pattern sets
and encode the wave positions as bright regions. The
most striking features in Fig. 1 are the dynamical quies-
cent (dark) spiral cores. The defect rotates around these
core regions in counter-clockwise direction. The figures
also show that the defects tend to create a shock-like line
of V-shaped wave segments. Each of these cusps forms
in collisions between the round spiral arm and the planar
waves.
As described and analyzed in earlier studies, the wave-

induced motion of a spiral defect is caused by the re-
peated collisions between the defect tip with the forcing
wave fronts. Consequently, the ratio between the period
of free spiral rotation Tspiral and the period of the forcing
wave train Tforce is a crucial parameter. In Figs. 1(a,b)
this ratio equals 0.8 and 0.95, respectively. Accordingly,
the defect tip in (a) undergoes essentially a head-on col-
lision with the planar front, while in (b) it can nearly
complete its rotation cycle.
Krinsky et al. studied defect motion for the FitzHugh-

Nagumo model and suggested several kinematic models.
The simplest model describes the drift trajectory as a
chain of circular but incomplete spiral tip orbits [13]. The
radius of the circular arcs R and the corresponding angu-
lar frequency ωspiral = 2π/Tspiral are thought to match
the parameters of the free spiral. In this chain, each arc
segment starts in normal direction to the forcing front
during a wave-tip collision and ends in the subsequent
collision.
In this model, the drift velocity and direction follow

from the time Tcol between subsequent tip-wave collisions
and the length and direction of the secant connecting the
start and end point of the corresponding circular arc. A
simple geometric analysis yields

vx =
R (cos(ωspiralTcol)− 1)

Tcol

, (2a)

vy =
R sin(ωspiralTcol)

Tcol

, (2b)

where vx is the average drift velocity along the planar
forcing fronts and vy the average velocity component in
normal direction to the fronts. Negative values of vx
indicate motion away from the spiral arm of the defect,
thus increasing the length of the wave front ending in the
defect. Furthermore, positive values of vy imply that the
defect moves in the direction of the forcing waves. For
instance, the defect in Fig. 1(a), which is pushed towards
the upper left corner, has a drift velocity with vx > 0
and vy > 0. Notice that if vy 6= 0, the collision time Tcol

does not equal the forcing period Tforce. This Doppler
effect is described by the implicit equation

cf (Tcol − Tforce) = R sin(ωspiralTcol). (3)

Figure 2(a) shows the dependence of the drift veloc-
ity on the employed forcing period in our Barkley model.



3

0.6 0.7 0.8 0.9 1
−0.1

0

0.1

0.2

0.3

0.4

T
force

/T
spiral

v x  a
n

d
  v

y
a

−1 −0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

v
x
 T

force

v y T
fo

rc
e

b

FIG. 2: Color online. Spiral defect motion in planar wave
trains computed from numerical simulations. (a) Velocity
components vx (black circles) and vy (red squares) as a func-
tion of the ratio between the periods of the forcing wave train
Tforce and the unperturbed spiral Tspiral. The forcing waves
travel in +y direction. The defects rotate counterclockwise.
(b) Shift in defect position per forcing period obtained from
the same data by graphing vyTforce versus vxTforce. Notice
that drift into three different quadrants is observed.

The forcing period is rescaled by dividing Tforce by the
rotation period Tspiral of freely rotating spiral waves. No-
tice that period ratios below approximately 0.55 do not
yield stable planar wave trains in this system. This limit
is due to the absolute refractory zone in the wake of exci-
tation waves. In Fig. 2(b), the same data are replotted in
terms of the distances covered by the defect during one
forcing cycle. Both graphs show that defect drift occurs
into the quadrants I, II, and IV of the Cartesian plane.
Defect drift with both negative vx and negative vy values
(quadrant III) does not exist for the investigated set of
model parameters.

The results in Fig. 2 cannot be described by the simple
kinematic model in Eqs. (2) because its specific construc-
tion of the tip trajectory does not allow for drift into three
quadrants. On the contrary, in the model both compo-
nents of the average drift velocity change their sign only
once under variation of the forcing period. Moreover, we
conclude that the strongly non-circular shape of the data
curve in Fig. 2(b) cannot be described by any model in-
volving simple chains of circular arc segments. It is likely
that the primary cause of this discrepancy lies in the
positive vx values found for period ratios Tforce/Tspiral

between approximately 0.9 and 1.0. Notice that under
this slow forcing the defect tip never fully collides with
incoming wave front [see Fig. 1(b)]. The effect of the in-
coming wave on the tip is rather caused by the V-shaped
wave cusp. Due to its high curvature, this cusp accel-
erates rightwards and thus could cause the unexpected
rightward drift of the defect tip. This suggests that the
drift behavior computed in this study requires kinematic
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FIG. 3: Color online. Defect drift in the wave field of two pla-
nar wave trains. The defect stops within the collision zone of
the planar waves. (a) V -concentration pattern of the halted
defect with its superposed (cyan) trajectory. The arrows in-
dicate the direction of wave propagation and defect drift. (b)
Time evolution of the x (red/ dark gray) and y (green/ light
gray) coordinates of the defect tip. Forcing period Tforce = 9.5
and Tforce/Tfree = 0.8.

models that describe the drift trajectory with curves of
non-constant radius. However, such modeling efforts are
not further pursued here as they are beyond the scope of
this work.

The primary focus of this study is the investigation
of spiral defect dynamics in systems with multiple wave
sources. The simplest example involves two planar wave
trains of identical frequency that emanate from parallel
line sources. Such wave trains collide along a stationary
stripe located between the lines of wave initiation. For
forcing periods that induce spiral defect drift with vy > 0,
any defect will move into the collision region where it ex-
periences forcing from both wave trains. This situation is
illustrated in Fig. 3(a). Here downward (upward) propa-
gating planar waves are initiated along the upper (lower)
system boundaries. The defect is initially located in the
lower wave field and forced to drift towards the upper
left corner of the system. This motion brings the defect
into the collision region where it stops. The temporal
evolution of the corresponding tip coordinates are shown
in Fig. 3(b). The data consist of three distinct phases.
Initially the planar wave fronts have not yet reached the
spiral tip and the tip is stationary. The waves reach the
tip at t ≈ 100 and the expected steady drift commences.
Around t = 600 the defect reaches the collision zone and
its motion ceases.

This phenomenon can be understood qualitatively by
considering the spatial symmetry and temporal aspects
of the two-wave forcing process in Fig. 3. The stopped de-
fect experiences successive perturbations from collisions
with upward and downward moving fronts. The time in-
tervals between these collisions are constant if the defect
is located exactly on the collision line of the two wave
trains. For such a position, subsequent collisions induce
trajectory segments that are the mirror image of each
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FIG. 4: Color online. Two representative examples of defect
drift in the wave field of two circular wave trains. (a,c) V -
concentration pattern of the spiral defect with its superposed
(cyan) trajectory. The arrows indicate the direction of the
defect drift. The smooth (yellow) curve in (a) is a logarithmic
spiral. (b,d) Corresponding time evolution of the x (red/ dark
gray) and y (green/ light gray) coordinates of the defect tip.
The target patterns have frequencies of Tforce = 9.5 in (a,b)
and 7.0 in (c,d). Accordingly Tforce/Tspiral is 0.8 in (a,b) and
0.59 in (c,d).

other. Consequently no defect motion along the collision
line can occur. Moreover, any deviations away from the
line (i.e., in upward or downward direction) are counter-
acted by the normal (single source) drift mechanism.
The timing between subsequent collision events is al-

tered if the collision line separates two non-planar wave
trains of equal frequency. A simple example of such a
scenario is given by two target patterns (Fig. 4). Here
circular fronts collide and create V-shaped cusp patterns
along the system’s horizontal midsection. It was noted
elsewhere [25] that defects in (single) circular target pat-
terns drift along trajectories that are well described by
logarithmic spirals. This feature is also found in Fig. 4(a)
where the initial drift trajectory (cyan line of loops) has
been fitted to a logarithmic spiral (smooth yellow curve).
More importantly, we find that the defect does not stop
once it reaches the collision zone between the two target
patterns. It rather performs a sharp turn and continues
its motion along the collision line.
We observed that the drift direction in the collision

zone depends on the forcing frequency. To illustrate this
finding, Fig. 4 shows two examples. In (a,b) the target
patterns have a relatively long period with Tforce/Tspiral

= 0.8, while in (c,d) forcing is fast with Tforce/Tspiral =
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FIG. 5: Color online. Drift trajectories (a,b) and correspond-
ing x coordinates (c,d) of spiral defects with different initial
positions. The forcing waves are generated by two target pat-
terns analogous to the situation shown in Fig. 4. The wave
periods of the target patterns are Tforce = 9.5 in (a,c) and 7.0
in (b,d). For the lower period, the system shows one stable
attractor ‘s’ at x=50 and two repellers ‘u’ at approximately
x=20 and 80. For the higher period, the central point is a
repeller. Left and rightward diverging trajectories are plot-
ted in blue and black (darker lines in grayscale), respectively,
while attractor-bound curves are shown in red and magenta
(lighter lines in grayscale).

0.59. The corresponding defect motion in the collision
zone causes a decelerating drift towards the middle of
the system in (a,b) and an accelerating, rightward mo-
tion towards the system boundary in (c,d). Notice that
slow forcing (a,b) pushes the defect close to the line con-
necting the two target pacemakers (x = 50 in Fig. 4).
This location appears to be a stable attractor for the
defect.

As mentioned above, all defect positions along the sta-
tionary collision line are stable against perturbations that
displace the spiral tip away from this line. The observed
drift along the collision line, which was absent in the case
of forcing with planar waves, must be due to the differ-
ent time intervals between wave-defect collisions as well
as the different directions of the forcing fronts. For in-
stance, for the case shown in Fig. 4(c,d) the defect first
collides with an upward moving wave (lower target pat-
tern), then shortly after with a downward moving wave
(upper target), and finally undergoes collision-free mo-
tion prior to repeating the cycle. The latter time interval
is the longest in this three-step cycle. Also notice that
the timing and orientational aspects of this forcing cycle
change as the defect is pushed outward. Simulations on
very large grids show that the drift velocity approaches
the velocity expected for forcing in a single planar wave
train. The latter effect is clearly caused by increasing
angles between the colliding fronts in the V-shaped cups.
For large distances from the pacemaker pair, this angle
approaches π and, hence, the case of defect drift in single
planar fronts.
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FIG. 6: Color online. Spiral defect drift in the wave field of
three circular wave trains. (a) The circular patterns (blue) are
the superposition of V -concentration patterns computed dur-
ing a single forcing period. The collision regions between the
three target patterns appear as dark bands. The spiral defect
has the lowest V -values and is found around the coordinates
(x, y) = (40, 45) (red disk). The defect reached this position
along a trajectory shown as a continuous (yellow) line. (b)
Corresponding time evolution of the x (red/ dark gray) and
y (green/ light gray) coordinates of the defect tip. The three
target patterns have identical frequencies and create a forcing
period of Tforce = 7.0 (Tforce/Tspiral = 0.59).

Further investigations reveal that the direction of the
defect drift within the collision zone depends not only the
forcing period but also on the exact position of the de-
fect within this region. Figure 5 summarizes the motion
of several spiral defects for the fast and slow forcing sce-
narios that we already analyzed in Fig. 4. We find that
for high-frequency pairs of target patterns (Fig. 5(a,c))
the motion is organized by an attractor at x=50 and two
repellers around x=20 and 80. If the defect enters the
collision zone at a point located between the repellers, it
is guided towards the attractor. However, defects out-
side this interval are pushed away from the attractor
and consequently annihilate at the system boundary. For
slow forcing (Fig.5(b,d)), the attractor does not exist and
only outward motion is observed. The specific frequency-
dependent existence of these fixed points suggests that
the attractor might be generated in a subcritical pitch-
fork bifurcation. However, we have not yet systematically
explored this interesting feature.

In the following, we consider the case of defect drift in
the wave fields of three target patterns. Like in the earlier
case, the target patterns have identical frequency. This
case is interesting only for conditions that cause outward
motion under forcing with two target patterns as inward
motion establishes a stable position along one of the axes
connecting pairs of pacemakers. The latter situation is
obviously identical to the generic case in Fig. 4(a,b). For
motion away from this axis, we initially observe behavior
analogous to the dynamics in Fig. 4(c,d). However, the
combined wave fields of the triple target pattern have a
unique point in which waves from all three wave sources
collide. This “triple” point is also the terminus of the

three collision lines between target pairs and the ques-
tion arises whether a spiral defect can be parked at this
location in a stable fashion.
A typical example of the three-pacemaker scenario is

shown in Fig. 6. Here, the wave fields are visualized by
superposing V -concentration patterns computed during
one forcing period. The individual pacemakers are lo-
cated in the upper left corner, the lower left corner, and
at the midpoint of the right system boundary. The defect
trajectory is superposed as a continuous line. It shows
that the defect first moves out of the wave field created
by the lower left pacemaker, then travels rightwards un-
der the influence of the two target patterns in the left half
of the system, and finally stops due to interactions with
all three wave fields. In Fig. 6(a), the collision lines are
darker (blue) stripes and the final location of the defect
can be discerned from a disk shaped (red) region that
corresponds to the spiral core. The temporal evolution
of the Cartesian coordinates of the defect in Fig. 6(b)
indicate that this position is stationary.

IV. EXPERIMENTAL METHODS

In the second half of this Article, we show that the
defect dynamics found in numerical simulations can also
be observed in experimental systems. Our specific ex-
periments use the chemical Belousov-Zhabotinsky (BZ)
reaction, which is a frequently studied excitable reaction-
diffusion system [31, 32]. The BZ reaction involves the
bromination of an organic compound (here malonic acid)
by bromate in acidic solution. Its key step is the auto-
catalytic, and hence nonlinear, production of bromous
acid. We prepare the BZ reaction with the catalyst fer-
roin/ferriin. The latter redox couple undergoes striking
color differences during each excitation cycle, which al-
lows for the optical detection of the excitation waves.
Our experiments employ thin layers of the reaction me-

dia that are either contained in a gel or liquid phase. In
either case the layer height is 2.0 mm. We found no evi-
dence of undesired hydrodynamic flows. The experiments
with single forcing patterns were carried out in agarose
gel (0.8 % weight/volume). Disregarding the bromina-
tion of malonic acid, the initial reactant concentrations
are [H2SO4] = 0.16 mol/L, [NaBrO3] = 0.04 mol/L,
[malonic acid] = 0.04 mol/L, and [Fe(phen)3SO4] =
0.5 mmol/L (concentration set I). In the case of mul-
tiple forcing patterns and to decrease the time of the
experiments, we used an alternative composition, which
we refer to as concentration set II. The initial reactant
concentrations in liquid phase are [H2SO4] = 0.41 mol/L,
[NaBrO3] = 0.3 mol/L, [malonic acid] = 0.2 mol/L, and
[Fe(phen)3SO4] = 3.75 mmol/L. The solutions are pre-
pared in nanopure water (18 MΩcm) and all experiments
are carried out at room temperature.
The chemical waves in this system are monitored based

on their spatio-temporal transmittance patterns. For
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this purpose, the sample is illuminated with white light
(Fiber-Lite PL-800) and the transmitted light is detected
by a charge-coupled device camera mounted over the re-
action layer. This method utilizes the color difference
between the chemically reduced rest state (red) and the
oxidized, excited state (blue). The position of spiral de-
fects are measured from sequences of video frames by
locating the point of highest curvature at the open wave
ends.
For the creation of high frequency wave patterns, we

modify the system dynamics in small regions of the ac-
tive BZ layer. This modification is accomplished by in-
jection of a small drop (∼ 1 µL) of sulfuric acid (1 mol/L)
or BZ solution with a higher bromate concentration
(0.3 mol/L). The latter (former) perturbation is used for
gel (liquid) systems. Typically the affected regions de-
velop spiral waves. These spirals have a higher frequency
than the spirals and target patterns in the unaffected sur-
roundings and hence quickly create a large wave pattern.
Within this pattern, we create defect pairs by inserting
a microscope cover slip parallel to the wave fronts. This
thin piece of glass is a physical boundary and, hence, im-
penetrable to the traveling waves. After blocking at least
one wave front, the obstacle is removed, which nucleates
the desired defect pair. Notice that the distance between
the studied defects and the injection site is at least 1 cm.
Since our experiments last less than one hour, the system
around the defect is not affected by diffusion of injected
solution but only by the altered frequency of chemical
waves generated in this region.

V. EXPERIMENTAL RESULTS

Figure 7 shows a sequence of snapshots recorded for a
typical example of defect drift in the BZ system. The re-
action is carried out in a thin gel layer and for the concen-
trations specified in set I. The bright bands correspond to
regions in which the catalyst is predominantly oxidized.
The actual excitation pulse is located at the leading edge
of these bands (not measured) where the concentration
of the activator bromous acid is expected to be high. In
the wake of the bright bands, the system is refractory due
to a high concentration of the inhibitor bromide. The ar-
row in Fig. 7(a) indicates the initial position of the defect.
The drift trajectory is superposed as white curves that
extend from the defect’s initial location to its position in
the given image frame. The forcing waves have a period
of T force = 186 s while free spirals in this system have a
period of T free = 325 s (T force/T free=0.57). The upward
traveling waves have a low front curvature and force the
defect in a nearly constant direction. Notice that the
defect in Fig. 7 rotates in counter-clockwise direction.
As expected our experiments show that the drift veloc-

ity and the drift direction depend strongly on the period
of the forcing wave train. The corresponding results are
summarized in Fig. 8. The data are obtained from defects
drifting in wave trains that have low front curvature and

a b

dc

FIG. 7: Defect drift in a thin layer of the Belousov-
Zhabotinsky system. The time between subsequent snap-
shots is 940 s. The forcing waves travel in upward direction.
The frequency ratio between the forcing waves and the un-
perturbed spiral wave is 0.57. The defect drifts towards the
upper right corner tracing the white trajectories superposed
on frames (b-c). The white arrow in (a) marks the initial po-
sition of the defect. The initial reactant concentrations are
listed in the text as set I. The field of view is 2.44 × 1.83 cm2.

constant periods. Notice that the rotation period of the
free unperturbed spiral equals T spiral = 325 s. We suc-
cessfully varied the forcing period down to approximately
170 s. Attempts to trigger waves with even shorter pe-
riods failed and usually resulted in a “thinning” of the
wave train by self-elimination of every second wave pulse.
Notice that the existence of such a high-frequency limit is
typical for excitation waves and related to their absolute
refractory zone [33]. Furthermore, Fig. 8 shows that the
sign of the velocity component vy changes once over the
range of accessible forcing periods. As in Fig. 2(a), neg-
ative values of vy (red squares) indicate a defect drift
against the forcing wave motion. The vx component
(black circles in Fig. 8), however, changes sign twice in
the range of possible forcing periods. The latter finding is
in good qualitative agreement with the numerical results
in Fig. 2.

In order to understand defect dynamics in the wave
field of multiple target patterns, we performed experi-
ments with more than one region of high-frequency wave
generation. These regions are created by careful injec-
tion of sulfuric acid into several, well separated sites of
the active system. Moreover, all of the following exper-
iments employ a BZ medium with initial concentrations
specified by the parameter set II. The rotation period of
unperturbed spiral waves in this system is 18.0 s. For this
excitable medium, Fig. 9 shows an example of defect drift
under the influence of two forcing patterns. The patterns
have an almost identical frequency of 10.0 s with right-
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FIG. 8: Color online. Drift velocity of spiral defects in single,
near-planar wave trains as a function of the forcing period.
The values of vx (black open circles) describe the velocity com-
ponent along the forcing wave fronts, while vy (red squares)
is the velocity component perpendicular to the forcing waves.
The experiments were carried out for reactant concentrations
described by set I.

ward moving (three to five o’clock direction) waves in the
left portion of the images and leftward traveling waves in
the right third. In Fig. 9(a) a single defect is located
in the upper left portion of the image (white arrow in
Fig. 9(a)). Its sense of rotation is clockwise. During the
course of about two minutes, the defect is pushed into
the collision zone of the two high-frequency wave pat-
terns. In Figs. 9(b-d) the drift trajectory is superposed
as white curves. Notice that each curve extends only
up to the location of defect in the corresponding image.
Once the defect has reached the collision zone, its drift
velocity and direction change. As shown in Figs. 9(c,d),
the defect continues its motion within the collision zone
in a downward direction. This direction is marked by
increasing angles between the colliding, high-frequency
fronts. The drift scenario in Fig. 9 is therefore compara-
ble to the simulated outward motion in Fig. 4(c,d).

Our results have shown that longer forcing periods can
cause a sign change in the vx component of the drift ve-
locity that results in a reversed drift direction of defects
perturbed by two curved wave trains (see Fig. 4(a,b)).
This situation is illustrated in Fig. 10 where the forcing
period is approximately 12 s and the sign of the vx com-
ponent reversed with respect to Fig. 9. Notice that the
defect is rotating counter clockwise. The image sequence
in Fig. 10 shows that the defect (marked by a white arrow
in (a)) is pushed into the collision zone where it abruptly
changes direction. In contrast to Fig. 9, the defect then
moves into a region of decreasing angles between the col-
liding fronts.

a b

c d

FIG. 9: Defect drift in the wave field of two pacemakers.
The forcing waves have a period of Tforce = 10 s. The arrow
in (a) indicates the initial position of the defect. The super-
posed white curves (b-d) show the drift trajectory. Images are
recorded at an interval of 122 s. Rotation period of the unper-
turbed spiral: Tspiral = 18 s. Field of view : 6.2 × 4.6 mm2.
The experiments were carried out for reactant concentrations
described by set II.

We also attempted to perform experiments in which
the two forcing wave trains are planar. Based on our sim-
ulations (see Fig. 3), this situation is expected to stop de-
fect drift in the collision zone. While it is very difficult to
prepare this scenario in experiments, we did obtain a few
examples that indeed show this behavior but typically
in complicated wave patterns. One of these experiments
is illustrated in the supplementary information file [34].
The latter also contains data on defect dynamics in the
wave field of two wave trains that differ in period. Un-
der such conditions, the defect is initially pushed into the
collision zone. Due to the frequency differences this zone
is not stationary but shifts towards the lower frequency
side and the defect follows this motion.

Lastly we report defect drift in systems with three
high-frequency wave patterns of approximately equal pe-
riod. Figure 11(a) shows the trajectory of a defect under
such a condition, which consists of (i) a long, slightly
arched initial part, (ii) a sharp right-turn, and (iii) an
essentially stationary orbit (preceded by a small down-
ward correction). These stages correspond to (i) drift in
a single (slightly curved) wave train, (ii) motion along
the boundary of two wave patterns, and (iii) stable ro-
tation at the “triple point” of the three wave patterns.
The latter location is the common end point of the col-
lision lines between the three pairs of wave trains. The
rotation pattern of the defect at this point is unusual in
the sense that each rotation cycle involves three wave-
tip collisions. This feature is illustrated in Fig. 11(b)
which is constructed by image addition of three snap-
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shots recorded at time intervals of approximately one
third of the forcing period. The defect can be discerned
as a triskelion (three-armed “swastika”) in the mid region
of the image. Notice that the two freely rotating spiral
waves in the lower left corner have a strikingly different
structure.

In summary, we have studied the motion of spiral de-
fects in single and multiple wave trains. These defects
form if spirals are exposed to wave patterns with fre-
quencies higher than the rotation frequency of the vor-
tex. The qualitative characteristics of the defect motion
are widely independent of the specific features of the ex-
citable system. They can be summarized as follows: (i)
in planar wave trains the defect moves with a constant
velocity along a straight trajectory. The speed and di-
rection varies with the frequency of the wave train. De-
fects can be attracted into the nucleation region of the
perturbing wave train (vy < 0) but the specific range of
drift directions depends on the system. (ii) Defect motion
in single, circular wave trains traces logarithmic spirals.
Their chirality depends on the rotation sense of the de-
fect and also on the sign of the lateral drift velocity vx.
(iii) Defects in systems with two forcing patterns move
into the collision zone as long as vy > 0. If the forcing
waves are planar, the defect stops close to the collision
line. For curved waves, however, it changes direction and
moves along the collision line. Depending on the forcing
period and its position, the drift occurs in the direction of
either increasing or decreasing angles between the collid-

a b

c d

FIG. 10: Defect drift in the wave field of two pacemakers.
The forcing waves have a period of Tforce = 12 s. The arrow
in (a) indicates the initial position of the defect. The super-
posed white curves (b-d) show the drift trajectory. Images are
recorded at an interval of 200 s. Rotation period of the unper-
turbed spiral: Tspiral = 18 s. Field of view : 6.7 × 5.0 mm2.
The experiments were carried out for reactant concentrations
described by set II.
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FIG. 11: Defect dynamics under the influence of three forc-
ing wave patterns. (a) Trajectory of the spiral defect. (b)
Superposition of three snapshots obtained from the same ex-
periment after the defect reached its final position. The time
between each snapshot corresponds to one third of the forcing
period. The arrow in (b) indicates the final position of the
defect. Field of view : 7.0 × 7.9 mm2. The experiments were
carried out for reactant concentrations described by set II.

ing fronts. In the latter case, the defect settles at a point
close to the axis that connects the two high-frequency
pacemakers. (iv) In systems with three (or more) wave
patterns, the global wave pattern is partitioned into a
corresponding number of basins. In each basin, all points
experience excitation from waves that nucleated from the
same pacemaker. The boundaries of the basins define a
network of collision lines. Defects in such systems can
move to the triple points of this network, which then are
stable attractors.
A potentially interesting complication arises if the sys-

tem has several defects. In this situation, one of the
defects will reach the original collision line first and sub-
sequently alter the shape of the later. This deformation
of the collision line can be discerned in Fig. 4(a), where
the two initially symmetric collision-induced wave cusps
(not shown in the figure), are now offset in vertical direc-
tion by about 10 space units. If there is a second defect
present in the system, it will drift along this new collision
line. Additional work is needed to describe and analyze
the resulting dynamics and asymptotic defect locations.

VI. CONCLUSIONS

Despite this current limitation, wave forcing offers sev-
eral tools for the positioning of spiral waves in specific
regions of an excitable system. These procedures are
unique in the sense that they can be implemented from a
small number of perturbation sites located at the bound-
aries of the system. For instance, if the goal is the an-
nihilation of a vortex at the system boundary, it is suf-
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ficient to create a target pattern from a single point on
the system boundary with a frequency that gives rise to
negative y−component of the drift velocity. Moreover,
two trigger points are sufficient to attract the spiral to
any desired line. Within the appropriate range of forc-
ing frequencies, two and three trigger points allow the
placement of the spiral at a specific point. We believe
that such remote-positioning protocols are also the most
efficient strategy for changing the location of vortices in
three-dimensional systems. Notice that in 3Dmost global
perturbations (e.g., heat and light) are affected by unde-
sired gradients and/or temporal delays. It will hence be
interesting to extend our studies to systems such as the

three-dimensional BZ reaction or three-dimensional sam-
ples of cardiac tissue [3, 35]. However, one can expect
that the response of vortices (scroll waves) in these sys-
tems is more complicated as spiral rotation occurs around
one-dimensional filaments rather than the pseudo-one di-
mensional core region of the vortex.
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