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Traditionally, the main role of cell-to-cell communication was thought of as synchronizing a pop-

ulation of cells, thereby coordinating cellular behavior. Here, we show that cell density, which

quantifies cellular communication, can induce multistability and multirhythmicity in a synthetic

multicellular system, where individual oscillators are a merge of repressillator and hysteresis-based

oscillator and are coupled through a quorum-sensing mechanism. Specifically, for moderately small

cell densities, the coupled system can exhibit multistability including stable homogenous and inho-

mogeneous steady states. For moderately large cell densities, it has potentials to generate multi-

rhythmicity including multi-mode oscillations such as in-phase periodic solution, anti-phase periodic

solution, asymmetric periodic solution, and mixed-mode oscillations, coexistence of periodic orbits

of several different modes, and bursting oscillations such as periodic bursting, torus quasi-periodic

bursting, and chaotic bursting. Such versatility of cell-to-cell communication would be beneficial

for cells or organisms to live in diversely changeable environments.

PACS numbers: 87.18.-h; 05.45.Xt; 87.16.Yc; 05.45.-a

I. INTRODUCTION

Cell-to-cell communication (CCC for brevity) is omnipresent in biological systems ranging from

prokaryotes to eukaryotes, and from plants to animals and even to human [1-5]. In nature, com-
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munication is crucial for the physiological functions of diverse organisms, e.g., in bacteria, cells use

so-called quorum sensing to communicate with each other through signalling molecules that are re-

leased into the cellular environment. By sensing the accumulation of these molecules, bacteria can

gauge cell density and coordinate their behavioral response, consequently leading to the formation

of various cellular patterns [6]. During development in Drosophila, intercellular signaling combines

with spatial signal gradient sensing for the formation of vein structure on the wing [7], where a

well-defined multicellular pattern emerges from the controlled action of individual cells. In a ner-

vous system, CCC links together a wide variety of cells essential to the functioning of the nervous

system within a complex organism, where activity-dependent ATP release by nervous cells acts

as an extracellular signal detected by purinergic membrane receptors that modulate intracellular

calcium and cyclic AMP [8]. In each case, CCC plays a role of coordinating population behavior,

and can lead to the formation of a certain cellular pattern [9-11].

CCC systems have attracted great attention for use in synthetic circuits based on genetic compo-

nents from the virus bacteriophage λ combined with those from the quorum-sensing system. This

is mainly because synthetic gene regulatory networks have potentials to enhance our knowledge of

cellular processes on the one hand, and can encourage us to study the design principles of natural

systems on the other hand. Synthetic networks are also able to display the role of CCC in coor-

dinating multicellular behavior. For example, Garcia-Ojalvo, et al. [12], showed, by designing a

biologically feasible multicellular system: repressilators coupled by quorum sensing, that a diverse

and noisy community of the interacting repressilators can self-synchronize in a robust way, leading

to a substantially improved global rhythmicity in this multicellular system. The similar example

also includes that McMillen , et al. [13], proposed another synthetic gene regulatory network in

E. coli, which combines the following two features: the system acts as a relaxation oscillator and

uses an intercell signaling mechanism to couple individual oscillators. Consequently, the proposed

coupling scheme can lead to synchronous behavior across a population of cells, which is achieved

through the so-called ‘fast threshold modulation’ dominant mechanism. Except for such a syn-

chronization function, CCC has other functions, e.g., to study population control and regulated
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killing, You, et al. [14], built and characterized a ‘population control’ circuit that autonomously

regulates the density of an E. coli population. This circuit can set a stable steady state in terms of

cell density and gene expression, which is easily tunable by varying the stability of the CCC signal.

For more relevant research works, see a recent review paper [15] (including some of references

therein), where You, et al., discussed the dynamic properties of CCC modules, how they can be

engineered for synthetic circuit design, and applications of these systems.

We notice that most of the previous relevant works mainly emphasize the role of CCC in syn-

chronizing a population of cells. A natural question is: Can cellular communication induce new

dynamics of a multicellular system? The answer is sure, e.g., Basu, et al. [11], showed that by fus-

ing different fluorescent proteins as outputs of network variants, an initially undifferentiated ‘lawn’

of receivers was engineered to form a bullseye pattern around a sender colony. Other patterns,

such as ellipses and clovers, were also observed by placing senders in different configurations. A

more interesting example is that Ullner, et al. [16,17], demonstrated multistability and clustering

in a population of repressilators versus phase-repulsive CCC, where the size of coupling strength

(i.e., cell density) plays a key role. Recently, we showed that CCC combined with combinatorial

regulation can induce several dynamic patterns [18,19]. In addition, CCC schemes can even be used

to create whole-cell density sensors in biology [20,21]. In spite of this experimental or theoretical

endeavor, functions of CCC remain to be fully explored.

This paper further addresses this issue from the viewpoint of dynamics, and shows the versa-

tility of CCC in coordinating population behavior. For this, we consider a synthetic multicellular

system, where the single oscillator is a merge of repressillator and hysteresis-based oscillator,

and communication between cells is based on the quorum sensing mechanism. Such a so-called

composite oscillator, which was initially proposed by Yang , et al. [22], combines two distinct

mechanisms into one regulatory network so that only two parameters: the strength of an ad-

ditional regulatory connection and the timescale separation for one of the variables, control the

transition from one mechanism to the other. We demonstrate that cell density, which quantifies

cellular communication, can induce multistability and multirhythmicity in coupled composite os-
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cillators. More precisely, small cell densities can make the coupled system exhibit monostability,

bistability or multistability including stable homogenous and inhomogeneous steady states along

the route to oscillation death, whereas moderately large cell densities can induce multirhythmicity

including multi-mode oscillations such as in-phase period-1 oscillation, antiphase period-2 oscilla-

tion, asymmetric period-2 oscillation (see the following explanations), coexistence of periodic orbits

with different oscillation modes such as coexisting in-phase period-1 oscillation and antiphase (or

asymmetric) period-2 oscillation, and bursting oscillations such as periodic bursting oscillation,

quasi-periodic bursting oscillation and even chaos. These detailed results indicate that CCC can

not only play a role of synchronization but also induce complex yet interesting dynamical phenom-

ena that have not yet been observed in a system of interacting oscillators with a standard coupling

(e.g., linear coupling).

II. MODEL

As is well known, the repressilator is an engineered circuit at the transcriptional level, where

three repressors U (TetR), V (CI) and W (LacI)), which are products of three genes u (tetR),

v (cI ) and w (lacI ) respectively, mutually repress in a cyclic fashion [23] (see Fig. 1(a)). This

circuit can generate self-sustained oscillations. Another synthetic circuit is the hysteresis-based

relaxation oscillator [24] (refer Fig. 1(b)), where the oscillation mechanism is based on driving a

bistable subnetwork of mutually repressing proteins U and V through a hysteresis range of the

autoinducer W in concentration. In this circuit, the autoinducer is controlled under a negative

feedback from the hysteretic subnetwork, and its dynamics can be made slow by introducing a

small parameter in the W equation. As a result, the system generates a relaxation-type oscillation.

These two oscillator networks share some similar motifs, which can make it possible to combine

the two systems with a few changes. Thus, we can construct a so-called composite oscillator (see

Ref. [22] for details), referring Fig. 1(c).

To establish our model to be studied, we integrate all biological processes such as transcription,

translation, promoter binding, etc, into a single step, and use the standard quasi-steady-state
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FIG. 1. (Color online) Schematic diagram for three genetic oscillators: (a) repressilator; (b)

hysteresis-based relaxation oscillator; (c) composite oscillator.

approximation (QSSA) assumption that dynamics of mRNA molecules is much faster than that of

proteins, for simplification. In addition, define rescaled concentrations as our dynamical variables,

and introduce a factor in the W equation into the repressilator so as to be able to slow down

dynamics of this component and match the timescale separation used in the relaxation oscillator.

Then, the resulting equations can be expressed as

dU

dt
=

α1

1 + V n
− U,

dV

dt
=

α1

1 + Wn
+

α2

1 + Un
− V,

dW

dt
= ε

(

α1

1 + Un
− W

)

,

(1)

where dynamics of each component is governed by its synthesis and degradation, which correspond

respectively to nonlinear functions and negative terms in the right-hand side of Eq. (1). The

parameter n is the Hill constant, the dimensionless parameters α1 and α2 represent the maximum

regulation rates, and the parameter ε describes timescale separation. It has been shown that

relaxation-type oscillations occur at 0 < ε ≪ 1 and in a finite interval of the large α2 whereas

oscillations generated by the original repressilator mechanism do at α2 = 0 and with no timescale

separation (i.e., ε = 1). Therefore, the composite oscillator contains both the relaxation-type oscil-

lation mechanism and the repressilator mechanism as its limiting cases, where two key parameters

control both oscillatory mechanisms: the strength of U to V connection, α2, and the parameter

of timescale separation, ε. In addition, there exists a single oscillatory region in the (α2, ε) phase

plane, where the two mechanisms support each other [22].

Next, we introduce a multicellular system based on the above composite oscillator in combination
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with a quorum sensing mechanism. In the standard manner of describing such a communication

mechanism [12,13, 18,19, 22,25], small signaling molecules are assumed to diffuse into the inside

of each cell in a population, and regulate the expression of the target gene. Thus, there are two

different kinds of dynamics mechanisms for the signaling molecules: the intracellular signaling

molecules that are affected by synthesis, degradation and diffusion toward/from the intercellular

medium, and the extracellular signaling molecules that generally undergo a mixing process in the

cellular environment. Let Wi and We represent the signaling molecule concentrations within the

inside of cell i and in the cellular environment, respectively. Then, the resulting system can be

governed by

dUi

dt
=

α1

1 + V n
i

− Ui,

dVi

dt
=

α1

1 + Wn
i

+
α2

1 + Un
i

− Vi,

dWi

dt
= ε

(

α1

1 + Un
i

− Wi

)

+ η (We − Wi) ,

(2)

where i = 1, 2, · · · , N with N being the total number of cells, the diffusion coefficient η describes

the permeability of the cell membrane to the signaling molecules. In the QSSA [12,13, 18,19, 25], we

can write We =
Q

N

N
∑

i=1

Wi, where Q represents cell density, varying between 0 and 1 in a controlled

way in a chemostat experiment by changing the total chemostat volume [12]. Our interest is in

analyzing what kinds of dynamics the parameter Q can induce if the individual systems are in

oscillatory states. In our analysis, Matlab and Xppaut package [26,27] are used, and α1 = 15,

α2 = 3.3, n = 3, and η = 2 are fixed throughout this paper.

It should be pointed out that the value choice of parameters α1, α2, n, and η does not change

our qualitative result if the single system is guaranteed to generate an oscillation. We will mainly

examine two typical cases of ε: large (e.g., ε = 0.8) and small (e.g., ε = 0.4) values, and see how

cell density influences the dynamics of a population of composite oscillators.
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III. RESULTS

To see how the parameter Q affects collective dynamics of a multicellular system described by the

above model (2), we consider only the N = 2 case for clarity and simplicity (however, the Appendix

of this paper shows some results for N > 2, which indicate that a larger N does not fundamen-

tally change our qualitative conclusion that CCC can induce multistability and multirhythmicity).

Numerical simulations show that the bifurcation diagram of component W versus cell density Q

is basically similar when the timescale separation parameter ε is either in the range from 0.5 to

1 (data are not shown), or in the range from 0 to 0.5 (data are also not shown). Moreover, in

the former case, the dominant mechanism for oscillations of the uncoupled system can be viewed

as the repressilator, whereas in the latter case, the dominant mechanism can be viewed as the

relaxation oscillator. Therefore, without loss of generality, we will only consider two cases: ε = 0.8

and ε = 0.4. Two bifurcation diagrams of W versus Q, which correspond to these two values of

ε, are shown in Figs. 2(a) and (b) (their interpretations will be later given), respectively. In what

follows, we will adopt brevities for the explanation of results: PB for pitchfork bifurcation, LP for

limit point (i.e., saddle-node point), HB for Hopf bifurcation, PD for period-doubling bifurcation,

and TB for torus bifurcation.

Here, we simply interpret why the cell density parameter Q can lead to the bifurcation diagrams

shown in Fig. 2. Note that the third equation of Eqs. (2) can be rewritten as the following

standard coupling form:

dWi

dt
= ε

(

α1

1 + Un
i

− Wi

)

− η(1 − Q)Wi +
Qη

N

N
∑

j=1

(Wj − Wi) , (3)

In this form, the uncoupled system consists of three interrelated equations: the first two equations

of Eqs. (2) and Eq. (3) without the coupling term. In general, the coupling term in a standardly

coupled system can have larger influences on collective behaviors (e.g., stability of synchronous

states) and less influences on internal dynamics of the single system. Therefore, the cell density

parameter Q would greatly affect dynamics and even can induce new dynamics of the currently

uncoupled system since it depends obviously on Q (see Eq. (3)).
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FIG. 2. (Color online) Two bifurcation diagrams of component W versus cell density Q in two

coupled composite oscillators: (a) ε = 0.8 and (b) ε = 0.4. In both diagrams, thick solid lines

stand for two different stable homogeneous steady states; thick long dashed lines for stable

inhomogeneous steady states; thin solid lines for unstable steady states; thick dash-dotted lines

for stable in-phase period-1 oscillations; thin dash-dotted lines for unstable period-1 oscillations;

thick dotted lines for stable antiphase period-2 oscillations; and thin dotted lines for unstable

antiphase period-2 oscillations. Note that a segment of the thick solid line for Q ∈ (0, 0.45) in (b)

is omitted for better exhibition. See the main text for the meanings of abbreviated symbols in

the two diagrams.

A. Multistability

First, we point out that the individual system can exhibit oscillations for arbitrary ε ∈ (0, 1)

and fixed α1 = 15, n = 3, and η = 2 as long as α2 is appropriately chosen (data are not shown

here). In particular, it is oscillatory for both α2 = 3.3 (which will be fixed in the following analysis)

and ε = 0.8 or 0.4. Then, we mainly examine two cases of ε: large (e.g., ε = 0.8) and small (e.g.,

ε = 0.4) values, and see how the cell density parameter Q influences steady states of the coupled

system and their stability while the individual system is in an oscillatory state.

For ε = 0.8, we observe from Fig. 2(a) that because of two subcritical pitchfork bifurcations at
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PB1 and PB2, the coupled system has two different stable homogeneous steady states if Q locates

respectively in an interval bounded by the W axis and PB1 and in another interval bounded

by PB2 and HB (see upper and below thick solid curves). Here, by homogeneous steady state

(HSS) we mean that two corresponding components in the coupled system take the same value.

With the increase of Q from the value corresponding to LP1, saddle-node bifurcations occurring

at two limit points: LP1 and LP2, lead to the appearance of stable inhomogeneous steady states,

which can persist in the interval bounded by LP1 and LP2 (see long dashed curves). Here, by

inhomogeneous steady state (IHSS) we mean that two corresponding components in the coupled

system take different values. Then, when Q is beyond the value corresponding to LP2, the IHSS

disappears but the low HSS still persists even until other complex oscillatory behaviors arise (see

low thick solid curve). In addition, we observe the coexistence of two stable steady states: IHSS

and upper or lower HSS (see thick long dashed and thick solid curves between LP1 and PB2 or

between PB1 and LP2), or the coexistence of three stable steady states: two HSSs and one IHSS

(see thick solid and thick long dashed curves between PB2 and PB1) when Q takes moderately

small values. Specifically, the coupled system has the unique HSS and is therefore monostable

if Q is in the interval bounded by the W axis and LP1, has both a HSS and an IHSS, and is

therefore bistable if Q is in the interval bounded by LP1 and PB2 or by PB1 and LP2, and displays

multistability due to the coexistence of three stable steady states: two HSSs and one IHSS, if Q is

in the interval bounded by PB2 and PB1. The above analysis indicates that the coupled system

can undergo transitions from monostability to bistability and to multistability if Q increases from

0 to PB1 through LP1 and PB2, and returns to a monostable state via a bistable state if Q is

beyond the value corresponding to PB1. Note that in the coexistence case of stable steady states,

to which state the coupled system ultimately evolves depends on the choice of initial conditions.

For ε = 0.4, the situation is somewhat different in contrast to ε = 0.8 (compare Fig. 2(b) with

Fig. 2(a)). The main differences are that the range of Q for the unique stable steady state in

the case of ε = 0.8 is currently enlarged, and one of two homogeneous steady states in the case of

ε = 0.8 has currently disappeared (compare thick solid curves in Fig. 2(a) and Fig. 2(b)).
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In both cases, the coexistence of stable steady states follows two kinds of bifurcations: PB and

LP, which have been marked in Fig. 2. It is worth being pointed out that the emergence of stable

steady states in the coupling case implies oscillation death in the individual system. In addition,

some of the stable steady states can also coexist with some periodic orbits (data are not shown

here but it is partially mentioned in the caption of Fig. 2).

FIG. 3. (Color online) Distributed regions of stable steady states in the (Q, ε) phase plane. The

curves are respectively the loci of five bifurcation points marked in Fig. 2: LP1, PB2, PB1, HB

and LP2, which partition the whole parameter region into six subregions with each corresponding

to one of the emerging HSS and IHSS or their different combinations: R1 for HSS1; R2 for HSS1

and IHSS; R3 for HSS1, HSS2 and IHSS; R4 for HSS2 and IHSS; R5 for IHSS; R6 for HSS2.

Next, we demonstrate distributed regions of stable steady states in the (Q, ε) parameter phase

plane (refer Fig. 3), which can further enhance us the understanding of communication-induced

multistability (including bistability). First, Fig. 3 indicates that ε has also important influences

on the formation of stable steady states and their stability in the coupled system. Second, the

united effect of ε and Q can lead that stable steady states are distributed mainly in 6 subregions,

denoted by R1-R6. There exist HSS1 (where the subscript 1 represents a high state in the (U , V )

state space) in R1, HSS1 and IHSS in R2, HSS1, HSS2 and IHSS in R3 (where the subscript 2

represents a low state in the (U , V ) state space), HSS2 and IHSS in R4, IHSS in R5, and HSS2 in

R6. It should be pointed out that the R2 and R5 regions would contain other types of attractors
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such as oscillations, which can moreover coexist with both IHSS and HSS1 or with IHSS (see the

following subsection for more details).

B. Multirhythmicity

Let us introduce or explain several terms used in the following analysis before presenting our

results. The period-1 oscillation means that there are one maximum and one minimum whereas

the period-2 oscillation means that there are two local maxima and two local minima [28]. By

multirhythmicity, we mean the following three classes of behaviors: multi-mode oscillations, coex-

istence of different-mode oscillations, and bursting oscillations. Multi-mode oscillations can further

be divided into symmetric and asymmetric oscillations according to characteristics of oscillation

amplitude, but also can further be divided into period-1, period-2 and mixed-mode oscillations

according to the wave form of oscillation. Here, by symmetric oscillation we mean that two sub-

systems oscillate with the same amplitude but may allow a phase difference between them (in

particular, no phase difference corresponds to in-phase oscillation whereas the half-period phase

difference to anti-phase oscillation). In contrast, asymmetric oscillation means that there are dif-

ferences in amplitude between two oscillators, i.e., the oscillation exhibits asymmetry in amplitude.

Mixed-mode oscillations are a complex type of dynamics, which can be a mixture of small-amplitude

oscillations and large-amplitude (relaxation) excursions. In general, a mixed-mode periodic orbit

can be characterized by the so-called Farey sequence of the form Lk0

0
Lk1

1
. . . L

kj

j , which encodes the

number of large-amplitude excursions (denoted by Lj) and the number of small-amplitude oscil-

lations (denoted by kj), respectively [29]. We point out that such a kind of oscillation has been

observed in both experiments and theoretical models involved in neuroscience, chemistry, and so

on [29-31]. Finally, bursting oscillations can further be divided into three cases: periodic, quasi-

periodic and chaotic bursting. We point out that these kinds of bursting oscillations have been

observed in neural activity, pancreatic β-cells, and metabolic or genetic control networks [32-34].

Now, we focus on examining how the cell density parameter Q leads to multirhythmicity. First,

we observe from the above bifurcation diagrams that Q can make the coupled system undergo a
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FIG. 4. (Color online) Cell density-induced multi-mode oscillations in two coupled composite

oscillators with ε = 0.8: (a)-(b) two modes of in-phase period-1 oscillations for Q = 0.42 and

Q = 0.93; (c)-(d) two modes of period-2 oscillations with a shifted phase for Q = 0.47 and

Q = 0.91; (e) asymmetric period-2 oscillation for Q = 0.80; (f)-(j) five types of mixed-mode

oscillations (MMOs): (f) symmetric 121211 MMO for Q = 0.766, (g) asymmetric 1212 MMO for

Q = 0.73; (h) asymmetric 12 MMO for Q = 0.745, (i) symmetric 12111213 MMO for Q = 0.76,

and (j) symmetric 1113 MMO for Q = 0.78.

Hopf bifurcation, but its location depends on the size of the timescale separation parameter ε,

e.g., it is increasing with the decrease of ε (compare Fig. 2(a) with Fig. 2(b)). However, the

behavior produced through the bifurcation is different when ε takes a large value and a small value
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respectively: the former makes the coupled system generate a stable limit cycle whereas the latter

makes it generate an unstable limit cycle. Second, a new branch beginning from PD1 emerges on

each of two branches of the original periodic orbit produced through the Hopf bifurcation, forming

a period-2 limit cycle (see the change of Q from small to large values in Fig. 2). For example, for

ε = 0.8, the coupled system goes through torus bifurcation at TB, pitchfork bifurcation at PB4

and saddle-node bifurcation at LP3 in order, and achieves a stable anti-phase period-2 limit cycle.

In contrast, for ε = 0.4, it undergoes pitchfork bifurcation at PB4 and saddle-node bifurcation

at LP3 in order, and achieves a stable anti-phase period-2 limit cycle. Furthermore, on each of

two new branches bifurcated from PD1 until LP3, the coupled system undergoes more complex

bifurcations and produces a stable asymmetric period-2 limit cycle between PD4 and PB4 for

ε = 0.8 or between PD3 and PB4 for ε = 0.4. Third, bifurcations are more complex in the case

of small ε values than those in the case of large ε values, implying that the relaxation oscillator is

easier influenced by CCC than the repressilator. In particular, there exists a certain range of Q

such that several different behaviors can coexist, but the coexistence mode (e.g., coexisting steady

states and periodic orbits, or coexisting periodic orbits) is more complex in the later case than in

the former case.

Next, we show more details on communication-induced multirhythmicity by distinguishing three

cases: multi-mode oscillations, coexistence of different-mode oscillations, and bursting oscillations.

First, Fig. 4 shows several interesting but typical multi-mode oscillations including in-phase

oscillation, anti-phase oscillation, and several types of mixed-mode oscillations. Specifically, for

moderately small or large Q, the coupled system can exhibit two modes of in-phase period-1

oscillation, referring Fig. 4 (a) and Fig. 4(b). Moreover, the period of the former is smaller than

that of the latter, indicating that the cell density can change oscillation period. In addition, the

oscillation with this mode is actually the usual synchronization observed in a system of standardly

coupled oscillators. Similarly, for moderately small or large Q, we can observe two modes of

antiphase period-2 oscillation, referring Fig. 4(c) and Fig. 4(d). In these modes, the oscillation

is characterized by two different amplitudes: small and large, but the higher peak between two
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oscillators differs by half period. When Q decreases from a large value, an asymmetric periodic

oscillation can arise, e.g., an asymmetric period-2 oscillation appears for Q = 0.8, referring Fig.

4(e). With the further decrease of Q, several types of mixed-mode oscillations can be observed,

e.g., 121211 state for Q = 0.766, 1212 state for Q = 0.73, 12 state for Q = 0.745, 12111213 state

for Q = 0.76 and 1113 state for Q = 0.78, referring Figs. 4(f)-(j) respectively. Such mixed-mode

oscillations have been observed in other dynamical systems [29-31].

Next, we show the coexistence of periodic oscillations with different modes. As an example, Fig.

5 shows the coexistence of two different types of oscillations: in-phase period-1 and asymmetric

period-2 oscillations for ε = 0.4 and Q = 0.85, and in-phase period-1 and antiphase period-2

oscillations for ε = 0.4 and Q = 0.86. In addition, there are other types of coexistence phenomena,

e.g., coexisting IHSS and antiphase period-2 oscillation for ε = 0.7 and Q = 0.49, coexisting IHSS

and in-phase period-1 oscillation for ε = 0.4 and Q = 0.82, and coexisting IHSS, in-phase period-1

oscillation and asymmetric period-2 oscillation for ε = 0.4 and Q = 0.84 (data are not shown here).

Note that three points: (Q, ε) = (0.49, 0.7), (0.82, 0.4) and (0.84, 0.4), locates in the R5 region of

Fig. 3. More complex coexistence phenomena are possible in this region (see the Supporting

Materials of this paper for).

Finally, we simply demonstrate an interesting kind of phenomenon: communication-induced

bursting oscillations, which are often observed in neuron’s activity (see Ref. [32] and references

therein). Figure 6 shows three types of bursting oscillations: periodic bursting (Fig. 6(a)), quasi-

periodic bursting (Fig. 6(b)) and chaotic bursting (Fig. 6(c-d)). The occurrence of quasi-period

bursting oscillation is due to torus bifurcation. In Fig. 6(c-d), to verify the existence of chaotic

attractors, we also show the dependence relationship of the maximal Lyapunov exponent ( λmax)

on cell density Q. Apparently, there is a small interval of Q centered at Q = 0.6 such that λmax is

positive, implying that the coupled system is indeed chaotic. However, at other ranges of Q, the

maximal Lyapunov exponent drops down to zero. In addition, numerical simulations show that

the chaotic regime contains some periodic windows, which are actually mixed-mode oscillations,

referring Figs. 4(f)-(j). Moreover, the mechanism of generating chaos is through a quasi-period



15

1750 1800 1850 1900 1950 2000
0

5

10

W
i

1750 1800 1850 1900 1950 2000
0

5
W

i

1750 1800 1850 1900 1950 2000
0

5

10

W
i

1750 1800 1850 1900 1950 2000
0

5

Time

W
i

(d)

(a)

(b)

(c)

FIG. 5. (Color online) Observed coexisting attractors in the two coupled composite oscillators

with ε = 0.4: (a)-(b) coexisting in-phase period-1 and asymmetric period-2 oscillations for

Q = 0.85; (c)-(d) coexisting in-phase period-1 and anti-phase period-2 oscillations for Q = 0.86.

path (data are not shown).

IV. CONCLUSION AND DISCUSSION

For a multicellular system, communication between cells is commonly existent, in particular in

bacteria. Such communication not only is crucial for the physiological functions of diverse organ-

isms from the viewpoint of biology but also plays a key role in coordinating population behavior

from the viewpoint of dynamics. In addition, its role is also reflected in anti-quorum-sensing strate-

gies present in both bacteria and eukaryotes, which are apparently designed to combat bacteria

that depend on CCC for successful adaption to particular niches [1]. However, because of com-

plexity in communication mechanisms and ways, functions of CCC remain to be fully understood.

Here, we have from the viewpoint of dynamics shown the versatility of CCC in coordinating pop-

ulation behavior by considering a synthetic multicellular system, which is composed of composite

oscillators coupled to a quorum-sensing mechanism. It can synchronize a population of composite
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FIG. 6. (Color online) Three observed modes of bursting oscillation in the two coupled composite

oscillators: (a) periodic bursting oscillation when ε = 0.6 and Q = 0.664; (b) quasi-periodic

bursting oscillation when ε = 0.8 and Q = 0.49; (c-d) chaotic bursting oscillation when ε = 0.8

and Q = 0.60, where (c) is the phase diagram and (d) shows the maximal Lyapunov exponent

λmax versus cell density Q.

oscillators on the one hand, and can simultaneously induce complex dynamical behaviors includ-

ing multistability and multirhythmicity as well as coexistence as shown in this paper, on the other

hand. Such versatility would be beneficial as cells face diversely changeable environments.

That we have selected the composite oscillator for investigation is based mainly on the fact

that such an oscillator can combine two typical oscillation mechanisms: the repressilator and the

relaxation oscillator. Therefore, we can show functions of CCC as many as possible. Moreover,

according to our investigation, we have actually shown the versatility of CCC in the two typical-

oscillation cases since the repressilator and the relaxation oscillator can be taken as the limit of

the composite oscillator in a sense. In addition, we have shown that CCC has more influences in
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the relaxation oscillator case than in the repressilator case, but our previous work showed that the

former is less sensitive (or more robust) to noise than the latter [35].

However, it should be pointed out that our model is simplified in several aspects. First, we

neglected some detailed biological processes such as transcription, translation, and promoter bind-

ing, and instead integrated them into a single step. In particular, our model did not consider the

effect of combinatorial regulation that can be described by several kinds of cis-regulatory input

functions [36-38]. In fact, it has been shown that the combinatorial regulation has also important

influences on the formation of cellular patterns [18,19]. Second, to simplify our multicellular system

model, we adopted the mean field approximation for the signaling molecule concentrations in the

extracellular environment. Third, we neglected some biological factors such as cellular diversity,

time delays existing during signaling transmission between cells, and stochastic fluctuations, which

would also have significant influences on dynamics of coupled systems. In fact, some studies includ-

ing experimental and theoretical works have shown some influences [39-44]. Thus, our next work

will focus on effects of communication ways (e.g., bidirectional or unidirectional communication),

various biological processes, biological factors, and so on.
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Appendix

A. In the case of N > 2

In the main text, we have shown that cell-to-cell communication can induce multistability and

multirhythmicity in the case of two coupled oscillators. Here, we will show that the number of
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FIG. 7. (Color online) Shown is that the system size only has finite influences on the distribution

of dynamical regions in the case of ε = 0.8. When the cell density changes in the (0, 1) interval,

there are three dynamical regions: HSS, IHSS and oscillation, in each case of N = 2 (a) and

N = 20 (b), but the boundary of these regions is somewhat different between two cases (compare

boundaries of the IHSS region in two diagrams), implying that the system size only influences

coexistent regions but does not ruin the qualitative conclusion that cellular communication can

induce multistability and multirhythmicity.

oscillators does not change this qualitative conclusion. For this, we perform a direct numerical

simulation for a middle-scale coupled system (e.g., the number of oscillators is set as N = 20)

and compare the results in the case of N = 2 with those in the case of N = 20. In simulation,

we fix a set of parameter values, where all the parameters except for the cell density Q ∈ [0, 1]

are given in the main text, and randomly generate initial values of three proteins U, V and W

using a uniform distribution in the range [0, 2] so as to obtain 200 sets of time series data for

one component of coupled oscillators in the N = 2 and N = 20 cases, respectively. Then, we

count the number of each of three classes of stable attractors: homogeneous steady state (HSS),

inhomogeneous steady state (IHSS) and oscillation based on these data for both cases. Thus, we

are able to detect each stable attractor with a significant attracting basin, and further obtain the

dependence of the number of stable regions on Q (referring Fig. 7, where ε = 0.8 is fixed).
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FIG. 8. (Color online) An example for communication-induced multistability and

multirhythmicity in 20 coupled composite oscillators with ε = 0.8: (a)-(d) four modes of

coexisting IHSSs with different distributions for Q = 0.36: (a) 10U |10L, (b) 9U |11L, (c) 8U |12L,

(d) 7U |13L; (e)-(j) multi-mode oscillations: (e) in-phase period-1 oscillation for Q = 0.43, (f)-(g)

anti-phase period-2 oscillation and asymmetric period-2 oscillation for Q = 0.9, (h)-(j) three types

of MMOs: (h) symmetric 12111213 MMO for Q = 0.76, (i) asymmetric 1111 MMO for Q = 0.82,

and (j) asymmetric 1211 MMO for Q = 0.82; (k)-(l) two modes of bursting oscillations, where (k)

corresponds to quasi-periodic bursting for Q = 0.51, and (l) to chaotic bursting for Q = 0.6.
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Comparing Fig. 7(a) with Fig. 7(b), we find that the two cases share basically the same dynam-

ical characteristics: each coupled system can exhibit monostability due to the existence of HSS

when Q is appropriately small, multistability (including bistability) due to the coexistence of HSS

and IHSS when Q is suitably large, and oscillation when Q is large enough, but also there are some

differences between two cases. One difference is that increasing the system size from N = 2 to

N = 20 can enlarge the stable region for IHSS, and both oscillation and IHSS can coexist. Another

difference is that in the coupled system with N = 20 can have parameter regions where multiple

IHSSs can coexist, mainly due to the fact that N coupled oscillators have N − 1 different distri-

butions between the steady-state clusters. Specifically, consider some component in the coupled

system, e.g., Ui (i = 1, 2, · · · , N). Assume that mU ’s are located at a higher concentration state

(denoted by mU) whereas the remaining (N − m) Us are at a lower concentration state (denoted

by (N − m)L), where m can take a value between 1 and N − 1. We denote such an IHSS mode

as mU |(N − m)L. As an example, Fig. 8(a)-(d) displays four coexisting modes of IHSSs with

different distributions for Q = 0.36: 10U |10L, 9U |11L, 8U |12L and 7U |13L, respectively. Note

that for different Q, IHSSs of different modes can coexist (data are not shown).

More numerical simulations show that the coupled system with N = 20 and ε = 0.8 can exhibit

communication-induced multirhythmicity similar to that shown in Fig. 4 and 6 in the main text,

including multi-mode oscillations, e.g., two modes of in-phase period-1 oscillations (refer Fig. 8(e)

for one of them), two modes of anti-phase period-2 oscillations (refer Fig. 8(f) for one of them),

and asymmetric period-2 oscillation (refer Fig. 8(g)); several types of mixed-mode oscillations,

e.g., symmetric 12111213 MMO for Q = 0.76 (refer Fig. 8(h)), asymmetric 1111 MMO for Q =

0.82 (refer Fig. 8(i)), and asymmetric 1211 MMO for Q = 0.82 (refer Fig. 8(j)); and bursting

oscillation, e.g., quasi-periodic bursting oscillation (refer Fig. 8(k)) and chaotic bursting oscillation

(refer Fig. 8(l)). However, the coupled system can also demonstrate the coexistence of several

periodic oscillations different from that in the case of N = 2, e.g., coexisting anti-phase period-

2 and asymmetric period-2 oscillations for Q = 0.9, and coexisting asymmetric 1111 MMO and

asymmetric 1211 MMO for Q = 0.82, which have not be observed in the case of N = 2 for all
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Q ∈ [0, 1]. In addition, we also find many other periodic oscillation modes and coexisting modes

of periodic oscillations (data are not shown).

In summary, we have seen that increasing the number of oscillators does not change the qualita-

tive conclusion of communication-induced multistability and multirhythmicity but possibly leads

to richer phenomena.

B. More results on the coexistence of several different behaviors

In the main text, we have shown some coexisting phenomena. Here, we show more coexisting

phenomena. For clarity, we examine several lines of the timescale separation parameter in Fig.

3 of the main text, and list some ranges of the cell density parameter and the corresponding

states, including the ranges for the existence of stable steady states, in-phase period-1 oscillations,

antiphase and asymmetric period-2 oscillations, and those for the coexistence of several different

dynamical behaviors, as follows:

• For ε = 0.8, HSS1 in (0, 0.3036); HSS2 in (0.1813, 0.4186); IHSS in (0.1493, 0.4119); IPPOO

in (0.4186, 0.457)
⋃

(0.9089, 1); APPTO in (0.457, 0.4798)
⋃

(0.8131, 0.9145); and ASPTO in

(0.7873, 0.8131).

• For ε = 0.7, HSS1 in (0, 0.3901); HSS2 in (0.2905, 0.4569); IHSS in (0.2376, 0.5373); IPPOO

in (0.4569, 0.4791)
⋃

(0.8787, 1); APPTO in (0.4791, 0.4961)
⋃

(0.8159, 0.8926); and ASPTO

in (0.7905, 0.8159).

• For ε = 0.6, HSS1 in (0, 0.4767); HSS2 in (0.4035, 0.5019); IHSS in (0.3278, 0.6638); IPPOO

in (0.5019, 0.5124)
⋃

(0.8506, 1); APPTO in (0.5124, 0.5239)
⋃

(0.8225, 0.8759); and ASPTO

in (0.7977, 0.8225).

• For ε = 0.5, HSS1 in (0, 0.5633); HSS2 in (0.5212, 0.555); IHSS in (0.4207, 0.7736); IPPOO

in (0.555, 0.5605)
⋃

(0.8259, 1); APPTO in (0.5605, 0.5746)
⋃

(0.8345, 0.868); and ASPTO in

(0.811, 0.8345).

• For ε = 0.4, HSS1 in (0, 0.65); IHSS in (0.5173, 0.8447); IPPOO in (0.8078, 1); APPTO in

(0.8546, 0.8791); and ASPTO in (0.8346, 0.8546).
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Here, the following abbreviated symbols are used: HSS for homogeneous steady state; IHSS for

inhomogeneous steady state; IPPOO for in-phase period-one oscillation; APPTO for antiphase

period-two oscillation; ASPTO for asymmetric periodic-two oscillation. The subscript 1 stands for

a high state whereas the subscript 2 for a low state in the (U , V ) state space.

From the above list, we can find that there are the intervals of coexisting phenomena, e.g., the

IPPOO can coexist with APPTO in the interval (0.9089, 0.9145), HSS1 can coexist with HSS2 in

the interval (0.1813, 0.3036) and with IHSS in the interval (0.1493, 0.3036), for the fixed ε = 0.8.

For other values of ε, there are some similar existing phenomena.
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