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Abstract

Intrinsic oscillations are thought to play important and distinct roles in cognitive processes across

nearly all regions of the brain. Their specific roles are highly dependent on their properties: low

frequency theta is thought to be important in the gating of cognitive processes while high frequency

gamma is believed to be essential for binding and spike timing dependent plasticity. We investi-

gated the role of an oscillatory drive for pattern formation of heterogeneous networks. Network

heterogeneities were implemented as network regions having increased connectivity as compared

to the rest of the network. We varied the properties of the oscillatory drive as well as network

connectivity. We observed that the disparity in spatio-temporal patterning of activity between the

structurally enhanced region and rest of the network was highly dependent on frequency and ampli-

tude of the oscillatory drive as well as network connectivity, generally favoring bigger enhancement

of activity for high frequency oscillations and phase locking with moderate enhancement of activity

for lower frequency oscillations. Thus, these results indicate that the specific role of the observed

oscillations may depend on their dynamical interactions with the heterogeneous network.
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I. INTRODUCTION

The oscillatory patterning of neural activity is ubiquitous and is thought to play a major

role, in many functions, across nearly all regions of the brain [1–10]. Delta (1-4 Hz) [11], theta

(4-10 Hz)[4, 12], alpha (8-12 Hz)[11], and gamma (25-100 Hz)[2, 3, 13–16] frequencies are

more than just categorical denominations as each range is prominent and have independent

functions in different areas. Accordingly, a considerable amount of work has been dedicated

to the mechanisms involved in the generation of these oscillations (for example [15, 17, 18]

and references therein). These mechanisms can be broadly divided into two groups: intrinsic

cellular mechanisms and network based mechanisms. It is known that single cells can exhibit

intrinsic oscillatory rhythms that are mediated by sub-threshold voltage dependent currents

or after hyperpolarization [15, 18–21]. For example, fast-spiking interneurons are postulated

to be responsible for the the generation of high-frequency gamma rhythms through fast

repolarization and gap-junction synchronization inducing global inhibition [22, 23]. From a

network perspective, studies have shown that interacting cell assemblies can also mediate

the formation of oscillatory patterning of their activity [15, 17, 24]. Recent work by Vervaeke

et al. has demonstrated a (de)synchronization dependence on the local organization of the

chemical synaptic connections in the Golgi interneuron network of the cerebellum [25].

An equally extensive amount of research has focused on the role of these oscillations

during information processing. Various studies have demonstrated their role during learning

[4], various stages of sleep [26], and recall [4] amongst many other processes. Oscillations

are thought to act as a gating mechanism [27, 28], aid in binding via spike-timing dependent

plasticity [14], or serve in the coordination of large separated groups of neurons [29]. From

a more physical perspective, input frequencies have also been studied in the context of

stochastic resonance, or the enhancement of an oscillatory signal in the presence of specific

noise [30–33].

Most of the work done until now has focused on the role of oscillations in homogeneous

networks, i.e. networks having uniform structural and dynamical properties throughout their

assembly [34, 35]. Brain networks however, are highly heterogeneous. Even within the same

brain structures, such as the neocortex or hippocampus, the local network connectivity is

being constantly altered by different processes. The long-term potentiation or depression of

synapses that underlie learning lead to the selective formation of cells ensembles with higher
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connectivity densities and increased synaptic connection strengths [36, 37]. Elucidation of

dynamical pattering in heterogenous networks may lead to better understanding of dynamics

of information storage end retrieval.

At the same time pathologic processes (e.g. brain injury or genetic malformations),

such as the ones leading to epilepsy, may create local foci that later generate epileptic

seizures. Understanding interaction of these foci with the intact networks may lead to easier

identification of these pathological brain structures.

In this paper we focus on understanding how an oscillatory drive differentially interacts

with structural heterogeneities in a neuronal network and how it may provide a dynamical

backbone for information processing. Such an oscillatory drive may be generated both ex-

ternally, as by the pacemaker medial septum leading the hippocampus [38], or from intrinsic

sources, as by the slow-pyramidal and fast-basket cell interaction in the cortex [39]. We

have found that the frequency of the input oscillation can act as a control parameter for the

patterning of activity in the network. We show that for certain, large sets of network pa-

rameters, as well as specific ranges of frequency/amplitude of oscillation, the activity of the

network region with modified structural properties can be selectively enhanced, resembling

a network mediated resonance response. This enhancement is in the form of an increase in

firing rate or in the increase of phase coherence of neuron spike times. Furthermore, the fre-

quency ranges where the phase coherence of the heterogeneity are enhanced are significantly

different than the frequency ranges where the firing rates are increased. These effects are

modulated by the number of connections, synaptic coupling strength, and network structure.

Our results shed light on the interaction of structural network properties with oscillatory

drives and provide an insight into the possible additional dynamical underpinnings of the

differential roles of oscillatory drive in the neural networks. We demonstrate that otherwise

similar input oscillations can have drastically different effects depending on the properties

of the network structure, and therefore different functional roles in the brain.
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II. MODELING

A. Network architecture

We modeled a neuronal network consisting of groups of 200 excitatory and 200 in-

hibitory neurons. Both groups were arranged on a 1-D lattice with periodic boundary

conditions forming a ring structure. The network elements were coupled using the Small-

World paradigm [40] where neurons are initially connected to their nearest neighbors within

a radius r, then randomly rewired anywhere within the network with probability p. Thus,

p = 0 returns a uniform and locally coupled network and p = 1 returns a randomly and

globally coupled network. A more realistic proportion of excitatory to inhibitory neurons

is 80% - 20% and we have used the 50% - 50% ratio for simplicity purposes only. The

results of this paper are maintained for either ratio and we refer the reader to section IIIB 2

where we investigate a range of excitatory-inhibitory ratios. We used 1-D network model

with periodic boundary conditions. Previous work has also shown the neuronal dynamics

are readily translatable from 1-2-3D cases [41–43]. To insure the robustness of our results

however we briefly investigate a 2-D network in Section IIIB 3.

There were four connection topologies to consider for these two networks: the connections

within the excitatory network (re, pe), within the inhibitory network (ri, pi), from the

excitatory to the inhibitory network (re−i, pe−i), and from the inhibitory network to the

excitatory network (ri−e , pi−e). The connectivity radius of connection types were set to

be the same, re = ri = re−i = ri−e = r. We varied the connectivity structure emanating

from the excitatory network (rewiring parameter pe = pe−i = p) and investigated rewiring

parameter values p ∈ [0, 1]. We set the connectivity emanating from inhibitory cells to be

random pi = pi−e = 1.

B. Integrate-and-Fire neuron model

It is known that neurons, and accordingly oscillator neuron models, can have distinct and

complex interactions with oscillatory depolarizing currents. The goal of this work was to

understand the interactions that result from the network itself and not on effects stemming

from the dynamics of single neurons. Therefore we have used the leaky integrate-and-fire

neuron model throughout most of our simulations. This model lacks a oscillating properties
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and a classical resonance frequency, therefore all frequency responses are direct properties

of the network interactions themselves. This is not to say however, that the interaction

between neuronal and network dynamics are not prevalent in real brain systems, quite the

contrary is true, only that we seek to reduce the system to a network response to better

understand this particular underlying mechanism. We briefly cover the the interactions with

more complex resonating neuron models.

C
dV j

dt
= −αj(V − V j

rest) + Iext +
∑

k

wk
synS

jkIksyn (1)

Here, V j is the membrane potential of the jth neuron, α is a leakage coefficient which is

different for every cell, 1/Rs = αj ∈ [0, 0.1]µS; Iksyn is the synaptic current generated at the

time of the spike, wj
syn defines the excitatory or inhibitory synaptic coupling strength and

each element positive/negative for excitatory/inhibitory neurons; Sjk is the synaptic connec-

tivity (adjacency) matrix; and Iext is an external current (see next section). We investigated

a range of synaptic couplings wsyn ∈ [0, 0.3] increments of 0.1. For the simulations in this

paper the value of capacitance was C = 0.5nF hence 〈τj〉 = 10ms and Vrest = −70mV . We

employed Euler’s method to solve for the voltage with timesteps of dt = 0.25ms.

The synaptic current is activated after the presynaptic neuron reaches a threshold

Vthresh = −54mV and fires an action potential. The pre-synaptic neuron is then returned

to Vrest and remains there for a refractory period tref = 10ms. The synaptic current is of

the form:

Iksyn(t) = (e
−(t−tk

spike
)

τs − e
−(t−tk

spike
)

τf )Ibase (2)

where Ibase = 8nA scales the synaptic current, (t− tkspike) is the time since the last firing

of the presynaptic neuron, τs = 3ms is the slow time constant, and τf = 0.3ms is the fast

time constant. The variables τs and τf are chosen such that the post-synaptic potential

lasts approximately 2 ms. There was a 2.5 ms synaptic delay between each neuron. We

have investigated networks with different transmission delays and no major differences were

detected.

To create the heterogeneity in the network, we selected a group of 20 adjacent neurons

(usually IDs 90-110) and increased their synaptic coupling strength (wsyn) by 30% as com-

pared to the rest of the network. This 30% increase was maintained when the overall wsyn
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was increased for the entire network, unless otherwise stated. We referred to this region as

the structurally enhanced region. Varying the size of this region did not have a qualitative

effect on our results.

Additionally, each neuron was individually exposed to a Poisson noise. The noise prob-

ability was set to 0.05% per time step, resulting in an average firing rate of 2 Hz in the

absence of any other input.

C. External oscillatory current

We controlled the oscillatory input into the network via the external current Iext. Both the

excitatory and inhibitory neurons were driven by the external oscillating current 〈Iext〉 = 0:

Iext = Aosssin(fdrt + δ), (3)

where Aoss is the amplitude of the oscillation, fdr is the driving frequency and δ is a

random starting phase. We investigated fdr ∈ [3, 90]Hz in increments of 3 Hz and Adr ∈

[0.4, 1.2]nA in increments of 0.1 nA. This oscillation may be thought of as an external current

source [38] or an intrinsically generated current source input into this specific population of

neurons [25].

D. Resonate and fire neuron model

To better understand the generality of our results, we investigated the basic phenomena

for two other classes of neurons: the resonate-and-fire and Hodgkin-Huxley Type I models.

The resonate-and-fire neuron was based off the model presented by Izhikevich [44]. We

selected the model because the classical resonance frequency/condition was easily modified

and achieved. The model is a 2-D linear system where x is the current like internal variable

and y is the voltage like internal variable. Here

dx

dt
= −x− ωy + Iext + wsyn,j

∑

k

SjkIksyn (4)

and

dy

dt
= −ωx− y (5)
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For a full discussion refer to [44]. For our analysis, we adjusted the parameters of the

neuron, ω = 0.2, 0.3, and 0.4 (all other values remain the same), to resonate at roughly 30,

45, and 60 Hz respectively.

E. Hodgkin Huxley neuron model

We selected a Type-I non-resonating Hodgkin Huxley interneuron neuron model based

off Wang and Busaki [18] and generalized by Pfeuty et al. [45]. These neurons had two

compartments (somatic and dendritic) with sodium, potassium, and leak currents, along

with an excitatory and inhibitory coupling in the same manner as our simulations. A brief

summary is provided below; for the detailed description we refer you to [18, 45]. The model

is divided into a somatic compartment (s) and dendritic compartment (d). The dynamics

of the somatic compartment are given by:

C
dV s

dt
= −IL − INs − IKdr − gc(V

s − V d) + Inoise, (6)

the dendritic compartment is described by:

C
dV d

dt
= −IL,d − gc(V

d − V s) + Iext, (7)

where the currents are IL = gL(V
s−VL), IL,d = gL(V

d−VL), INa = gNam
3
∞
h(V s−VNa),

and IK = gKn
4(V s − VK).

IL is the leak current, INa transient sodium current and IKdr is the delayed rectifier

potassium current, m, h, n are voltage dependent conductances. We implemented these

equations with following parameters: gNa = 35mS/cm2, VNa = 55mV, gK = 9mS/cm2, Vk =

−75mV, gL = 0.1mS/cm2, gc = 0.3mS/cm2, VL = −65mV,C = 1F/cm2

F. Analysis

We used two metrics to quantify the behavior of the network: regional firing rates (ac-

tivity) and the mean phase coherence (MPC). The firing rate was defined as the number of

firings per neuron per second and was calculated separately over the enhanced region and

the rest of the network. To quantify how active the enhanced region was over the rest of
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the network, we defined the activity ratio as the firing rate of the enhanced region divided

by the firing rate of the rest of the network.

We used the MPC to measure the amount of phase locking between cells [44, 46]. The

MPC ranges between 0 (least coherent) and 1 (most coherent). The MPC is calculated pair-

wise between neurons inter-spike-intervals via the equation, for the MPC (denoted below as

M) between neuron n and m:

Mnm =

∣

∣

∣

∣

∣

1

S

S
∑

s=1

eiφnms (j)

∣

∣

∣

∣

∣

(8)

Here S is the total number of measurements of cell m-s spike times within the first and

last firing of cell n and φnms
is the phase between cell n and m for interval j containing s.

The phase is defined as

φnms
(j) = 2π

τnj ,ms

τnj

, (9)

where

τnj
= tnj+1

− tnj
; (10)

is the inter-spike-interval j for neuron n containing s and

τnj ,ms
= tms

− tnj
; (11)

is the time difference between the initial firing of neuron n, on interval j, and the firing

s, of neuron m, with the condition,

tnj
≤ tms

≤ tnj+1
(12)

Finally, to calculate total MPC (M) we take the average of all Mnm pairs across all

neurons,

M =
1

N(N − 1)

N
∑

n

N
∑

m

Mnm (13)

where N is number of neurons in a group over which the mean phase coherence was

calculated. We calculated MPC separately for the neural pairs composing the enhanced

region and these in the rest of the network.
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FIG. 1. Comparison of activity patterns between the structurally enhanced region and rest of

the network. A) Top - The natural log of the firing rates for the enhanced region (left), rest of

the network (center), and the natural log of ratio of the two (right). Bottom - the mean phase

coherence for the corresponding regions. We varied the synaptic coupling and oscillation frequency

while keeping the oscillation amplitude Adr = 0.8nA and connection radius r = 3 fixed. B) The

same measures as before but for a specific value of synaptic coupling wsyn = 0.25. Parameter

values correspond to the line drawn through the figure on the left.

G. Power spectral density

To compute the power spectral density (PSD) plots, we binned the total spiking output

(10 ms bins) of the enhanced and outside region. This was simply a sum of ones (if the

neuron fired) and zeros (if it did not). We then used the MATLAB Fast-Fourier Transform

function on the complete 2000 ms simulation.

III. RESULTS

Our goal was to understand the interaction between network topology and oscillatory

input on the dynamics of a heterogeneous neuronal network. For this reason we have created

a network that has a localized region of increased connectivity (wsyn is fixed to 30% higher

than the rest of the network). To investigate the differences of network response within the

synaptically enhanced region, we measured the spiking activity and MPC within the region

and within the rest of the network, and took the ratio of the two values. Throughout this

paper we monitored these values as a function of the driving frequency fdr of input.

We first studied the change of activity for the enhanced region, the outside region, and the

ratio of these two while changing the oscillatory input frequency fdr and the network coupling
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FIG. 2. Frequency dependent enhancement of the activity of the enhanced region. A) The natural

log of the activity ratio for r = 3, 4, 5 (left, center, right respectively) and B) the MPC ratio. We

vary the amplitude of the input oscillation Adr ∈ [0.4, 1.2]nA and driving frequency fdr ∈ [3, 90]Hz

for three different wsyn = 0.1, 0.2, 0.3 and r = 3, 4, 5. C) Selected line plots for parameter values as

denoted on the color figures for activity ratio (left) and MPC ratio (right) (a): r = 4, wsyn = 0.1,

Aoss = 1.2nA; (b): r = 4, wsyn = 0.2, Adr = 0.8nA and (c): r = 5, wsyn = 0.1, Adr = 1.2nA.

strength wsyn. Figure 1 shows vastly different spatio-temporal activity patterns depending

on these parameters. At lower frequencies, for the whole range of synaptic couplings, the

entire network is active due to the peaks of the slow oscillations acting as ’almost constant’

depolarizing currents. At higher frequencies, and higher synaptic coupling strengths, only

the enhanced region is able to maintain network driven spiking activity. This is inherently

a network effect, and will be dependent on the connectivity properties (wsyn and r).

Overall, the network activity displayed three dynamical regimes as a function of driving

frequency: a random state where the oscillation is not sufficient to stimulate the network

and the activity is primarily driven by external noise; a network-wide bursting state typi-

cally mediated by slow oscillations; and a state where the enhanced region dominates the

dynamics. We also observed changes in the mean phase coherence within the heterogeneity.

That enhancement typically occurred for lower frequencies, just before the transition from

the global bursting to increased activity of the enhanced region.

Figure 2 summarizes the network response for different parameter regimes when changing

characteristics of the input current. The color plots in Figure 2A depict the natural logarithm

of the activity ratio between the enhanced region and rest of the network for different values

of connectivity (r = 3, 4, 5). Figure 2B shows the MPC ratio for the two regions. The three
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FIG. 3. Spectral Density analysis of the total network response to oscillatory drive. We plotted the

PSD of the averaged activity for the enhanced (top) and outside (bottom) regions vs. the driving

frequency fdr ∈ [3, 90]Hz. For r = 3, 4, and 5 the synaptic coupling is fixed at wsyn = 0.3, 0.2, and

0.15 respectively. Adr = 0.8nA for all simulations. The bottom row depicts raster plots for driving

frequency denoted by the black lines for r = 3 (left), r = 4 (middle), and r = 5 (right).

rows correspond to three different values of overall network coupling strength. The x-axis on

the color plot represents the driving frequency fdr, while the y-axis is the amplitude (Adr).

For weak network coupling strength (Figure 2, wsyn = 0.1, all r) we observed a narrow

band of increased activity ratio that is highly dependent on the driving amplitude. The

changes in MPC ratio are largely insignificant, showing minimal enhancement for frequencies

just preceding the activity enhancement. For the intermediate and high network coupling

strength regime (for all r) we observed a significant shift of the activity increase towards the

high frequency regime for all oscillatory amplitude values. Furthermore, we also observed

a large frequency regime where the network heterogeneity displays an increased MPC. This

occurs for low frequencies preceding the transition to enhanced region activity enhancement

(Figure 2, wsyn = 0.2, r = 4).
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Oscillation amplitude is fixed at Adr = 0.8nA and wsyn = 0.3, 0.2, and 0.15 for r = 3, 4, and 5

respectively.

The observed changes in the activity ratios and MPCs are due to differential effects the

oscillations on the two regions. In the weak coupling regime the enhanced region displays a

increase of its activity for a low frequency range. This occurs because within this frequency

range the cells within the enhanced region are enough depolarized to sustain network induced

activity, while the neurons within rest of the network remain largely subtreshold. This effect

is even more exasperated due the inhibitory layer as it further suppresses rest of the network

(please refer to figure 9). For faster frequencies in the low coupling regime both network

regions can not sustain the network activity and their activity ratio decreases. This frequency

range is preceded by a phase locking of the neurons to a slow (< 20Hz) oscillatory drive
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and invokes synchronous activity within the enhanced region. This synchronous activity

further increases the enhanced region’s ability to maintain activity because the excitatory

post-synaptic potentials are highly coincident.

For the intermediate and high values of network coupling, the resonance effect is su-

perseded by the enhanced region’s propensity to easily enter a highly active, reverberatory

regime with natural frequencies around 70 Hz. This reverberation is generated by the en-

hanced region’s neurons integration time (controlled by the leakage current and synaptic

input), synaptic delay, and refractory period matching the frequency of the oscillation, al-

lowing sustained activity to quickly pass back and forth throughout the enhanced region.

Basically each neuron is ready to integrate up and fire again at the peaks of each oscillation

inducing a network resonance effect. Concurrently, the rest of the network is strongly inhib-

ited by the inhibitory network receiving increased input from the enhanced region. Figure

3 also shows the network’s propensity to fire at this rate (top right) and the drastically

increased activity when the input frequency is in this range. Additionally Figure 3 shows

how the number of connections (changing the synaptic current each neuron receives) affects

the frequency dependencies. From this it is clear that increasing the number of connections

decreases the integration time of the neuron, generating a stronger band of activity in the

high frequency 70-80 Hz range.

A. Cellular correlates of selective activity enhancement

We investigated how the membrane characteristics affect the selective response of the

enhanced region. Namely we studied the effects of the refractory period and membrane time

constants on frequency dependence of the selective network activiation. Figure 4 shows

the effects of varying membrane time constants has on the neuron. As we decrease the

leakage, decreasing the time the neuron voltage takes to reach the threshold, the frequency

at which network can sustain its activity increases. Figure 4A shows the ∼ 40Hz peak we

achieved for our standard τ = 10ms, a shift to a peak of about 70 Hz for τ = 40ms, and

a maximal frequency response of 80-90 Hz for τ = 100ms. Accordingly the activity ratio

increases because the enhanced region is firing at a higher frequency and there is increased

excitation. It is also interesting to note that the MPC peaks only for the lower frequency

current induced activity.
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averaged over 25 trials.

Figure 5 demonstrates the effect the refractory period has on the frequency dependence.

Similarly to the above results, the faster refractory periods allow neurons to fire more than

once under a single slow oscillation, important for sustaining activity under each peak. A

10 ms refractory period however is ideal for the high frequency regime because each neuron

is simply recharging when the oscillation is in its trough. A 14 ms refractory period is too

slow for either of these processes.

1. Hodgkin and Huxley neuronal network

We compared our results to a more biologically realistic Hodgkin-Huxley (HH) neuron.

We used a two compartment (soma and dendrite) neuron to contrast to our integrate-and-

fire results Figure 6 demonstrates the activity ratio response of these neurons to the varying

input frequencies. The HH model neuron did not resonate at any frequency between 1-

90Hz, but did have increased impedance at higher frequencies, indicating a weak frequency

preference. It is clear that a network of HH neurons with an enhanced region allows for the

same frequency-specific selective activation of the enhanced region in similar coupling and

current ranges. Additionally we see a shift of the MPC to the frequency range is enhanced.

This is not surprising however, because the individual neurons’ frequency preference, in this
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FIG. 7. Changing the connectivity in the enhanced region. A: the ratio of synaptic coupling

strength (Rw) of the enhanced region vs. the rest of the network is varied. B: The enhanced region

is built by randomly adding a percentage local connections within the radius (r+2) for neurons in

the enhanced region. For example if Xr = 50% and r = 3 then the neurons within the enhanced

region are 100% connected from r = 1 through r = 3 and 50% connected for r = 4 through r = 5.

For all simulations shown: the connectivity radius of the base network is r = 3, Adr = 0.8nA and

wsyn = 0.3.

range, causes the firing rate to be modulated at this frequency, therefore enhancing the

MPC. What likely occurs in the brain is a balance between these two behaviors.

While this analysis of HH neurons is by no means a thorough investigation of the possible

interactions between oscillations and network in a complex neuronal model system, it proves

that the observed phenomenon is network driven and independent of the specific dynamical

equations of the individual cells.

15



B. Network correlates of selective activity enhancement

We then investigated how significant the heterogeneous enhancement needs to be to

observe the robust activation differences. We did this by increasing/decreasing the synaptic

coupling of the enhanced region by changing the excitatory coupling strength while keeping

all other excitatory and inhibitory connections the same (Figure 7A). We observed that

a relatively small increase in excitatory connection strengths within the enhanced region

(around 20% over the rest of the network) allows for a significant increase in activity. This

is in comparison to experimentally observed effects of spike timing dependent plasticity which

can be on the order of 200%. This change in the excitatory balance provides an adaptive

mechanism for the network to respond differently, depending on the overall strength of

synaptic heterogeneities.

We also investigated changes in activity when we built the enhanced region through

the addition of connections within the region while keeping wsyn the same as the rest of

the network. We added connections by inserting a random fraction of additional local

connections for and increased radius (r + 2). Figure 7B demonstrates that a 50% increase

in the number of connections was enough to increase the activity ratio. It is important to

note however that this 50% increase in number of connections was significantly higher than

the 20% increase in wsyn needed to increase the activity ratio.

1. Activity enhancement and network topology

Next we investigated how the network topology affects the enhanced region activity ra-

tio. To do this we have varied the rewiring parameter p ∈ [0, 1] from local (p = 0) to

random (p = 1). We observe that as the connectivity becomes more global the activity ratio

attenuates (Figure 8). This is due to the fact that as local connections are abolished the

network becomes more homogeneous and random and thus the differentiation between the

enhanced region ceases to exist. We still however observed significant activity enhancement

for intermediate rewiring topologies near the small-world regime.
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A,C) r = 5, Adr = 1.2nA; wsyn = 0.1; B,D) r = 4 Adr = 1.2nA; wsyn = 0.2.

2. Number of inhibitory neurons

We also investigated the effect the number of inhibitory neurons has on the network re-

sponse. Figure 9 shows the activity and MPC ratio for two prevalent ranges. The other

connectivity parameters of the network remain the same. Overall shape of frequency re-

sponse remains the same, however there are some important changes. We observe that the

17



activity ratio as well as MPC ratio increase as the number of inhibitory neurons decreases,

for the network parameters promoting peak at the lower frequency range. At the same time

it decreases for the peak at high frequency. For high frequencies, the reduction in the peak

occurs due to lowered overall inhibition generated by the enhanced region, which in turn

allows the rest of the network fire at faster rate (Figure 9B).

The shift of the peak frequency and enhancement of ratio for the low frequency range is

an effect of two interacting processes. The enhanced network is able to follow the oscillatory

drive up to higher frequencies than the rest of the network. At the same time it generates

significant amount of inhibition additionally slowing down both networks. Reduction of

inhibition trough deletion of inhibitory neurons allows the non-enhanced network region to

follow the oscillatory drive to higher frequencies, leading to shift of the peak frequency. At

the same time it also allows the enhanced region for higher activity leading then to stronger

inhibition and more thorough shutdown of other network regions 9A. Recent computational

work by Fisher et al. [47] has shown that target spiking rates can be achieved in networks

with different balances of excitatory and inhibitory neurons. Such a system might also

respond variably to different input frequencies, as our result suggests.

This result might be especially important for the brain pathologies such as epilepsy, where

it is known that seizure activity is an effect of lowered inhibition due in part to reduction

of the number inhibitory interneurons. Our results indicate that this reduction could also

have another dynamical effects within the heterogenous networks.

3. Frequency response of a 2-D network

All above results are based on simulations of 1-D networks, which are not biologically

realistic. In this section we briefly investigated whether network dimensionality will play a

significant role in the observed phenomena. We simulated a 20 ∗ 10 periodic 2-D network.

The synaptic coupling strengths were modified to account for the increased connections for

a given connection radius. Both, the actvity ratio, as well as MPC ratio show the same

qualitative behaviors 10.
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C. Cumulative cellular and network effects of a resonate-and-fire neuronal net-

work

We have specifically chosen a non-resonating neuron model for this paper to most clearly

interpret the impact of the network properties, as opposed to the resonant properties of an

individual neuron. A full analysis of the interaction between a single neurons resonance and

network properties will be left to another paper. In this section however, we briefly compare

our results to that of a networked Izhikevich resonate-and-fire model (RAF) [44], to ensure

that the responses we have observed are ubiquitous.

Here we adjusted the parameters of the RAF neuron, w = 0.2, 0.3, and 0.4 (all other

values remain the same), to resonate at roughly 30, 45, and 60 Hz respectively. We then

performed an identical analysis as previous sections with wsyn = 0.3, Adr = 1.2nA, r = 4.

Figure 11 shows the activity ratio and overall firing frequency of these networks RAF neurons

and each frequency. We clearly see the same enhancement in the activity ratio for higher

and lower frequencies (Figure 11, Column 1). The only part of the activity ratio curve that

is affected is the range where single neuron resonance occurs, where the entire network is

active, and the activity ratio accordingly goes to 1. We can see this range in Figure 11,

Column 2.

From these results it is clear that the single neuron dynamical properties superimpose

onto the network response. The network response is therefore maintained.
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D. Discussion and Conclusions

Oscillations are believed to have important and distinct functions in numerous regions

of the brain [2, 4, 14, 28]. Their implicated roles also vary widely as a function of their

amplitude and frequency [8, 48]. While high frequency gamma oscillations are thought to

play an important role during focused attention and recall [2, 4], slower theta/beta band

oscillations are thought to be important for learning [49, 50]. We have shown that, for

a network with a heterogeneous connectivity structure, the frequency and amplitude of

oscillations can play a crucial role in determining activity patterns within different network

regions. While higher frequency oscillations may be optimal for the enhancements in activity

of structural heterogeneities, lower frequency oscillations mediate phase locking within these

heterogeneities.

These results may have also important implication for understanding pathological net-
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work dynamics. It has been observed that epileptic patients exhibit increased signal co-

herence between different brain locations in theta frequency range as compared to healthy

subjects [51, 52].

Our results are due to the fact that the additional network mediated current changes,

in a nonlinear fashion, the response properties of the enhanced region. These local changes

to network properties can be activated by an oscillatory current within specific frequency

ranges. The specific ranges depend on the neuronal refractory periods, synaptic communica-

tion times, and intrinsic current response, creating an optimal range of frequency responses.

A different response can be obtained by creating a network heterogeneity through the

addition of a depolarizing current to a group of cells. Here significant enhancement is ob-

tained throughout most the entire range of driving frequencies and the mean phase coherence

increase is shifted towards higher frequencies (Figure 12), with no activity ratio peaks at

specific frequencies.This suggests that a mere change of balance between excitatory and in-

hibitory currents due to formation of additional synapses [53] or background spikes rates

[47], cannot generate the same results.

One set of processes which might employ this frequency response mechanism are those

that involve higher frequency oscillations concurrent with lower frequency oscillations. A

commonly observed example is gamma rhythms riding on theta rhythms during encoding

and recall in the hippocampus [12]. Additionally, in recent work by Colgin et al. [2] they

demonstrated that the specific frequency of a gamma oscillations was routed differentially

through either the CA1 or CA3 at different phases of a theta oscillation. Another well

documented use is during playback in sleep [54]. In any of these process, pre-developed short-

term memory traces are reactivated for recall and/or long term encoding. This reactivation

is limited to a small number of traces at a time, not global reactivation of the entire network.

If we consider the enhanced region to be analogous to a short term memory trace, then the

selective frequency response shown in this paper provides a mechanism allowing a input

frequency to selectively reactivate that memory alone without involving other neurons and

traces in the process. Figure 13 demonstrates a model system we have designed to exhibit

the possible use of the interaction between fast and slow oscillations when more than one

heterogeneity is present. Here we have two enhanced regions, (neuron IDs 40-60 and IDs 140-

160) and we input an oscillatory current of 2 Hz and a concurrent oscillatory current of 60

Hz. At the peaks of the 2 Hz oscillation the network randomly activates one of the enhanced
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regions, while the other is inhibited due to the activity from the inhibitory network. When

the 2 Hz oscillation is in a trough the entire network is quiet before either of the enhanced

regions are randomly activated again by the peak. Figure 13 may be representative of

playback of multiple newly formed memories during REM sleep as it provides a mechanism

to randomly cycle through memory traces while only activating/encoding one at a time.

In conclusion, the effects that we have discussed in this paper may provide the dynamical

underpinnings to a number of brain functions that are mediated by intrinsic oscillatory

patterning. For example, the increased re-activation of an already enhanced region can

affect the strength of memory recall or playback during sleep [4, 26]. Additionally, increases

in the coherence of neuronal activity can influence spike timing dependent plasticity between

neurons, enhancing the network heterogeneity [4, 9].
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