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Abstract

Coupled systems can exhibit an unusual kind of multistability, namely the coexistence of infinitely many

attractors for a given set of parameters. This extreme multistability is demonstrated to occur in coupled

chemical model systems with various types of coupling. We show that the appearance of extreme multi-

stability is associated with the emergence of a conserved quantity in the long-term limit. This conserved

quantity leads to a “slicing” of the state space into manifolds corresponding to the value of the conserved

quantity. The state space “slices” develop as t → ∞ and there exists at least one attractor in each of them.

We discuss the dependence of extreme multistability on the coupling and on the mismatch of parameters of

the coupled systems.

PACS numbers: PACS numbers: 05.45.-a
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I. INTRODUCTION

Nonlinear dynamical systems exhibit a rich variety of long-term behaviors, such as station-

ary points, periodic and quasiperiodic oscillations, and chaotic behavior. Various bifurcations and

transitions are known, and their dependence on one or more control parameters provides a char-

acterization of the complex dynamics of a system [1, 2]. Most of the work devoted to dynamical

systems theory deals with systems having one or only a few attractors for a given set of param-

eters. However, many physical and biological systems are known in which there are a multitude

of coexisting attractors [3–5]. Examples include systems from laser physics [6, 7], semiconductor

physics [8, 9], chemistry [10, 11], neuroscience [12], and population dynamics [13]. Multistability

is, in fact, a rather common phenomenon that is found in completely different classes of systems,

such as weakly dissipative systems [14, 15], coupled systems [16–18], and systems with time delay

[19–21].

An example of extreme multistability, a system with an infinite number of coexisting attractors,

was reported by Sun et al. [22]. Two coupled Lorenz systems were studied, in which all param-

eters of the coupled system were held fixed and only the initial conditions were varied. Changes

in initial conditions or perturbations cause the system to evolve to completely new attractors with

different statistical properties. Consequently, such systems exhibit an infinite number of asymp-

totic attractors, some stationary, some periodic and some chaotic. The complexity of the behavior

is visualized by plotting the long-term attractors versus the initial conditions in simulations. Sur-

prisingly, these plots closely resemble bifurcation diagrams; however, the initial conditions can not

be regarded as a bifurcation parameter. Moreover, all of the transitions between different attractors

can be observed by simply varying the initial value of one of the state variables.

Chemical systems are among the most studied examples of dynamical systems exhibiting com-

plex behavior, chaos and pattern formation [23, 24]. The dynamics giving rise to extreme multista-

bility might account for reported irreproducibility of behavior in the chlorate-thiosulfate reaction

[25] and in the chlorite-iodide reaction [26]. In both of these reactions, the behavior varies from

experiment to experiment under the same set of experimental conditions. The inability to repro-

duce the dynamical behavior for the same set of conditions, despite care to ensure reproducibility,

suggests that the inherent dynamics of these systems is playing some role. In a modified three-

variable autocatalator model, Wang et al. [27] showed that this system can possess infinitely many
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coexisting attractors when a “buffer step” is included in the chemical kinetics, where two reac-

tants are produced and consumed in the same processes, a mechanism similar to that proposed by

Epstein and co-workers for the chlorate-thiosulfate and chlorite-iodide reactions [25, 26].

In this paper, we investigate two coupled chemical systems, each possessing an infinite number

of coexisting attractors. In contrast to the autocatalator model studied in [27], the extreme multi-

stability arises from the coupling of two subsystems. We show how the coupling, in two different

schemes, yields extreme multistability behavior. In both cases, this phenomenon is associated

with the generalized synchronization of the two coupled subsystems as well as the emergence of a

conserved quantity. In the first coupling scheme, the conserved quantity is determined by a conser-

vation law of all intermediate species, weighted by their reaction time constants, and is therefore

given by the initial concentrations of these intermediates. For the second coupling scheme, this

conserved quantity appears dynamically in the long-term limit as t → ∞, and the dependence on

initial conditions is therefore more complex. We show in both cases that, due to the presence of a

conserved quantity, the state space is divided into submanifolds, each with an attractor associated

with the value of the conserved quantity. Since the conserved quantity can take any real value, we

obtain infinitely many attractors.

The paper is organized as follows: We begin with a review of the three-variable autocatala-

tor model in Section II and present an analysis of its qualitative behavior. We then describe the

coupling of two three-variable autocatalator systems to yield a six-variable autocatalator system in

Section III, where we show that the coupled system exhibits extreme multistability characterized

by a conserved quantity. We also show that the two subsystems exhibit generalized synchroniza-

tion similar to lag synchronization. In Section IV, we check the robustness of the phenomenon

of extreme multistability by introducing another coupling scheme. We again find generalized syn-

chronization between the two subsystems but now characterized by complete synchronization be-

tween two pairs of the corresponding variables of the subsystems, while the difference in the third

pair obeys a certain constant. This also leads to the appearance of an infinite number of synchro-

nization manifolds. The emerging conserved quantity that defines the synchronization manifold

can be used to reduce the six-dimensional system to a three-dimensional system without loss of

generality. In addition, we study the robustness of the phenomenon of extreme multistability with

respect to a mismatch of the parameters of the two subsystems, making them non-identical. Finally

we discuss our results in Section V.
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II. THE THREE-VARIABLE AUTOCATALATOR MODEL

Our investigation is based on a chemical model system that has been used in various studies of

chemical oscillations and chaotic dynamics [28–33]. The three-variable autocatalator [34] is based

on a two-variable version originally introduced by Gray & Scott [35], which has been used in many

studies of the dynamics of chemical oscillations (cf. [36, 37] for details). Unlike the two-variable

autocatalator, the three-variable model incorporates a second feedback loop and, hence, is capable

of exhibiting complex periodic behavior as well as chaos. The model reaction scheme involves

the conversion of a precursor reactant A with constant concentration to a final product B via three

intermediates, X , Y and Z. The six reaction steps of the scheme, with rate constants ki (i = 0, ...,

5), are

A
k0

−→ X, (R1)

A + Z
k1

−→ X + Z, (R2)

X
k2

−→ Y, (R3)

X + 2Y
k3

−→ 3Y, (R4)

Y
k4

−→ Z, (R5)

Z
k5

−→ B. (R6)

The fourth reaction (R4) in the above system describes an autocatalytic process whereby the

intermediate species Y catalyzes its own production. This autocatalysis introduces a nonlinear

reaction term that is essential for the oscillatory behavior of the system [35]. The chaotic behavior

arises as a result of a second feedback loop through the variable Z in (R5). Notice that Z is

produced from this reaction and fed back into the system through reaction (R2) to catalyze the

production of X from A. Unlike reaction (R4), in which Y is an autocatalyst, Z serves as a simple

catalyst in reaction (R2).

Letting A0, [X], [Y ] and [Z] be the concentrations of A, X, Y and Z, we write the following

rate equations for the time evolution of the variable species:

˙[X] = k0A0 + k1A0[Z] − k2[X] − k3[X][Y ]2,

˙[Y ] = k2[X] + k3[X][Y ]2 − k4[Y ], (II.1)

˙[Z] = k4[Y ] − k5[Z],
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where the concentration of the precursor A is held constant at A0. Using the dimensionless

variables

x =

(

k3k2

k2
4

)
1

2

[X], y =

(

k3

k2

)
1

2

[Y ], z =

(

k3k
2
5

k2k
2
4

)
1

2

[Z], τ = k2t,

and the positive dimensionless parameters

µ =

(

k1

k5

)

A0, κ =

(

k0k5

k1k4

) (

k3

k2

)
1

2

, σ =

(

k2

k4

)

, δ =

(

k2

k5

)

,

we obtain the following scaled rate equations [38]:

ẋ = µ(κ + z) − x(1 + y2),

σẏ = x(1 + y2) − y, (II.2)

δż = y − z.

Since σ and δ denote time scales, these parameters are positive, and the same applies to κ, which is

a combination of reaction rate constants. The parameter that is naturally varied is µ ≥ 0, which is a

function of the constant concentration A0 of the precursor reactant. Hence, µ serves as a bifurcation

parameter that allows examination of the transitions between different dynamical behaviors.

Let us briefly recall the dynamics of the system and its dependence on the parameters (cf. [28]

for details). We will vary only µ in the interval 0 ≤ µ < 1, while holding constant the parame-

ters κ = 65, σ = 5 × 10−3 and δ = 2 × 10−2. As µ is gradually increased, a number of different

dynamical behaviors are observed. We obtain a stable steady state for 0 ≤ µ < 0.016, a Hopf

bifurcation occurs at µ = 0.016 leading to oscillatory behavior, and this is followed by the first

period doubling at µ = 0.143 and the second period doubling at µ = 0.153. The subsequent period

doubling cascade ends in a transition to chaos at µ ≃ 0.154. Further increases of µ lead to a bifur-

cation sequence from chaos via an inverse period doubling cascade and a second Hopf bifurcation

at µ = 0.175 back to a steady state. Figure 1 shows the bifurcation diagram for system (II.2).
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FIG. 1: (Color online) Bifurcation diagram of the three-variable autocatalator model. The maximum ampli-

tude of x is plotted as a function of the bifurcation parameter µ showing a period doubling sequence, chaos

and a reverse period doubling sequence.

We note that the three-variable autocatalator model possesses a unique attractor for all values of

the bifurcation parameter µ we consider, i.e., all initial conditions converge to a specific attractor

for each value of µ. In other words, there is no sign of multistability corresponding to coexisting

attractors for any parameter set considered here.

III. TWO COUPLED AUTOCATALATOR MODELS

The dynamical behavior becomes much more complex when two three-variable autocatalator

models are coupled in a particular way. To achieve this coupling, we consider two autocatalator

subsystems with variables X1, Y1, Z1 and X2, Y2, Z2 in which the coupling is realized through Z2

in the second equation of the first subsystem (R8) and indirectly through Z1 in the sixth equation

of the second subsystem (R18), since the reactant E is produced from Z1 in the first subsystem

6

Figure1.eps


(R12). The coupling of the autocatalator subsystems is shown by the following chemical reactions:

A
k0

−→ X1, (R7)

A + Z2
k1

−→ X1 + Z2, (R8)

X1
k2

−→ Y1, (R9)

X1 + 2Y1
k3

−→ 3Y1, (R10)

Y1
k4

−→ Z1, (R11)

Z1
k5

−→ E, (R12)

A
k0

−→ X2, (R13)

A + Z2
k1

−→ X2 + Z2, (R14)

X2
k2

−→ Y2, (R15)

X2 + 2Y2
k3

−→ 3Y2, (R16)

Y2
k4

−→ Z2, (R17)

E + Z2
k′

5

−→ F. (R18)

Assuming that k′

5 ≫ k5, we formulate the following dimensionless rate equations:

ẋ1 = µ(κ + z2) − x1(1 + y2
1),

σẏ1 = x1 − y1 + x1y
2
1,

δż1 = y1 − z1, (III.1)

ẋ2 = µ(κ + z2) − x2(1 + y2
2),

σẏ2 = x2 − y2 + x2y
2
2,

δż2 = y2 − z1,

where τ = k2t, x1 =
(k1k3)

1

2

k4
[X1], y1 =

(

k3

k2

)
1

2

[Y1], z1 =

(

k5

k4

) (

k3

k2

)
1

2

[Z1],

x2 =
(k1k3)

1

2

k4
[X2], y2 =

(

k3

k2

)
1

2

[Y2], z2 =

(

k5

k4

) (

k3

k2

)
1

2

[Z2], µ =
k1A0

k5
,

κ =

(

k0k5

k1k4

) (

k3

k2

)
1

2

, σ =
k2

k4
and δ =

k2

k5
.
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While the dynamics of a single subsystem possesses a unique attractor as discussed in Sec.

II, we now observe a multitude of coexisting attractors. Specifically, the coupled system exhibits

extreme multistability, i.e., an infinite number of attractors exists for a given set of parameters.

To demonstrate this behavior, we fix the parameters such that the uncoupled three-variable au-

tocatalator exhibits a simple periodic solution (µ = 0.157, κ = 65, σ = 5 × 10−3, δ = 2 × 10−2),

which is established from any set of initial conditions in the three-dimensional state space. Let us

now investigate the final state to which the coupled autocatalator system converges, where only

positive initial conditions are permitted, since the six variables correspond to chemical concentra-

tions. We proceed by fixing five out of six of the initial conditions, (0.01, 0.1, 0.1, 0.0, y02, 0.0), and

varying the initial value of y2 within the interval 4.0 ≤ y02 ≤ 8. We then integrate the system using

a fourth-order Runge-Kutta method with variable step size [39]. In order to ensure that asymptotic

behavior is exhibited, the simulations were carried out for at least 10,000 time steps, and only

the last one-tenth of each time series was used. Identical behavior was found in simulations with

one-half and three-quarters as many time steps, showing that the behavior is asymptotic. We also

employed higher-order Runge-Kutta methods (7th-8th order) to verify the accuracy of our results.

We find a wide variety of dynamics, ranging from simple periodic motion for large values of

y02 to oscillations of different periods for intermediate values to chaotic behavior for small values

of y02. This behavior is shown in Fig. 2, which depicts the maximum values of the amplitude

of x1 (corresponding to a Poincaré section) so that a simple oscillation of period T appears as a

fixed point. In fact, the picture we obtain appears much like a complete bifurcation diagram for

an inverse period-doubling cascade. However, since we do not change any bifurcation parameters

but only the initial conditions, it only resembles a bifurcation diagram. Period doubling is found

at y02 = 7.145 (T → 2T ), y02 = 5.515 (2T → 4T ), y02 = 5.165 (4T → 8T ), and y02 = 5.095

(8T → 16T ). Chaotic behavior immersed with periodic windows is evident as well.

One could argue that the number of attractors is finite because there are entire intervals of y02

leading to an oscillation of a certain period, for example, period 2T . However, for each initial

condition within this interval, the location of the 2T periodic orbit is slightly different. This means

that for any pair of nearby initial conditions the corresponding final states are never identical. In

this sense, we obtain an infinite number of quantitatively different attractors in state space. In

addition, since the period doubling cascade is complete, we also know that an infinite number of

qualitatively different attractors coexist.
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FIG. 2: (Color online) Long-term dynamics of the coupled six-variable autocatalator model. A plot of the

maximum amplitude of x1 as a function of the initial condition y02.
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FIG. 3: (Color online) Time series plots illustrating the differences between y1 and y2 within the chaotic

and period-1 regimes. (a) Chaotic regime, y02 = 4.5, and (b) period-1 regime, y02 = 7.5, with solid blue

lines showing y1 and broken red lines showing y2. Similar differences are observed between x1 and x2 and

z1 and z2.

To explain the appearance of extreme multistability, we note that the coupling scheme between

the two subsystems, (R7)-(R12) and (R13)-(R18), gives rise to a conserved quantity. This quantity,

which we call C with dC/dt = 0, corresponds to the difference between the concentrations of the

intermediate species in each subsystem weighted by their reaction time constants:

C = x2 + σy2 + δz2 − (x1 + σy1 + δz1). (III.2)
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Using Eqs. (III.1), it is easy to show that the conservation condition dC/dt = 0 is always fulfilled.

The value of C, given by the initial condition C = x02 +σy02 + δz02 − (x01 +σy01 + δz01), defines

a complex manifold in state space on which the dynamics takes place. Based on the existence of

the conserved quantity C, we illustrate the extreme multistability with a schematic representation,

depicted in Fig. 4. The entire state space is densely filled with manifolds (hypersurfaces) that are

defined by the quantity C. In each of these manifolds there exists at least one attractor. Since

C can take any real value, the state space is “sliced” into infinitely many such manifolds, with

each containing a different long-term dynamics. Changing the initial conditions corresponds to a

change of the manifold in which the dynamics takes place.
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FIG. 4: (Color online) A sampling of the synchronization manifolds as a function of the conserved quantity

C . Chaotic behavior (light blue), period-4 (red), period-2 (dark blue), and period-1 (magenta) are exhibited

for C = 0.0075, 0.0135, 0.0200, and 0.0275.

Due to the existence of a conserved quantity, the dynamics becomes similar to the dynamics

of Hamiltonian systems, where the marginally stable invariant set exhibited in the long-term limit

depends on the value of the energy of the system. However, it is important to note that, in contrast

to the Hamiltonian case, the coupled autocatalator system is dissipative, and the invariant sets

exhibited in the long-term limit are attractors. As can be seen from the form of the conserved

quantity C in Eq. (III.2), an infinite number of initial conditions give rise to a particular value and

therefore a particular attractor.

Basins of attraction, i.e., the sets of initial conditions that all converge to the same attractor,
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are an important concept in the study of multistable systems. In the case of extreme multistability,

each of the attractors also has its own basin of attraction. This basin of attraction is given by all

initial conditions fulfilling Eq. (III.2). The basin of attraction of each attractor is therefore the

manifold determined by the particular value of the conserved quantity. However, these manifolds

or slices in state space are dense, so that in each arbitrarily close neighborhood of each manifold

there is another manifold leading to another attractor. This means that in each arbitrarily close

neighborhood of an attractor there are points belonging to another manifold and, hence, to another

basin of attraction. As a consequence, all attractors in our system are weak attractors in the Milnor

sense [40].

The existence of a conserved quantity allows us to reduce the dimension of the dynamical

system by one variable. Substituting z2 from Eq. (III.2) into Eqs. (III.1) leads to

ẋ1 = µ(κ + (x1 + σy1 + δz1 + C − x2 − σy2)/δ) − x1(1 + y2
1),

σẏ1 = x1 − y1 + x1y
2
1,

δż1 = y1 − z1, (III.3)

ẋ2 = µ(κ + (x1 + σy1 + δy1 − C − x2 − σy2)/δ) − x2(1 + y2
2),

σẏ2 = x2 − y2 + x2y
2
2.

From this rewriting it becomes obvious that the conserved quantity C, and hence the initial condi-

tion y02, can indeed be regarded as a bifurcation parameter in the reduced system (III.3), and Fig.

2 can therefore be interpreted as a bifurcation diagram, in the mathematical sense, exhibiting many

known dynamical transitions.

The existence of the conserved quantity also appears when computing Lyapunov exponents to

check for chaotic behavior, as shown in Fig. 5. For all initial conditions, we obtain two zero

Lyapunov exponents, where the first zero is the usual one corresponding to the Lyapunov exponent

along the trajectory, while the second zero corresponds to the existence of a conserved quantity.

Finally, we discuss the relation between the dynamics of the two coupled oscillators. As shown

in Fig. 3(a), the two oscillators synchronize with a certain time lag so that the phase retains a fixed

difference, while the amplitude difference varies. In Fig. 3(b), we see simple lag synchronization in

the periodic case. It is important to note that lag synchronization generally emerges while varying

the coupling strength between two oscillators [41]; however, such a change is not possible in this

system, where the coupling is realized by chemical reactions. With this restriction in mind, we note
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FIG. 5: (Color online) The three largest Lyapunov exponents of the coupled six-variable autocatalator model

(III.1) as a function of the initial condition y02.

that the coupled autocatalators exhibit a type of generalized synchronization with features much

like those seen in chaotic synchronization.

IV. ROBUSTNESS OF EXTREME MULTISTABILITY

A. Second coupling scheme

In the previous section, we have shown that extreme multistability can emerge for two three-

variable autocatalator systems coupled in a particular way. This coupling leads to the existence

of a conserved quantity that appears in the model equations, suggesting that the phenomenon may

be rather special and may not occur in any other case. Therefore, we now consider another cou-

pling to demonstrate that different coupling schemes can give rise to extreme multistability. In

contrast to the previously considered system, however, the conserved quantity associated with the

phenomenon is not contained in the model equations but arises in a non-trivial way as a result

of the system dynamics in the long-term limit. The coupling of the two autocatalator subsystems

is more complex here than the first coupling scheme, and we describe the six-variable chemical

model in the Appendix, Sec. VII.

We now turn to the dimensionless model system to demonstrate the extreme multistability and
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present an analysis of the behavior. Using the same scaling as in the previous section, we obtain

the following dimensionless system:

ẋ1 = µ(κ + z1) − x1(1 + y2
1),

σẏ1 = x1(1 + y2
1) − y1,

δż1 = y2 − z1, (IV.1)

ẋ2 = µ(κ + z2) − x2(1 + y2
1),

σẏ2 = x2(1 + y2
1) − y1,

δż2 = y2 − z2.

As with first coupling scheme described by (R7)-(R18) and Eqs. (III.1), we use the parameters

κ = 65, σ = 5 × 10−3 and δ = 2 × 10−2. The bifurcation parameter is set to µ = 0.145, which

corresponds to period-2 behavior of the single uncoupled three-variable autocatalator. The coupled

six-variable autocatalator exhibits the phenomenon of extreme multistability, as illustrated in Fig.

6, for the initial conditions (0.01, 0.1, 0.1, 0, y02, 0) with variable y02.
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0.0
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0.8

Initial condition, y02

x
m

a
x

1

FIG. 6: (Color online) Long-term dynamics of the coupled six-variable autocatalator as a function of the

initial condition y02.

In contrast to the coupled autocatalator system described by Eqs. (III.1), the new coupling in

Eqs. (IV.1) gives rise to a different generalized synchronization between the two subsystems, in
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which two pairs of the variables, x1, x2 and z1, z2, synchronize completely, while the third pair

is determined by a constant difference, c = y2 − y1. Hence, the synchronization is associated

with the emergence of a conserved quantity c that characterizes the synchronization manifold.

Another difference from the system described by Eqs. (III.1) is that the conserved quantity c

appears as a result of the system dynamics, and it takes its final value only in the long-term limit

t → ∞. To justify this statement, let us introduce the new variables ei, i = 1, 2, 3, which are

convenient for characterizing synchronization because they describe the deviations from complete

synchronization [42]: e1 = x2 − x1, e2 = y2 − y1, e3 = z2 − z1. These definitions, together with

Eqs. (IV.1), yield the following governing equations for the deviations ei:

ė1 = µe3 − (1 + y2
1)e1,

σė2 = (1 + y2
1)e1, (IV.2)

δė3 = −e3.

We find the steady state by simply setting the right-hand side of (IV.2) to zero and solving the

algebraic equations for e∗1, e∗2 and e∗3, where e∗i represents the steady state value of ei. The system

exhibits a single steady state (e∗1, e
∗

2, e
∗

3) = (0, e∗2, 0), where e∗2 is a constant that depends on the

initial conditions.

We now examine the stability of the steady state by considering the function

v(e1, e2, e3) =
(1 + y2

1
)δ + 1

2(δµ)2
e2
1 + 1

δµ
e1e3 + e2

3 and showing that it is a Lyapunov function for (IV.2).

For the steady state to be asymptotically stable, we have v(e1, e2, e3) > 0 and dv/dt < 0 for

ei, and v = 0 and dv/dt = 0 only for (e1, e2, e3) = (e∗1, e
∗

2, e
∗

3) [43]. The Lyapunov function

v satisfies these conditions, since v = ae2
1 + be1e3 + ce2

3 ≥ 0 if 4ac − b2 =
2(1+y2

1
)δ+1

(δµ)2
≥ 0,

which is fulfilled for all y1 and δ ≥ 0. Hence, any solution of (IV.2) converges to this steady state

over time, and any perturbation of the system from this steady state asymptotically decays to zero:

(e1, e2, e3) → (0, e∗2, 0) as t → ∞. Consequently, the pairs of variables (x1, x2) and (z1, z2) that

define the differences e1 and e3 completely synchronize in the long-term limit, and since e1 → 0

as t → ∞, the second equation of (IV.2) implies that e2 = y2 − y1 → c, where c is a constant that

depends on the initial conditions of the full system (IV.1).

The constant c is a conserved quantity which, in contrast to Eqs. (III.1) considered in Sec.

III, is not given directly by the initial conditions but evolves to its final value on approaching the

asymptotic state and, hence, depends on the initial conditions in a nontrivial way. The value of
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c corresponds to the synchronization manifold on which the long-term dynamics takes place. In

contrast to the system considered in Sec. III, the schematic picture depicted in Fig. 4 holds only

as t → ∞. In the long-term limit, the state space is divided into infinitely many synchronization

manifolds, each of them corresponding to a particular value of c. However, the initial condition is

not necessarily contained in this manifold, as described above.

This analysis indicates that a new value of c is obtained for each new set of initial conditions,

establishing a constant difference between the remaining pair of variables (y1, y2). We can there-

fore substitute y2 = y1 + c into the first subsystem and obtain a reduced system that can be further

used to explore the extreme multistability for t → ∞:

ẋ1 = µ(κ + z1) − x1(1 + y2
1),

σẏ1 = x1(1 + y2
1) − y1, (IV.3)

δż1 = (y1 + c) − z1,

This system is essentially the three-variable autocatalator model with the introduction of an addi-

tional parameter c, which depends on the initial conditions of the full system (IV.1) in a complex

manner. The equivalence between the dynamical behavior as a function of the initial condition y02

for the full six-dimensional system and the behavior of the reduced three-dimensional system as

a function of the conserved quantity c can be seen in a comparison of the bifurcation diagram in

Fig. 7 to the initial conditions diagram in Fig. 6. The diagrams are in complete correspondence.

We emphasize that Fig. 6 represents the long-term behavior for different initial conditions, which

resembles a bifurcation diagram, while Fig. 7 is a bifurcation diagram in the mathematical sense,

since c is a bifurcation parameter for the reduced system (IV.3).
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FIG. 7: (Color online) Bifurcation diagram of the reduced autocatalator model (IV.3) showing the maximum

amplitude of x1 as a function of the conserved quantity c.

Fig. 8 shows time series for chaotic and period-1 behavior of the long-term state for the full six-

dimensional system. These plots demonstrate the nontrivial dependence of the final value of the

conserved quantity c on the initial conditions. Because there is a relaxation of the system dynamics

to the synchronization manifold corresponding to the conserved quantity c = y2 − y1, its value is

not the same as the initial difference y02 − y01.

Computing the Lyapunov exponents for the coupled six-variable autocatalator model (IV.1)

reveals a pattern similar to that for Eqs. (III.1) considered in Sec. III. Due to the existence of the

conserved quantity, we again find two zero Lyapunov exponents, as shown in Fig. 9.

B. Nonidentical coupled systems

We have assumed in our analysis of the coupled autocatalator systems in Sec. III and Sec. IV

that the three-variable subsystems are identical, being described with the same set of parameters.

This is, of course, a major assumption, since systems in nature are typically not identical but usu-

ally have at least some small mismatch in the parameters. The question arises whether extreme

multistability is a robust phenomenon that also occurs when there is a mismatch in the parameters.

For chemical systems, a mismatch in the parameters can be interpreted as a mismatch in the rate
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FIG. 8: (Color online) Time series illustrating the constant difference c between the dimensionless concen-

trations y1 and y2 for chaotic and period-1 behavior. (a) Chaotic behavior with y02 = 7.2, c = 5.04, and

y02 − y01 = 7.1. (b) Period-1 behavior with y02 = 15.0, c = 12.84, and y02 − y01 = 14.9. Solid blue lines

show y1 and broken red lines show y2.
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FIG. 9: (Color online) The three largest Lyapunov exponents of the coupled six-variable autocatalator

model (IV.1) as a function of the initial condition y02.

constants for the chemical reactions. We have examined parameter mismatches in the six-variable

coupled autocatalator Eqs. (III.1) by varying κ, µ, σ and δ from 0 to 0.5% of their values. To ob-

tain the mismatched parameter values, we scaled each of the dimensionless parameter groupings

to reflect the effect of the individual rate constants lumped into the parameter. We first note that

the bifurcations in the bifurcation diagrams shift with changing parameters such that the period
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doubling cascade becomes smaller. For the larger parameter mismatches, only period-1 or chaotic

solutions survive. We have examined the long-term dynamics exhibited with 0.01% and 0.05%

parameter mismatches to determine whether extreme multistability is possible without identical

subsystems. Our investigation suggests that the number of qualitatively different attractors may no

longer tend to infinity as the parameter mismatch increases, as shown in Figs. 10 and 11. We con-

clude that extreme multistability is not fundamentally dependent on the coupled subsystems having

identical parameters; however, the behavior is much more likely to occur when the subsystems are

(or are almost) identical.
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FIG. 10: (Color online) Long-term dynamics as a function of the initial condition y02 for the six-variable

autocatalator Eqs. (III.1) with 0.01% parameter mismatch in the subsystem parameters.
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FIG. 11: (Color online) Long-term dynamics as a function of the initial condition y02 for the six-variable

autocatalator Eqs. (III.1) with 0.05% parameter mismatch in the subsystem parameters.

V. DISCUSSION

We have demonstrated the phenomenon of extreme multistability using two coupled chemi-

cal systems. For two different couplings, the systems exhibit an infinite number of attractors as

their asymptotic dynamical behavior. Depending on the initial conditions, many kinds of attrac-

tors, e.g. fixed points, periodic and chaotic orbits, are obtained. To explain this phenomenon, we

have shown that extreme multistability is closely related to the emergence of a conserved quan-

tity. The conserved quantity may appear due to a particular coupling scheme that gives rise to

system variables that are no longer independent. In this case, the value of the conserved quantity

is determined directly by the initial conditions. For another choice of the coupling, the conserved

quantity emerges from the dynamics in the long-term limit. The latter case is more complex, as the

conserved quantity appears only when the trajectory reaches the attractor.

The dynamical behavior of the coupled systems is characterized by two properties of extreme

multistability: (i) The dynamics takes place on a complex manifold in state space which is deter-

mined by the value of a conserved quantity. In the absence of perturbations, the system trajectory

remains on this manifold. Hence, in the limit t → ∞, extreme multistability can be interpreted in

terms of a division of the state space into infinitely many manifolds on which the dynamics takes

place. (ii) Extreme multistability is accompanied by the appearance of a generalized synchroniza-
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tion between the coupled subsystems. The emergence of a conserved quantity in the long-term

limit allows for a model reduction of the coupled system Eqs. (IV.1). Since the dynamics for

t → ∞ takes place on a hypersurface in state space, which is determined by the value of the con-

served quantity, the model system can be reduced to a new model in which the conserved quantity

serves as a bifurcation parameter in the classical sense. This model reduction makes clear that

infinitely many attractors occur, since the variation of this new bifurcation parameter gives rise to

an infinite cascade of period doublings in the transition to chaos. Extreme multistability contains

periodic orbits of all periods.

The existence of a conserved quantity resembles the dynamics of Hamiltonian systems. How-

ever, we emphasize that all of the systems considered here are dissipative and, hence, possess

attractors, in contrast to Hamiltonian systems that only exhibit marginally stable orbits. The con-

served quantity in Hamiltonian systems, e.g. energy, has a fixed value. This is also true for the

system described by Eqs. (III.1); however, the conserved quantity for the system described by Eqs.

(IV.1) emerges during the time evolution and its value is fixed only for t → ∞.

Another issue to be addressed is the plausibility of our chemical models, since the correspond-

ing reactions in the subsystems have the same rate constants. It is difficult to imagine two differ-

ent chemical reactions having exactly the same rate constants, unless the corresponding chemical

species were optical isomers of one another. However, we have demonstrated that a small variation

in the rate constant values may be imposed without the disappearance of extreme multistability. It

has been demonstrated in the coupled Lorenz system that a loss of extreme multistability occurs

when the parameter mismatch is larger than ≃ 0.1 % [4]. Hence, we conclude that extreme multi-

stability is likely to occur only in almost identical coupled subsystems.

We have studied two different coupling schemes for the autocatalator model, both leading to

extreme multistability. In order to generalize the approach, we attempted to determine a generic

prescription for developing systems with infinitely many attractors. Such a generalization has

remained elusive, however, in our studies. There are a variety of factors to take into account. These

include symmetry and asymmetry, coupling both subsystems through a single variable, coupling

both subsystems through two variables, selecting coupling variables from any of the equations

involved in the system, etc. Considering these factors, we have developed a number of different

couplings for the autocatalator system. Some of the coupled models exhibit extreme multistability,

and some do not. We generally find that symmetry and asymmetry do not appear to be of major
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importance for extreme multistability. We also find that coupling through a single variable fails

to yield extreme multistability. Hence, we believe that the coupling should involve at least two

variables.

Apart from the coupling, we may also try to generalize the notion of extreme multistability

by considering the nature of the original subsystems. Here, we conjecture that a requirement

for extreme multistability is chaos or chaotic subsystems. This is certainly a requirement for an

infinite number of qualitatively different states, since the period doubling cascade to chaos is the

characteristic that gives rise to this feature in all systems known to exhibit extreme multistability.

We also carried out a search for an initial conditions dependence of the qualitative and quantitative

states in coupled oscillatory systems, specifically the two-variable autocatalator; however, we have

found no anomalous dynamical behavior.

As a last point, we address the robustness of extreme multistability against noise, which is

inevitable in natural systems. For multistable systems possessing a large number of coexisting

attractors, it has been shown that noisy dynamics can be viewed as a combination of two phases

of motion, where the first phase is characterized by a motion around the attractor and the second

phase corresponds to a jump from one attractor to another [44]. The duration of these two phases

of motion is irregular, and the overall dynamics appears as a hopping process between different

attractors. For systems exhibiting extreme multistability, we also observe this hopping as noise of

a certain strength drives the system to move from one synchronization manifold to another one.

Almost all perturbations lead to changes in the value of the conserved quantity and therefore to

a change in the long-term dynamics. The exception, of course, is a perturbation in the values of

the variables that preserves the value of the conserved quantity, for example, a perturbation that

changes y1 and y2 equally in Eqs. (III.1) so that the value of the conserved quantity C remains the

same. However, this argument does not apply to the system described by Eqs. (IV.1) because of its

nontrivial relationship between the initial conditions and the final value of the conserved quantity

c. Nevertheless, each system in any particular long-term final state possesses a manifold containing

an infinite number of initial conditions that give rise to this final state attractor.

Extreme multistability is an unusual type of multistability behavior. It appears when two iden-

tical systems are coupled in a particular way so that a conserved quantity emerges. While the

phenomenon has not been shown to be general in the usual sense, we now know that it appears in

chemical model systems as well as in mathematical models such as the coupled Lorenz equations.
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Although the chemistry of these models is somewhat complex, each step is reasonable and follows

from simple mass action kinetics. We are convinced that many systems exhibiting chaotic behavior

will exhibit extreme multistability when two such systems are appropriately coupled.
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VII. APPENDIX

The chemical coupling giving rise to Eqs. (IV.1) is described here. The model involves the

conversion of a chemical precursor A to a final product E through six chemical intermediates Xi,

Yi and Zi (i = 1, 2). This occurs in two subsystems with an intermediate from each subsystem

involved in the other subsystem, comparable to the model (R7)-(R18) described by Eqs. (III.1).

In the course of the conversion, two products C and D are formed that do not participate in the

dynamics, as well as the main product E. We therefore do not include the time evolution of these

species in deriving system (VII.1) below. Defining ki (i = 0, 1, 2, 4, 3, 5), k′

4 and k′′

4 as the rate

constants, the chemical representation of the model follows:

A
k0

−→ X1, (R19)

A + Z1
k1

−→ X1 + Z1, (R20)

X1
k2

−→ Y1, (R21)

X1 + 2Y1
k3

−→ 3Y1, (R22)

B + Y1
k′

4

−→ C, (R23)

B + Y2
k′

4

−→ Z1 + Z2 + Y2, (R24)

Z1
k5

−→ E, (R25)
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A
k0

−→ X2, (R26)

A + Z2
k1

−→ X2 + Z2, (R27)

X2
k2

−→ Y2, (R28)

X2 + 2Y1
k3

−→ Y2 + 2Y1, (R29)

C + Y2

k′′

4

−→ D, (R30)

Z2
k5

−→ E. (R31)

The concentrations of A and B are assumed to be constant at A0 and B0, and we assume that

k′′

4 ≫ k′

4B0 = k4. Reaction (R22) of the first subsystem describes an autocatalytic process, in

which Y1 catalyzes its own production. Since Y1 is produced through autocatalysis in the first

subsystem and is used to produce Y2 in the second subsystem, we can also imagine an indirect

autocatalysis occurring in the fourth equation of the second subsystem (R29). Unlike the individ-

ual three-variable subsystems, each of which has simple feedback loops, there are more complex

feedback loops in the coupled system. For example, Z1 and Z2 are produced in reaction (R24) and

fed back into the system through reactions (R20) and (R27), respectively, to catalyze the produc-

tion of X1 from A and the production of X2 from A. These feedbacks contribute to the complex

dynamics. It is worth noting that while B is constant with the value B0, C is generated in reaction

(R23) of the first subsystem and rapidly consumed in reaction (R30) of the second subsystem. The

rate of reaction (R30) is therefore determined by the rate of reaction (R23). Consequently, we use

k4Y1 = k′

4B0Y1 instead of k′′

4CY2 in the corresponding model. This feedback also contributes to

the coupling of the two subsystems. For the remaining modes of coupling, notice that the first

subsystem is also coupled to the second subsystem through Y2 in the sixth reaction of the first

subsystem (R24), while the second subsystem is coupled to the first subsystem through Y1 in the

fourth equation of the second subsystem (R29).

Let A0, [X1], [Y1], [Z1], [X2], [Y2] and [Z2] be the concentrations of A, X1, Y1, Z1, X2, Y2 and

Z2 respectively. Then using the law of mass action we write the following system of first-order
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ordinary differential equations for the above model:

˙[X1] = k0A0 + k1A0[Z1] − k2[X1] − k3[X1][Y1]
2,

˙[Y1] = k2[X1] + k3[X1][Y1]
2
− k4[Y1],

˙[Z1] = k4[Y2] − k5[Z1], (VII.1)

˙[X2] = k0A0 + k1A0[Z2] − k2[X2] − k3[X2][Y1]
2,

˙[Y2] = k2[X2] + k3[X2][Y1]
2
− k4[Y1],

˙[Z2] = k4[Y2] − k5[Z2].

We note that the law of mass action kinetics is obeyed; however, unlike model (R7)-(R18) giving

rise to Eqs. (III.1), model (R19)-(R31) giving rise to Eqs. (VII.1), from which Eqs. (IV.1) follow,

includes chemical steps that may not be plausible. Nevertheless, we present this model to explore

the unusual extreme multistability involving an evolution of the conserved quantity.
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