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Prolonging assembly through dissociation : A self assembly paradigm in microtubules

Sumedha, Michael F Hagan, and Bulbul Chakraborty
Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454,USA

We study a one-dimensional model of microtubule assembly/disassembly in which GTP bound to
tubulins within the microtubule undergoes stochastic hydrolysis. In contrast to models that only
consider a cap of GTP-bound tubulin, stochastic hydrolysis allows GTP-bound tubulin remnants
to exist within the microtubule. We find that these buried GTP remnants enable an alternative
mechanism of recovery from shrinkage, and enhances fluctuations of filament lengths. Under condi-
tions for which this alternative mechanism dominates, an increasing depolymerization rate leads to
a decrease in dissociation rate and thus a net increase in assembly.

PACS numbers: 87.12.Ka,87.17.Aa,02.50.Ey,05.40.-a

Microtubules are semiflexible polymers that serve as
structural components inside the eukaryotic cell and are
involved in many cellular processes such as mitosis, cy-
tokinesis and vesicular transport [1–3]. In order to per-
form these functions, microtubules (MTs) continually
rearrange through a process known as dynamic insta-
bility (DI), in which they switch from a phase of slow
elongation to rapid shortening ( catastrophe), and from
rapid shortening to growth (rescue)[1]. The basic self-
assembly mechanism underlying DI, assembly mediated
by nucleotide phosphate activity, is omnipresent in bio-
logical systems. In this paper we study a minimal non-
equilibrium model of DI that shows enhanced assembly
with increasing depolymerisation rate. This provides a
new paradigm of self-assembly, which can occur only in
non-equilibrium systems, and in the context of DI, could
explain some puzzling results about the influence of pro-
teins on MT assembly[4].

With recent advances in experimental techniques[5–7],
it has become possible to quantify MT dynamics at nano-
scale and, thereby, provide more stringent tests of mod-
els. Models like ours can provide insight into the non
equilibrium phenomena of self-assembly and provide a
palette of scenarios. While it is established that GTP
hydrolysis is essential to DI, the mechanisms that un-
derly DI are not fully understood. In this paper, we
study a minimal model of DI that involves stochastic
(or random) hydrolysis (SH), a mechanism that has re-
ceived relatively little attention compared to interfacial
(or vectorial) hydrolysis (IH) that forms the basis of cap
models[8, 9]. We study a particular SH model[10, 11],
which in contrast to a SH model that takes into account
all thirteen protofilaments of a MT[12], depicts the MT
as a 1 − d sequence with rates that prescribe polymer-
ization, depolymeriazation and hydrolysis. The focus of
our work is to relate the functioning of MT’s to GTP
remnants that are characteristic of SH models.

MTs are formed by assembly of α− β tubulin dimers,
which are polar and impart polarity to MTs. MTs grow
mainly from the end that has exposed β tubulin, and
are composed of (typically) 13 linear protofilaments.[1]
While a free tubulin dimer has a GTP molecule bound
to each monomer, incorporation into a MT activates the

β-tubulin monomer for hydrolysis of its associated GTP.
GDP-bound tubulin is less stable within the MT lat-
tice [13] and hence a GDP-bound tubulin at the tip of a
MT has a higher rate of detachment (depolymerization)
than a GTP-bound tubulin. GTP hydrolysis is essential
to DI. Models in the IH class assume that all hydroly-
sis occurs at a sharp interface between GDP-bound and
GTP-bound tubulins [8, 9], whereas in SH-based mod-
els, hydrolysis occurs stochastically, anywhere in the MT
[10–12, 14–16].
In contrast to IH models, SH models lead to GTP-

monomers being located throughout the MT, with a
concentration that decays exponentially with distance
from the growing end[11]. These models allow for a
re-polymerization mechanism that involves these GTP
remnants, i.e as the MT depolymerises by detachment
of GDP-tubulins, the remnants get exposed and the
MT starts polymerising again. Support for presence
of GTP tubulins inside the MT has been provided
by recent experiments[5]. The remnant-mediated re-
polymerization leads to the possibility of extending ac-
tivity through increased depolymerization rates.
Our model[10, 11] represents the MT by a linear se-

quence of two species of monomers, which correspond to
GTP-bound tubulin (denoted by + in rest of the paper)
and GDP-bound tubulin (denoted by −). We assume
that the MT undergoes attachment and detachment only
at one end, which we call the growing end (sometimes
called the + end in the literature). A MT evolves via the
following rules (illustrated in Fig. 1):

1. + attachment: If the growing tip is a + monomer,
it grows with rate λ by addition of a + subunit.

2. Detachment: A − monomer at the growing end
detaches with rate µ, causing its shrinkage.

3. Hydrolysis: With rate 1 any + monomer in the MT
can undergo hydrolysis to yield a − monomer.

4. − attachment: + subunits could attach to a grow-
ing end with a − monomer at the tip with rate pλ
(p ≤ 1).

A previous study of the model [11] for p > 0, demon-
strated a transition from a phase of bounded to un-
bounded growth of the MTs. The present study focuses
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on low p and fluctuations in the bounded growth region
of the phase diagram. The effect of remnants on dynam-
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FIG. 1. (Color online) Schematic of microtubule dynamics.
We assume that all the activity occurs at the right end (de-
noted by >) of the MT.

ics of MTs is strongest for p = 0 model, which we call the
GTP remnants model since the only mode of recovering
from depolymerization is via remnants. Recent experi-
ments indicate correlation between the presence of rem-
nants with events where the MT switches from shrinkage
to growth. In particular, Perez et al. [5] observe GTP-
bound tubulin within MTs and find that the location
of these remnants correlate to locations at which such
events occurred during MT growth.
In the remnants model, if the number of GTP

monomers fluctuates to 0, growth is no longer possible
and the MT undergoes a complete catastrophe with no
possibility of rescue. Any process that exposes remnants
promotes growth fluctuations and makes the MT remain
active for longer. In particular, increasing µ at fixed λ
leads to longer times (tN ), and higher maximum lengths
(L(tN )) of MTs before complete loss of GTP. Beyond
tN , the MT undergoes a catastrophe and shrinks to zero
in time of order of L(tN )/µ. During the time, tN , the
MT remains active and in an overall growth phase with
shrinkage and growth fluctuations resulting from depoly-
merization and remnant-mediated polymerization events.
The shrinkages occurring during the active phase have
a qualitatively different character from the catastrophe
that occurs after time tN .
Fig 2 shows numerical results < tN > as a function of

µ for a range of values of λ. It is clear that the activity
time increases monotonically with increasing λ and µ.
For a given λ, < tN > increases with increasing µ, and
eventually saturates at a value of the order of exp(λ)/λ.
In Fig. 2, we also show numerically obtained values of
the average growth velocity(v =< L(tN ) > / < tN >) at
time tN . The velocity increases with increasing λ and µ,
and for a given λ, it saturates for large µ. As illustrated
in Fig. 2, v = (λ − 1)µ/(1 + µ) leads to good scaling
collapse of the data. Both of these features illustrate the
increase in activity with increasing depolymerization rate,
which is a hallmark of growth fluctuations initiated by
the presence of remnants. As shown below, − attachment
events do not destroy this signature for small p.
In order to get a better understanding of the effect of µ

on the dynamics during the growth phase, we analyze the

equations for the probability distribution of the lengths
at µ = 0 where we have only polymerization and hydrol-
ysis. The probability distribution of total length L(t) of
the MT at time t obeys the equation:

dP (L, t)

dt
= λ(1 − n0(t))[P (L − 1, t)− P (L, t)]+

µn0(t)[P (L+ 1, t)− P (L, t)]
(1)

where n0(t) is the probability of having a GDP at the tip
of MT and is given by:

dn0(t)

dt
= 1− n0(t)− µn0(t)P (+− >, t) (2)

here P (+− >, t) is the conditional probability that, given
the tip of the MT is a −, the second last tubulin dimer
is a +. A configuration with | + − > at the tip can be
reached either by depolymerisation of |+ −− > state or
by hydrolysis of a |++ > state. The probability of having
a |+−− > configuration further depends on |+−−− >,
leading to a hierarchy of equations that cannot be solved
exactly. It is, therefore, not possible to obtain an exact
expression for P (L, t) for arbitrary values of λ and µ.
For µ = 0, and arbitrary λ, Eq. 2 does not couple n0(t)

and P (+− >, t), and we obtain the solution: n0(t) =
1− exp(−t). Substituting in Eq. 1 leads to:

P (L, t) = e(−λ(1−e−t)) (λ(1 − e−t))L

L!
(3)

The average length at any time < L(t) >= λ(1 −
exp(−t)). Similarly, the average number of GTP-bound
tubulins at time t is < T (t) >= λt exp(−t). There is,
therefore, a characteristic time at which the amount of
GTP goes to zero (purely through hydrolysis), and this
time < tN > scales roughly as ln(λ). Beyond this time,
the MT becomes completely inactive since for p = 0 and
µ = 0, the first and third processes illustrated in Fig. 1
cannot occur.
Introducing a non-zero µ enables depolymerization,

which dramatically changes assembly behavior by expos-
ing remnants buried inside the MT to offer the possibility
of growth fluctuations. Numerical results demonstrate an
exponential dependence of tN on λ for large µ (indicated
by the scaling collapse in Fig. 2). As seen in Fig. 2,
< tN > increases monotonically from a value of order
O(ln λ) to a value of order exp(λ) as we increase µ from
0 to ∞. The distributions of tN and L(tN ) for various
λ and µ (Fig. 4) broaden with increasing µ, reaching
asymptotic forms for µ >> λ. The increase of fluctu-
ations, indicated by these broadening distributions, is a
consequence of the remnants.
It is difficult to obtain analytic solutions to Eq. 2 at

finite values of µ because of the coupling between n0 and
P (+− >, t). In the limit of λ → ∞, µ → ∞, the problem
becomes simple again because P (+− >, t) ≃ 1 for all t
since hydrolysis is a rare event. For arbitrary values of µ
and λ, the dynamics at times t << tN is also dominated
by attachment and detachment events and hydrolysis is
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FIG. 2. (color online)(a): The average time at which the number of GTP-bound subunits goes to zero (< tN >) as a function of
lnµ. The inset shows a scaling collapse of the plots, with y-axis scaled by eλ/λ and the x-axis displaced by λ, for λ = 8, 10, 12.
(b): The average growth velocity (v =< L(tN) > / < tN >) for indicated values of λ as a function of lnµ. In the inset, we
have scaled v for λ = 3, 5, 8, 10, 12, and µ > 1, by (λ− 1) to illustrate the scaling collapse implied by Eq. 6 for different values
of λ. We find the scaled values lie on the µ/(1 +µ) curve. The scaling holds for λ ≥ 8, with data for λ = 5, showing deviations
at small values of µ.
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FIG. 3. (color online) Average probability distribution of size
of disassembly events for λ = 5 on a semilog plot. Average is
calculated by looking at all the disassembly events except the
final complete disassembly. Inset shows the same distribution
for λ = 5 and µ = 5 when the average is done over time
t=0.08tN (+),0.2tN (×), 0.4tN (∗) and tN(�)

not effective at converting GTP to GDP between attach-
ment/detachment events. It, therefore, seems plausible
that the dynamics during the active (growth) phase of
the MT can be approximately described by assuming
P (+− >, t) = 1. An indirect estimate of P (+− >, t)
can be obtained by analyzing the statistics of the size
of disassembly events since P (+− >, t) should be pro-
portional to probability of disassembly events of size 1.
For finite values of λ and µ, we found numerically that
most disassembly events in the active phase (t << tN )
involved O(1) sites. Fig. 3 shows P (s), the distribution
of the size of all the disassembly events except the final
complete disassembly for λ = 5 and µ = 1, 2, 5, 10, and
100, obtained by averaging over 10000 growth events. In
the inset to Fig. 3, we show P (s, t), the average probabil-

ity of dissociation of size s occurring over a time period
t for µ = 5 distributions are very similar to the P (s)
shown in the main plot. Qualitative change in the dis-
tribution occurs only if we include the final disassembly
event, the complete catastrophe. The distribution, P (s),
is exponential for all values of µ and the average size of
a disassembly event varied from 1.013 to 1.06 as µ was
changed from 1 to 100.
Our analysis suggests that growth occurs predomi-

nantly through a process in which the − at the tip de-
taches before the hydrolysis of + next to the tip. This
picture of the dynamics for t << tN is consistent with
our expectation that it is the competition between the
tip-detachment and the hydrolysis of the + next to the
tip that determines the value of tN . There are of course
rare events where larger size disassembly events occur
during the growth phase, but we expect them not to in-
flucence the dynamcis of the MT significantly. Hence,
we take P (| + − >, t) ≈ 1 as a good approximation
for our model MT in its active (growth) phase. Setting
P (|+− >, t) = 1, in Eq. 2 we obtain,

n0(t) =
1

1 + µ
(1− exp−t(1+µ)) (4)

Substituting in Eq. 1 leads to ,

P (L, t) = (λ)L/2IL

(

2µtλ1/2

1 + µ

)

exp

(

−
µ(λ+ 1)t

1 + µ

)

(5)

where IL(x) is the modified Bessel function of first kind
and Eq. 5 leads to:

< L(t) >=
µ(λ− 1)

(1 + µ)
t (6)

Eq. 6 implies that the µ-dependence of the growth ve-
locity curves for different values of λ can be scaled on to
one another, and that the scaled function is µ/(1 + µ).
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In Fig. 2(right) we have plotted the numerical results
for the velocity for a range of λ and µ values. As shown
in the inset, on scaling the average velocity in the growth
regime with (λ− 1) we get a scaling collapse for different
λ’s and the scaled function is µ/(1 + µ). Strictly speak-
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FIG. 4. Color online (a)-(c) The distributions of times at
which the amount of GTP in the MT goes to zero(tN ). The
distribution shifts to the right with increasing µ until it sat-
urates. (d) The distribution of maximum lengths for λ = 5.
The distributions of maximum lengths and tN have similar
dependencies on µ.

ing, the approximation, P (+− >, t) = 1, which leads to
Eq. 6 applies only for times much shorter than tN . Nu-
merical results, however, indicate that the approximation
remains valid even for times pretty close to tN , and Eq.
5 provides a good description for the dynamics through-
out the growing phase. The variance of the distribution

P (L, t) is predicted by Eq. 5 to be µ(λ+1)
1+µ t, and quali-

tatively describes the numerical results (Fig.(4)). One
can also solve for the distribution T (t). The average
value< T (t) > obeys the equation:

d < T (t) >

dt
= λ(1 − n0(t))− < T (t) > (7)

Assuming P (+− >, t) = 1, we get:

< T (t) >=
λµ

1 + µ
−
λexp(−(1 + µ)t)

µ(1 + µ)
−
λ(µ− 1)exp(−t)

µ
.

This equation also matches the simulation results, where
we found that the average amount of GTP in the MT
during the growing phase fluctuates around λµ

(1+µ) .

We do not have a good understanding of why assum-
ing P (+− >, t) = 1 describes the dynamics of our model
over a large range of parameters. If we, however, assume
that this is a good approximation, then we can make a
number of other predictions, which apply to the growing
phase, t << 〈tN 〉, and can be subjected to experimental
tests . For example, the average number of disassembly
events at time t in which the MT switches from a grow-
ing to a shrinking phase, is given, to leading order by

< C(t) >= µ2t
(1+µ)2 and the average number of GTP is-

lands in the MT is predicted to be: λµ(1−exp(−2t))
2(1+µ) . All of
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FIG. 5. (color online)(a): Comparison of excursions(δl) pre-
dicted by the GTP remnants model (⊡) with λ = 12; p =
0;µ = 0.1, and experimental measurements (+) [6](δl is mea-
sured in nm in the experiment). (b): The distribution of
excursions with λ = 12;p = 0 for µ = 0.1, 0.5 and 1. While
growth excursions have the distribution exp(−δl/λ)/λ, the
distribution of shortening excursions changes from being ex-
ponential to non exponential and broader distributions with
increasing µ.

the predictions presented above, reflect the sensitivity of
dynamical properties to the depolymerization rate µ, and
are a fingerprint of remnants. Experimental tests of these
predictions can, therefore, provide insight into the nature
of hydrolysis and polymerization-deploymerization mech-
anisms in DI.

Recent experiments monitored[6] the distribution of
lengths of growing and shortening excursions within the
growth phase in in vitro systems of MTs. These experi-
ments were able to resolve fluctuations at the monomer
level, and the distributions were found to be exponential.
In simulations of our model we find that for small values
of p the growth excursions are independent of µ and can
be fitted well by exp(−δl/λ)/λ (δl is the length of the
excursion), and the distribution of shortening excursions
broadens with µ (Fig. 5). We can fit the experimental
data on the distribution of excursions [6] with our model
by taking λ = 12;µ ≈ 0.1; 0 < p ≤ 0.001 (Fig. 5).

The main conclusion from fitting the model predictions
to experiments is that we need a small value of p to de-
scribe the observed growth and shrinkage fluctuations.
For p ≃ 1, the dynamics of the remnants model becomes
qualitatively similar to IH models since remnants do not
play a significant role. The small value of p obtained from
the fits would then suggest that the presence of remnants
is important to understand the statistics of the growth
and shrinkage fluctuations. It should be mentioned that
in the fitting the model predictions to experimental data,
we have ignored the shrinkage events involving one site.
The rationale is that we believe that experiments cannot
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FIG. 6. (Color online)MT length L(t) (solid lines) as a function of time for λ = 5, µ = 4 and p = 0 ((a)); p = 0.01((b)). The
dotted lines show the total amount of GTP(T(t)) as a function of time for the same runs. Arrows in the second plot indicate
the − attachment events due to p > 0. The inset shows MT length L(t) for λ = 12,µ = 0.1 and p = 0.0007. This trajectory
looks qualitatively similar to the ones observed experimentally, and these growth phase fluctuations are different from the rapid
shrinkage and slow growth observed in catastrophes and rescues [6]

resolve these events, which correspond to the loss of one
unit in one protofilament. We have not mapped the pa-
rameters of our 1-D model to that of a 13 protofilament
MT, and therefore the actual correspondence between
quantitative results of our simulations and experiments
is unclear. We can expect to capture trends in behavior
with our model. For example, measurement of the change
in shape of the distribution of shortening excursions for
experiments performed under different conditions that af-
fect the depolymerization rate could be compared to the
shape change predicted by the model, Fig. 5.[20]. We
have also plotted a typical trajectory with these values
of the parameters in the inset of Fig. 6. For these low
values of p obtained from the fits, GTP-remnants are the
dominant source of recovery from negative growth events.

The above analysis was restricted to p = 0 in order to
highlight the effect of remnants. The rate of − attach-
ments can depend on the environment of the MT, and
one can express a crossover from a remnant-dominated
dynamic regime to a “cap-dynamics” regime as p is in-
creased. As p is increased, the dynamics changes from
cessation of negative growth primarily due to remnants
at small p to non-remnant attachment events that are
also present in IH models at p ≃ 1. Fig. 6 shows the
time trace for MT length for a representative run for
p = 0 and p = 0.01. Analysis of these trajectories shows
that a small, non-zero value of p introduces rare− attach-
ment events (indicated by arrows in the figure). These
events change the overall length of MT, but the statis-
tics of positive and negative growth excursions remain
similar to p = 0. Measurement of these statistics is pos-
sible in experiments such as the one analyzed above, and
should provide tests of the remnant-induced mechanism
of growth fluctuations.

Our model can be easily extended to accomodate more
detailed features of MTs while keeping the basic mecha-
nism of remnant-induced growth. Parameters can be ob-
tained from simulations by systematically mapping simu-

lations of microscopic models to our effective model. For
example, spatially varying hydrolysis rates due to the
structure of MTs[12] can be modeled by quenching some
GTP-bound sites in our 1-d model. Similarly, the effect
of motors that mechanically depolymerize MTs without
dependence on GTP-states [17] can be modeled by as-
suming a depolymerizing rate µ for both GTP and GDP-
bound tubulins.

Preliminary studies of the model with quenched disor-
der indicate that, although the time for which MT grows
changes and there is a transition to unbounded growth
as a function of percent of quenched sites, the distribu-
tion of excursions and velocity of growth remains un-
changed, and therefore is a robust feature of the remnant
model. Studies of the model mimicking motors also indi-
cate that the basic features of the remnant model remain
unchanged as long as λ > µ+ 1.

To summarize, we have studied the role of GTP-
remnants in MT dynamics, and shown that remnants
give rise to features of DI that are very different from
IH models that have no remnants. Some particularly
notable features are: 1) the average catastrophe time in-
creases with depolymerization rate. 2) the distribution
of MT lengths and time of growth depends on λ and µ,
broadening as λ and µ are increased. 3) The velocity
of growth, besides depending on the free tubulin concen-
tration( through λ), also depends on depolymerisation
and hydrolysis rates. Similar behaviour was reported by
Cassimeris et al [4]. They found that increasing con-
centration of XMAP resulted in increase of both depoly-
merisation rate and growth velocity. These features are
robust, and with recent progress in experimental tech-
niques [5, 6], should provide tools for resolving the mech-
anism of hydrolysis inside a MT. In conclusion, a mini-
mal model of MT dynamics where cessation of negative
growth is dominated by GTP remnants leads to strong
spatial structure-dynamics connection. The simplicity of
our model allows us to make analytic predictions that
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can be tested experimentally, and provide sensitive tests
for the remnant-mediated mechanisms of growth in MT
dynamics, both in-vivo and in-vitro. Interestingly, at the
same tubulin concentration, MTs exhibit much higher
growth rates in-vivo in comparision to in-vitro[2, 19]. In
a broader context, the model illustrates a new paradigm
of non-equilibrium self assembly where assembly is pro-

moted through depolymerization.

We thank the authors of [6] for providing us with their
data for MT excursions in-vitro. S and MFH acknowl-
edge support by NIH grant R01AI080791, and S, MFH
and BC were supported in part by the Brandeis NSF-
MRSEC.
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