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We examine multistability of several coexisting bursting patterns in a central pattern generator
network composed of three Hodgkin-Huxley type cells coupled reciprocally by inhibitory synapses.
We establish that control of switching between bursting polyrhythms and their bifurcations are
determined by the temporal characteristics, such as the duty cycle, of networked interneurons and the
coupling strength asymmetry. A computationally effective approach for the reduction of dynamics
of the 9D network to 2D Poincaré return mappings for phase lags between the interneurons is
presented.

PACS numbers: 05.45.Xt, 87.19.L-

A central pattern generator (CPG) is a neural micro-
circuit of cells whose synergetic interactions, without
sensory input, rhythmically produce patterns of burst-
ing that determine motor behaviors such as heartbeat,
respiration, and locomotion in animals and humans [1].
While a dedicated CPG generates a single pattern ro-
bustly, a multifunctional CPG can flexibly produce dis-
tinct rhythms, such as temporarily distinct swimming
versus crawling, and alternation of blood circulation pat-
terns in leeches [2, 3]. Switching between such rhythms
is attributed to input-dependent switching between at-
tractors of the CPG.

Here we analyze multistability and transformations of
rhythmic patterns in a 9D model of a CPG motif (Fig. 1)
comprised of 3 endogenously bursting leech heart in-
terneurons [4] coupled (reciprocally) by fast inhibitory
chemical synapses [5]. Our use of fast threshold modu-
lation [6] implies that the post-synaptic current is zero
(resp., maximized) when the voltage of a driving cell is
below (resp., above) the synaptic threshold. This is an
inherently bi-directionally asymmetric form of coupling.
Many anatomically and physiologically diverse CPG cir-
cuits involve a 3-cell motif [7], including the spiny lobster
pyloric network, the Tritonia swim circuit, and the Lym-

naea respiratory CPGs [8]. We show how rhythms of
the multistable motif are selected by changing the rel-
ative timing of bursts by physiologically plausible per-
turbations. We also demonstrate how the set of possible
rhythmic outcomes can be controlled by varying the duty
cycle of bursts, and by varying the coupling around the
ring.

We propose a novel computational tool for detailed ex-
amination of polyrhythmic bursting in biophysical CPG
models with coupling asymmetries and arbitrary cou-
pling strength. The tool reduces the problem of stability
and existence of bursting rhythms in large networks to
the bifurcation analysis of fixed points (FP) of Poincaré
return mappings for phase lags. Our approach is based
on delayed release of cells from a suppressed state, and
complements the phase resetting techniques allowing for
for thorough exploration of network dynamics with spik-
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FIG. 1. (Color online) (A) 3-cell motif with asymmetric clock-
wise versus counter-clockwise connection strengths. (B) Volt-
age traces: the phase (mod 1) of reference cell 1 (blue) is
reset when V1 reaches threshold Θth = −40 mV. The time
delays between the burst onset in the reference cell 1 and the
burst onset in cells 2 (green) and 3 (red), normalized over
the recurrent time of cell 1, define a sequence of phase lags
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ing cells [9]. It demonstrates that more general inhibitory
networks possess stable bursting patterns that do not oc-
cur in similar 3-oscillator motifs with gap-junction cou-
pling, which is bi-directionally symmetric [10].

The duty cycle (DC) of bursting, being the fraction of
the burst period in which cells spike, is turned out to be
an order parameter that regulates motif synchronization
properties [5, 11]. The DC is sensitive to fluctuations
of most cell’s intrinsic parameters, and is affected by ap-
plied and synaptic currents [4, 5]. We treat DC implicitly
as a bifurcation parameter that defines short (DC∼20%),
medium (DC∼50%), and long (DC∼80%) bursting mo-
tifs. DC is controlled by an intrinsic parameter of the
interneuron that shifts the activation of the potassium
current in the leech heart interneuron.

In this study we consider an adequately “weakly” cou-
pled motif using the nominal value of a maximal con-
ductance g̃syn = 5 × 10−4 nS. This coupling strength
guaranties relatively slow convergence of transients to
phase-locked states of the motif, and hence permits us
to visualize “smooth” trajectories that expose in detail
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FIG. 2. (Color online) 5 polyrhythms in the medium bursting motif at gsyn = 5 × 10−3 (increased to secure short transients
for the purpose of illustration). Inhibitory pulses (horizontal bars) suppress the targeted cells, thus causing switching between
co-existing rhythms: (1⊥{2‖3}) in episode (i), traveling waves (1≺2≺3) in (ii) and (1≺3≺2) in (iii), followed by (2⊥{1‖3})
led by cell 2 in (iv). Having released cells 1 and 2 simultaneously, cell 3 leads the motif in the (3⊥{1‖2}) rhythm in the last
episode.

the structure of phase-lag return maps, qualitatively re-
sembling time-continuous planer vector fields in this case.
The findings obtained for this case prepare the basis for
understanding more complex patterns in strongly cou-
pled, non-homogeneous motifs with the same technique.
The asymmetry of the motif is governed by another bi-
furcation parameter g�, which weakens (resp., enforces)
counter-clockwise (resp., clockwise) coupling strengths
gccc = g̃syn(1 ∓ g�), 0 ≥ g� ≤ 1, from the nominal value
g̃syn.

As the period of network oscillations can fluctuate in
time, we define delays between the onset of bursting in
cell 2 (green) and cell 3 (red) relative to that in the the
reference cell 1 (blue) at the instances the voltages Vi
increase through a threshold of Θth = −40 mV (Fig. 1).
Initial delays are controlled by the timely release of cells 2
and 3 from inhibition (Fig. 2). The subsequent delays
normalized over the period of the cell 1 define a sequence

or forward trajectory
{

∆φ
(n)
21 , ∆φ

(n)
31

}

of phase-lag re-

turn maps on a torus [0, 1) × [0, 1) with ∆φi1 mod 1.
The maps are tabulated on a 40 × 40 (or more) grid of
initial points. The iterates are connected in Figs. 3–5 to
preserve order. We then study the dynamical properties
of the maps, locate fixed points and evaluate their stabil-
ity, detect periodic and heteroclinic orbits, and identify
the underlying bifurcations as the parameters, DC and
g�, are varied.

Fig. 3A shows the (∆φ31,∆φ21) phase-lag map for the
S3-symmetric, medium bursting motif. The map has five
stable FPs corresponding to the coexisting phase-locked
rhythms: the (red) FP at (∆φ31 ≈ 1

2 ,∆φ21 ≈ 0), the

(green) FP (0, 12 ), the (blue) FP (12 ,
1
2 ), and the (black)

FP (23 ,
1
3 ) and the (purple) FP (13 ,

2
3 ). The attraction

basins of the FPs are divided by separatrices (incoming
and outgoing sets) of six saddles (small grey dots in the
phase diagrams). The neighborhood of (0,0) has a com-
plex structure at high magnification (not shown), but is

effectively repelling. Locations of the FP do not corre-
spond to exact fractions due to overlap and interaction
between bursts and a slight ambiguity in the measure-
ment and definition of momentary phases.

The coordinates of the FPs determine the phase locked
states within bursting rhythms of the motif that are de-
noted symbolically as follows: (1≺ 2≺ 3) and (1≺ 3≺ 2)
for clockwise and counter-clockwise traveling waves of
bursting (resp.) around the ring (episodes (ii) and (iii)
of the voltage trace in Fig. 2) corresponding to the FPs
located near (13 ,

2
3 ) and (23 ,

1
3 ), respectively.

Besides these rhythms (which stability is unknown a

priori) in a symmetric motif, the three other FPs corre-
spond to the rhythms where one cell fires in anti-phase
(∆φ ∼ 1

2 , or ⊥) against two cells bursting simultaneously

in-phase (∆φ = 0, or ‖). The stable FP at (12 ,
1
2 ) corre-

sponds to the (1⊥{2‖3})-pattern (episode (i) of Fig. 2);
FP (0, 12 ) corresponds to (2 ⊥ {1 ‖ 3})-pattern (episode

(iv)); and FP (12 , 0) corresponds to (3⊥{1 ‖ 2})-pattern
(episode (v)). We note that such anti-phase patterns are
recorded at switches between peristaltic and synchronous
rhythms in the leech heartbeat CPG [3] and in the Tri-

tonia CPG during escape swimming [8].

The selection of rhythmic outcome in a multifunctional
motif depends on the initial phase distributions of the
cells. Evaluation of the FP attraction basins in Fig. 3A
suggests that when the cells are simultaneously released
from external inhibition, e.g. with initial phases reset,
the medium bursting motif can generate one of five ro-
bust rhythms with nearly equal odds. The geometry of
the phase-lag map also informs how to switch the motif
to a specific rhythm by perturbing it in a certain phase
direction, i.e. advancing or delaying cells. A biophys-
ically plausible way to control switching is to apply an
appropriately-timed hyperpolarizing pulse to temporar-
ily suppress a targeted cell(s). Fig. 2 demonstrates the
approach for the symmetric, medium bursting motif.

Comparison of the maps for the symmetric motifs in
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FIG. 3. (Color online) (A) Phase-lag map for the symmetric,
medium bursting motif showing five stable FPs: (red) dot
at ∼ ( 1

2
, 0), (green) (0, 1

2
), (blue) ( 1

2
, 1
2
), (black) ( 2

3
, 1
3
) and

(purple) ( 1
3
, 2
3
), corresponding to the anti-phase (3⊥{1‖2}),

(2 ⊥ {1 ‖ 3}), (1 ⊥ {2 ‖ 3}) bursts, and traveling clockwise
(1 ≺ 2 ≺ 3) and counter-clockwise (1 ≺ 3 ≺ 2) waves; the
attraction basins are divided by “separatrices” (stable sets)
of six saddles (small grey dots). Arrows indicate the forward
iterate direction in the phase plane. (B) Asymmetric motif
at g� = 0.154 near the saddle-node bifurcations annihilating
three stable FPs for anti-phase bursting rhythms.

(A)
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FIG. 4. (Color online) (A) Phase-lag map for the symmet-
ric, short bursting motif showing only 3 stable FPs (blue dot
at ( 1

2
, 1
2
), red dot at ( 1

2
, 0), and green dot at (0, 1

2
)) corre-

sponding to anti-phase rhythms where one cell bursts followed
by synchronized bursts in the other two cells. Unstable FPs
at ( 2

3
, 1
3
) and ( 1

3
, 2
3
) exclude the clockwise (1 ≺ 2 ≺ 3) and

counter-clockwise (1≺ 3≺ 2) traveling waves from the reper-
toire of the short bursting motif. (B) Map for the asymmet-
ric motif (g� = 0.2) depicting a stable invariant curve near a
three-saddle connection around the FP at ( 2

3
, 1
3
).
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FIG. 5. (Color online) (A) Phase-lag map for the symmetric,
long bursting motif revealing two equally dominant attractors:
( 2
3
, 1
3
) and ( 1

3
, 2
3
) for (1 ≺ 2 ≺ 3) and (1 ≺ 3 ≺ 2) traveling

rhythms. (B) Map for the asymmetric (g� = 0.3) medium
bursting motif depicting two persistent attractors: the one for
the clockwise (1≺ 2≺ 3) rhythms prevails over the attractor
for the counter-clockwise (1≺3≺2) rhythm. Further increase
in g� leads to the only observable (1≺ 2≺ 3) rhythm, after
FP at ( 1

3
, 2
3
) merges with 3 nearby saddles.

cases of medium (Figs. 3, 5B), short (Fig. 4) and long
(Fig. 5A) bursting demonstrates that DC is a physiolog-
ically plausible parameter that determines the dominant
observable rhythms. I.e., short bursting makes it impos-
sible for both clockwise (1≺2≺3) and counter-clockwise
(1≺ 3≺ 2) traveling wave patterns to occur in the sym-
metric motif as the corresponding FPs are unstable ini-
tially. In contrast, the symmetric long bursting motif
is unlikely to generate anti-phase rhythms, as the cor-
responding FPs have narrow attraction basins, divided
equally between the FPs corresponding to the traveling
waves.

We examine next the bifurcations of FPs of the
phase-lag map as the motif becomes Z3-rotationally
(a)symmetric by increasing g�, which weakens counter-
clockwise and enforces clockwise-directed synapses. The
limit g� → 1 makes the motif unidirectionally coupled
with only the (1≺ 2≺ 3) rhythm observable. Here, the
FP at (23 ,

1
3 ) expands its attraction basin over the en-

tire phase range. Intermediate stages of structural trans-
formation of the phase-lag map for the medium burst-
ing motif are demonstrated in Figs. 3 and 5B. First,
as g� increases to 0.154, the three saddles move away
from the FP at (23 ,

1
3 ), thereby increasing its attraction

basin, and approach the stable FPs corresponding to
anti-phase bursting rhythms. Meanwhile, the other three
saddles move towards the FP at (13 ,

2
3 ) corresponding to

the (1 ≺ 3 ≺ 2) rhythm, narrowing its basin. As g� is
increased further, the attractors and saddles in the bot-
tom right of the unit square merge and vanish through
saddle-node (SN) bifurcations. Increasing g� makes the
FP (23 ,

1
3 ) for the (1≺ 2≺ 3) rhythm globally dominant

(Fig. 5B) after the three nearby saddles collapse onto the
FP at (13 ,

2
3 ). Bifurcations in the long bursting motif are

similar, except that the SN bifurcation occurs at smaller
g� values.

The bifurcation sequence in the short bursting motif
is qualitatively different: the SN bifurcations occur at a
higher degree of asymmetry (g� ≈ 0.48), delayed by an-
other bifurcation that makes the clockwise traveling pat-
tern the global attractor of the motif. To become stable,
the corresponding FP at (23 ,

1
3 ) undergoes a secondary su-

percritical Andronov-Hopf or torus bifurcation. Fig. 4B
depicts the map at g� = 0.2 showing a stable invariant
curve near the heteroclinic connections between the three
saddles around the given FP. The invariant curve is as-
sociated with the appearance of slow phase jitters within
the (1≺2≺3) rhythm in voltage traces. Once it collapses
onto the FP at (23 ,

1
3 ) the asymmetric motif gains a new

robust (1≺2≺3) rhythm, making four possible bursting
outcomes.

The stability of the FPs in the phase-lag maps is de

facto proof of the observability of the matching rhythmic
outcomes generated by a motif, symmetric or not. While
the existence of some rhythms, like generic (1 ≺ 2 ≺ 3)
and (1 ≺ 3 ≺ 2), in a 3-cell motif can hypothetically be
deduced using symmetry arguments, the robustness and
observability of the rhythms must be justified by accurate
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computational verification, as their stability strongly cor-
relates with the temporal properties of the bursting cells.
Using the proposed computational technique for the re-
duction of dynamics of the 9D 3-cell motif to the analysis
of the equationless 2D mappings for the phase lags be-
tween the bursting cells, we have demonstrated that a re-
ciprocally inhibitory (non)homogeneous network can be
multistable, i.e. can generate several distinct polyrhyth-
mic bursting patterns. It is shown for the first time that
the observable rhythms of the 3-cell motif are determined
not only by its (a)symmetry, but the duty cycle serving
the role of the order parameter for bursting networks.
This knowledge of the existence, stability and possible
bifurcations of polyrhythms in this 9D motif composed of

the interneuron models is vital for derivations of reduced,
phemenologically accurate phase-models for nonhomoge-
neous biological CPGs with mixed, inhibitory and exci-
tatory synapses.
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taking part in the pilot phase of the project. We acknowl-
edge support from NSF Grants CISE/CCF-0829742 (to
R.C.), DMS-1009591 and RFFI Grant No. 08-01-00083
(to A.S.), and the GSU Brains & Behavior program.
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I. APPENDIX

A reduced model of the leech heart interneuron is given
by the following set of three nonlinear coupled differential

equations:

C
dV

dt
= −INa − IK2 + IL − Iapp − Isyn,

IL = ḡL (V − EL), IK2 = ḡK2m
2
K2(V − EK),

INa = ḡNam
3
Na hNa (V − ENa), quadmNa = m∞

Na(V ),

τNa
dhNa

dt
= h∞Na(V )− h, τK2

dmK2

dt
= m∞

K2(V )−mK2.

Here, C = 0.5nF is the membrane capacitance; V is the
membrane potential in mV; INa is the sodium current
with slow inactivation hNa and fast activation mNa; IK2

is the slow persistent potassium current with activation
mK2; IL is the leak current and Iapp = 0.006 nA is an
applied current. The values of maximal conductances
are set as ḡK2 = 30nS, ḡNa = 200nS and gL = 8nS. The
reversal potentials are ENa = 0.045 V, EK = −0.07 V and
EL = −0.046 V. The time constants of gating variables
are τK2 = 0.9 sec and τNa = 0.0405 sec. The steady state
values of gating variables, h∞Na(V ), m∞

Na(V ), m∞

K2(V ), are
given by the following Boltzmann equations:

h∞Na(V ) = [1 + exp(0.5(V + 0.325))]−1

m∞

Na(V ) = [1 + exp(−0.15(V + 0.0305))]−1

m∞

K2(V ) = [1 + exp (−0.083(V + 0.018 + Vshift
K2 ))]−1.

(1)
The synaptic current is modeled through the fast thresh-
old modulation paradigm as follows:

Isyn =

n
∑

j=1

g̃syn(1∓ g�)(E
inh
syn − Vi)]Γ(Vj −Θsyn). (2)

The reversal potential Einh
syn = −0.0625 is set to be smaller

than Vi(t), i.e. the synapse is inhibitory. The synaptic
coupling function is modeled by the sigmoidal function
Γ(Vj) = 1/[1 + exp{−1000(Vj − Θsyn)}]. The threshold
Θsyn = −0.03 V is chosen so that every spike within a
burst reaches it. This implies that the synaptic current
from the presynaptic j-th neuron is initiated as soon as
this neuron becomes active after its membrane potential
exceeds the synaptic threshold.
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The intrinsic bifurcation parameter Vshift
K2 of the model

is a deviation from V1/2 = 0.018 mV corresponding to
the half-activated potassium channel at m∞

K2 = 1/2. In
the model (1), decreasing Vshift

K2 delays the activation of
mK2. The bursting range of the bifurcation parameter of
the given interneuron model is [−0.024235, −0.01862];
for smaller values of Vshift

K2 the model enters the tonic
spiking mode, or becomes hyperpolarizedly quiescent
at the upper values. By varying Vshift

K2 (or alternatively
Iapp) we can change the duty cycle of bursting (ratio
[burst duration]/[burst period]) from 1 through 0. In
this study, we use the values of V shift

K2 = −0.01895 mV,
V shift

K2 = −0.021 mV and V shift
K2 = −0.0225 mV, corre-

sponding to short (∼20%), medium (∼50%), and long

(∼80%) bursting, respectively. Further details about the
bifurcation underlying the transition between bursting
and tonic spiking through the blue sky catastrophe, and
the regulation of temporal characteristics of the bursting
activity in this leech heart interneuron model can be
found in [10].

Numerical methods

All numerical simulations and phase analysis
were performed using the PyDSTool dynamical
systems software environment (version 0.88) [12]
http://pydstool.sourceforge.net. The software is freely
available. Specific instructions and auxiliary files for the
network (1) will be provided upon request.

The algorithm for constructing the 2D phase mappings
from the 9D network model is based on the observation
that two solutions x(t) = ψ(x0; t) and x(t) = ψ(x0; t+τ)
of an individual model can be considered as the same
solution passing through the initial x0 on the T-periodic
bursting orbit at different initial times. By releasing the
solutions from x0 at different delays τ , ( 0 < τ < T ) we

can generate a dense set of initial points which present
a good first order approximation for the solutions of the
network (1) in the case of sufficiently weak coupling.

Each sequence of phase lags {∆φ
(n)
31 ,∆φ

(n)
21 } plotted in

Figs. 3–5 begins from an initial lag (∆φ
(0)
31 ,∆φ

(0)
21 ), which

is the difference in phases measured relative to the re-
currence time of cell 1 every time its voltage increases
to a threshold Θth = −40 mV. Θth marks the begin-
ning of the spiking segment of a burst. As that recur-
rence time is unknown a priori due to interactions of the
cells, we estimate it, up to first order, as a fraction of
the period Tsynch of the synchronous solution by select-
ing guess values (∆φ⋆31,∆φ

⋆
21). The synchronous solution

corresponds to ∆φ31 = ∆φ21 = 0. By identifying t = 0
at the moment when V1 = Θth with φ = 0, we can pa-
rameterize this solution by time (0 ≤ t < Tsynch) or by
the phase lag (0 ≤ ∆φ < 1). For weak coupling and
small lags, the recurrence time is close to Tsynch, and

(∆φ⋆31,∆φ
⋆
21) ≈ (∆φ

(0)
31 ,∆φ

(0)
21 ). We use the following al-

gorithm to distribute the true initial lags uniformly on a
40× 40 square grid covering the phase portrait.
We initialize the state of cell 1 at t = 0 from the point

(V 0, n0, h0) of the synchronous solution when V1 = Θth.
Then, we create the initial phase-lagged state in the
simulation by suppressing cells 2 and 3 for durations
t = ∆φ021Tsynch and ∆φ031Tsynch, respectively. On re-
lease, cells 2 and 3 are initialized from the initial point
(V 0, n0, h0). We begin recording the sequence of phase
lags between cells 2 and 3 and the reference cell 1 on the
second cycle after coupling has adjusted the network pe-
riod away from Tsynch. In the case of stronger coupling
(increased asymmetry via g�) where the gap between
Tsynch and the first recurrence time for cell 1 widens, we
retroactively adjust initial phases using a “shooting” al-
gorithm to make the initial phase lags sufficiently close
to uniformly distributed positions on the square grid.


