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Abstract

A previous paper [Y. Farjoun and J. C. Neu, Phys. Rev. E 78 (2008)] presents a simple kinetic

model of the initial creation transient, starting from pure monomer. During this transient the

majority of clusters are created and the distribution of cluster sizes that emerges from it, is predicted

to be discontinuous at the largest cluster size. It is well known that the further evolution according

to the Lifshitz-Slyozov model of coarsening preserves this discontinuity, The result is at odds with

the original proposal of Lifshitz and Slyozov, that the physical late-stage coarsening distribution

is the smooth one.

The current paper presents an analytic-numerical solution of the Lifshitz-Slyozov equations,

starting from the discontinuous creation distribution. Of course, this analysis selects the discon-

tinuous late-stage coarsening distribution, but there is much more. It resolves the intermediate

stages between the creation transient and late state coarsening, and provides specific scales of time

and cluster size that characterize the onset of coarsening.
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INTRODUCTION

The classic Lifshitz-Slyozov (LS) theory [1] is a model of late-stage coarsening in a closed

system, with conserved monomer density: The number of monomers in the largest clusters

increases linearly with time, and the density of clusters shrinks to zero as the smallest

clusters dissolve back into monomers, fuelling the continued growth of the largest. The LS

equations alone do not uniquely select the late stage coarsening distribution. There is a

family of candidate late-stage coarsening distributions parametrized by the order of contact

with zero at the largest cluster size. In addition, the LS equations give no indication of

the characteristic time to establish late-stage coarsening, due to their scale invariance. In

the aforementioned paper, the mechanism for selecting the smooth similarity solution is the

(rare) coagulation of clusters.

The previous [2] and current papers track the cluster size distribution, starting from

pure monomer at t = 0 to late stage coarsening. The physical basis is the classical ideas

of Becker-Doring [3], Zeldovich [4], and Lifshitz-Slyozov [1]. Our specific contribution is

a synthesis of these ingredients into a single narrative of the whole aggregation process,

quantitative and asymptotic in the limit of small supersaturation. The essential feature of

the asymptotic analysis is the resolution of three intermediate eras, “Creation,” “Growth,”

and “Coarsening,” and how these are linked, from one to the next, by asymptotic matching.

In the aggregation literature we discern the following areas of concentration:

1). There are works on transient nucleation, and the time-lag before the first supercrit-

ical clusters appear [5–16]. Many of these studies treat the monomer supply as inexhaustible

and constant, so their attention is restricted to the “beginning” of nucleation. In particular,

Kashchiev [5], Shneidman and Weinberg [8, 9] and Neu et al. [16], produce asymptotic for-

mulas for the time lag, which can be compared with direct numerical solutions [14] of the

Becker-Döring (BD) Ordinary differential equations (ODE). Wattis [13] analyzes and solves

numerically a BD system where a single type of monomer can evolve into two (competing)

types of clusters.

2). Well known mathematical works of Ball et al. [17] and Penrose et al. [18, 19]

treat the overall aggregation process with the methodology of modern analysis: Existence,

uniqueness of solutions to the BD ODE, convergence to equilibrium in the undersaturated

case, and the emergence of LS as an asymptotic, long-time limit in the supersaturated case.
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At the time of these works, quantitative estimates of the characteristic time to coarsening as

a function of the initial supersaturation had not yet appeared. Niethammer and Pego [20]

show that within the physical model of LS, the long time selection of similarity solution is

determined by the order of contact that the distribution of cluster sizes has with zero at the

largest size. A paper of Penrose et al. [18] features a numerical lattice simulation which starts

from pure monomer and continues to coarsening, when comparison with LS is possible. The

numerical simulation takes advantage of the high initial monomer concentration, five times

the saturation value. The small supersaturation limit is intractable by lattice simulation

or numerical solution of BD ODE, due to exponentially large relative variations of cluster

densities with cluster size. A recent paper by Robb and Privman [21] also begins with a large

super-saturation and numerically computes the full evolution (from monomer to coarsening)

using two different physical models for clusters smaller than, and larger than the critical

size. Due to the large initial supersaturation it is difficult to discern from their results the

boundaries between the three eras that we predict here. Their results are marked by a

curious discontinuity at the critical cluster size, which seems to be due to the discontinuity

between the two physical models they use.

Negative indications for numerics are often positive indications for asymptotic analysis.

In [22] Wattis solves a modified BD system using matched-asymptotics methods. We return

to the qualitative overview of our analysis.

We summarize the aforementioned intermediate eras using Fig. 1 as a visual guide. The

horizontal axis is the largest cluster size, nm, the vertical is time t, both with logarithmic

scales. This graph of t vs. nm is based on the quantitative solution of the complete model.

The plane is divided into horizontal time-slices, “Creation”, “Growth”, and “Coarsening.”

The characteristic time [t] to exhaust nucleation is exponentially large in the initial free

energy barrier G∗ against nucleation∗, with [t] ∝ exp
(

2
5
G∗/kBT

)

. The timescale [t] is the

thickness of the creation time-slice. In this time, the supersaturation undergoes only a small

relative decrease and the initial clusters continue rapid growth. For diffusion limited growth

in (nearly) constant super-saturation, the number of monomers n(t) in a cluster grows at a

rate proportional to cluster radius, so ṅ ∝ n1/3 and it follows that n(t) ∝ t3/2. In particular,

the asymptotic line in the creation time-slice of Fig. 1 has a 2 : 3 slope consistent with

∗ The height of the initial free energy barrier is related to the perturbation parameter we use throughout

the paper by 2
5G∗/kBT ∝ 1

ε
.
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FIG. 1. The graph of time vs. maximal cluster-size in logarithmic scale.

The graph shows two obvious regimes (creation and coarsening) sepa-

rated by a “kink” in the graph (growth and the onset of coarsening) The

scales n∗, [n] and σ3[n]/Rε2 of cluster size are marked in the plot.

n
2/3
m ∝ t. In this way we see that the characteristic size [n] of clusters during the creation

era is proportional to [t]3/2 ∝ exp
(

3
5
G∗/kBT

)

. The width of the cluster size distribution

grows more slowly, like (t/[t])1/2. Hence, the relative width of the cluster size distribution

becomes small during the tail of the creation era, t
[t]

→ ∞. The actual profile of this narrow

distribution is determined from the time history of the nucleation rate per unit volume j(t),

derived in [2].

In the next time-slice, labelled “Growth”, the nearly homogeneous population of rapidly

expanding clusters seriously depletes the super-saturation. This depletion causes their rapid

growth to stop when their (common) cluster size reaches [n]
ε2 . Here, ε with 0 < ε ≪ 1 is

the initial super-saturation, and the perturbation parameter we use. In Fig. 1, this arrested

growth is represented by the nearly vertical segment. The characteristic time which measures

the thickness of the growth time-slice is [t]

ε4/3
.

The next era, coarsening, begins when the critical cluster size, much smaller than the
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characteristic size during creation and growth, “catches up” with the clusters’ size. Clusters

smaller than critical shrink, and the monomers they shed are taken up by the larger, growing

clusters. Thus, the distribution widens. The characteristic size of the clusters during the

coarsening era remains the same as it was during the growth era, but the timescale is much

longer: [t]co = [n]3[t]
ε2 ∝ e

3

5

G∗

kBT .

In late stage coarsening, t ≫ [t]co, the cluster size distribution asymptotes to a similarity

solution of the LS equations, and we finally reach the stage when nm is linear in time.

Indeed, the asymptotic line in the coarsening time-slice of Fig. 1 has the characteristic 1 : 1

slope.

Thus concludes the “brief history” of aggregation according to the classical ideas of BD,

Zeldovich, and LS. We highlight some collateral results. First regarding time and size scales:

By introducing a physical initial condition that represents the initial nucleation process,

we ultimately determine the characteristic time to reach coarsening and the characteristic

cluster size, as functions of the physical parameters and initial supersaturation. In particular

the time to reach coarsening, [t]co ∝ e
3

5

G∗

kBT , is exponentially large in the initial free energy

barrier G∗, even relative to the time [t] of the creation era.

This brings us to a peculiar detail: The late-stage coarsening similarity solution that is

selected by our solution of the LS equations is discontinuous at the largest cluster size. It

is widely believed that the physically correct similarity solution is the smooth, C∞, one. In

the discussion section we propose that during an additional era following coarsening, the

distribution evolves further and tends to the smooth C∞ similarity solution.

The organization of the paper is as follows: In Section I, we review the cluster size dis-

tribution which originates during the tail of the creation era. This, of course, is the effective

initial condition for the growth era, treated in Section II. Section III treats the coarsening

era and its asymptotic matching with the tail of the growth era. Here there is an additional

twist: The coarsening era is evolved numerically, whereas the effective initial condition in-

herited from the growth era comes from an analytic solution. The switching from analytic

to numerical solution is controlled as a function of the numerical resolution, so we have a

de-facto “analytic–numerical matching.” One corollary of this expanded sense of matching

is the analytic determination of a time delay for the onset of coarsening, proportional to

log 1
ε
.

In Section IV we re-derive the family of similarity solutions using our notation. We
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observe that the numerical coarsening distribution asymptotes to the discontinuous, self-

similar distribution for t/[t]co ≫ 1.

I. THE PHYSICAL MODEL AND EFFECTIVE INITIAL CONDITIONS

In the classic Lifshitz-Slyozov (LS) theory, the number of monomers n = n(t) in a cluster

satisfies the ODE of diffusion limited growth:

ṅ = D(ηn
1

3 − σ), D =
(

3(4π)2
)

1

3 Dv
1

3 fs. (1.1)

Here, η is the chemical potential of monomers in the bath (in units of kBT ) relative to

monomers in the bulk of clusters. In particular there is no allowance for the coagulation

of clusters, and the clusters “communicate” only via the monomer density f1. When the

monomer density, f1, approaches the saturation density fs, for which the monomer bath

would be in equilibrium with an “infinite” cluster, we have the asymptotically linear relation

η =
f1 − fs

fs
. (1.2)

In (1.1), σ is a dimensionless surface tension so that the interfacial free energy of a cluster

with n monomers is 3
2
n

2

3 σkBT . In the definition of the rate constant D, D denotes the

diffusivity of monomers in the bath and v is the monomer volume inside clusters. The

gauge-parameter we use, ε, is defined to be the initial value of the super-saturation. That

is, it is equal to the value of the super-saturation when total density, f , equals the monomer

density, f1:

ε =
f − fs

fs
(1.3)

The state variable of the LS equations is the cluster-size distribution r(n, t), so that

the density of clusters with size n between n1 and n2 is
∫ n2

n1

r(n, t) dn. There are two basic

equations: First, the convection Partial Differential Equation (PDE)

∂tr + ∂n

{

D
(

ηn
1

3 − σ
)

r
}

= 0, for n > 0, (1.4)

represents transport of clusters in the space of their size n by the diffusion limited growth

“velocity” in (1.1). Second, the conservation of monomers couples the value of the super-

saturation, η and the distribution. The conservation of monomer is expressed approximately

by

f = (1 + η)fs +

∫ ∞

0

n r(n, t) dn. (1.5)

6



Here, the total monomer density f , a constant in time, is the sum of monomer density

f1 = (1 + η)fs in the bath (from (1.2)), and the the density of monomers in clusters is

approximated by the integral.

In the convection PDE (1.4), σ is positive, so characteristics in the (n,t) plane are absorbed

by the t−axis. Hence, the t−axis is a “sink”, representing the complete dissolution of

subcritical clusters. This is consistent with the assumption that creation of new clusters by

fluctuation over the critical size is negligible during the “growth” and “coarsening” eras. In

a previous paper [2] we derive scaling units [t], [r], [n] of time t, cluster size n and cluster

size density r that characterize the creation era. It is convenient to express the characteristic

scales of the growth and coarsening eras as multiples of these creation era scales. Hence, we

carry out a preliminary non-dimensionalization of (1.4, 1.5) based on [t], [r], and [n]. The

unit of chemical potential η is [η] = ε, the initial value of chemical potential in the pure

monomer bath, before nucleation. To find the dimensionless equations it is more convenient

to use equations (3.5), (3.7) and (3.8) of paper [2], rather than the specific and cumbersome

values of the non-dimensionalization units. These equations imply that

Dε[n]1/3[t] = 1, and,
ε3

σ3
=

[r][n]2

fs
. (1.6)

Using these two relations we find that the dimensionless equations are

∂tr + ∂n

{(

ηn
1

3 − s
)

r
}

= 0, in n > 0, (1.7)

η = 1 − ε2

σ3

∫ ∞

0

n r dn. (1.8)

In (1.7), s is a scaled surface tension, exponentially small as ε → 0 defined in Appendix A in

(A.4). Equations (1.7, 1.8) are solved for r(n, t) subject to an effective initial condition that

arises from asymptotic matching with the creation era. In the previous paper we showed

that in a range of time t, after nucleation is exhausted, but before the effects of growth

change the super-saturation significantly, r(n, t) is asymptotic to a narrow distribution is

approximated by

r(n, t) =











N− 1

3 j

(

N − n

N1/3

)

, 0 < N − n = O(N
1

3 )

0, otherwise.

(1.9)

Here, n = N(t) is the size of the largest cluster, approximated by

N(t) ∼
(

2
3
t
)

3

2 (for t = O(1)). (1.10)
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FIG. 2. The rate of production of new clusters j = eδη(t) during the nucleation era, from [2]. The

tail decays super-exponentially in t. The dashed line is the asymptotic behavior of j as t/[t] → ∞,

also from [2]

The function j(t) is the dimensionless nucleation rate whose graph is shown in Fig. 2. In

our previous paper [2] it is shown that j(t) satisfies the integral equation

log j(t) = −
∫ t

0

(

2
3
(t − τ)

)
3

2 j(τ) dτ. (1.11)

Its solution, j(t), decays to zero faster than exponential as t → ∞. The total density of

clusters generated during the creation era is denoted R, and can be estimated from j:

R =

∫ ∞

0

j(τ) dτ ≈
∫ 5

0

j(τ) dτ ≈ 1.7117. (1.12)

The approximation of the infinite integral by the finite one is justifed due to the super-

exponential decay of j(τ) and since numerically we find that at τ = 5, its value is very

small. The value R ≈ 1.7117 is, of course, a scaled density. To get a physical density one

needs to multiply it by [n][r], with [n] and [r] given by (A.2, A.3).

II. GROWTH ERA

During the growth era, the cluster distribution is still approximated by (1.9), but the

growth of the largest cluster-size N(t) slows relative to the t3/2 growth law (1.10) due to the

depletion of supersaturation. Here is a brief summary of the argument. In the convection

PDE (1.7), the component ηn1/3 of convection velocity is much greater than one, so the

scaled surface tension s is asymptotically negligible. The convection PDE thus reduces
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asymptotically to

∂tr + η ∂n

{

n
1

3 r
}

= 0, in n > 0. (2.1)

The corresponding physical idea is that most of the clusters are much larger than critical.

It follows from (2.1) that n1/3r(n, t) is constant along characteristics that satisfy

ṅ = ηn
1

3 . (2.2)

In (2.2), η = η(t) decreases from (near) 1 in the beginning of the growth era to (near) 0

at the end in a manner consistent with the conservation identity (1.8). We see that the

characteristics determined by (2.2) are continuations of the creation era characteristics,

carrying the same values of n1/3r.

This indicates a very simple construction of the asymptotic solution for r(n, t) during

the growth era. The details are in Appendix B. In summary, r(n, t) is concentrated in a

narrow peak near the largest cluster size N , and there approximation (1.9) applies. What

changes is the evolution of N(t), now described by the ODE

Ṅ = N
1

3

(

1 − N

N0

)

, N0 =
σ3

ε2R
. (2.3)

Here, 1− N
N0

is the value of η(t) consistent with the conservation identity (1.8). The solution

to ODE (2.3) subject to the initial condition N(0) = 0 is given by (B.13) in Appendix B.

Qualitatively, N(t) increases from zero to the asymptotic constant N0 in characteristic time

N
2/3
0 (in units of [t].)

Figure 3 shows this solution as a “world line” in the (n, t) plane (dark line). The shaded

area represents the region where r(n, t) is concentrated. In the limit 1 ≪ t ≪ N
2/3
0 , (B.13)

reduces to t ∼ 3
2
N2/3, in agreement with results (1.10) from the creation era.

The opposite limit t ≫ N
2/3
0 , with N → N0, corresponds to the tail-end of the growth

era. The size distribution asymptotes to

r ∼ N
− 1

3

0 j

(

N0 − n

N
1

3

0

)

, (2.4)

independent of time. It is still narrow, with its support is concentrated in an interval of n

with 0 < N0 − n = O(N
1

3

0 ) ≪ N0.

Why does the size distribution “stop dead in its tracks”? In Fig. 3, the length of the

horizontal line segment from (N(t)/N0, t) to (1, t) represents the super-saturation η (in
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FIG. 3. The “world-lines” of clusters created at the origin. The density of the lines corresponds

to the density of clusters at each point. The length of the horizontal line from (N(t), t) to (N0, t)

(in units of N0) is the supersaturation η (in units of ε.)

units of ε) at time t. It asymptotes to zero for t ≫ N
2/3
0 , and the truncated convection

velocity ηn1/3 vanishes with it. The clusters “use up” the super-saturation that fuels their

growth.

In summary, during the growth era, the clusters grow in a relatively narrow distribution

until they reach a maximal cluster size n = N0 (in units of [n]). The width of the distribution

is proportional to N
1/3
0 . The time-scale of the era is N

2/3
0 (in units of [t]), and roughly 10

of these time-units are needed for the narrow, stationary distribution to be established, as

seen in Fig. 3. The growth of the clusters is fueled by the supersaturation, which vanishes

in an asymptotic sense.
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III. COARSENING ERA

The apparent “road-block” to further growth is not the end of the aggregation story. The

growth era asymptotics are not uniformly valid as t/N
2/3
0 → ∞. As η decreases, the expo-

nentially small component s in the scaled advection velocity in (1.7) gains influence until it

balances the (now small) ηn
1

3 . The critical size n∗ ≡ (s/η)3, for which the advection velocity

vanished, “catches up” with the average cluster size and is now near N0. Clusters smaller

than the critical size n∗ shrink, shedding monomers and fuelling the continued growth of the

clusters larger than n∗. The classic process called coarsening has begun. The characteristic

time of coarsening, to be determined shortly, is exponentially longer than the characteristic

time [t] N
2/3
0 of the growth era. During coarsening, the distribution widens and eventually

fills the whole range of cluster sizes from the (growing) maximal size down to zero. The tail

of the coarsening era is characterized by convergence to one of the self-similar distributions

predicted by Lifshitz and Slyozov.

A. Coarsening era scaling

Relative scaling units† of time t and super-saturation η follow from the balance of all

three terms in the convection PDE (1.7). The balance between ∂tr and s∂nr yields N0/s as

the relative unit of time, while balancing ηn1/3 with s gives s/N
1/3
0 as the relative unit of η.

The relative unit, R/N0, of r follows from the balance of the two terms on the right-hand-

side of the conservation identity (1.8). The relative and absolute units of n, t, η, and r are

summarized in Table I.

Variable [n]co [t]co [η]co [r]co

Relative Unit N0 = σ3

ε2R
N0

s
s

N
1/3

0

R
N0

Absolute Unit N0[n] N0

s [t] εs

N
1/3

0

R
N0

[r]

TABLE I. Relative and absolute scales for the Coarsening Era

† Since the convection PDE (1.7) and conservation identity (1.8) are non-dimensionalized using creation

era units [t], [n] from (A.1, A.2) for t and n, and ε is the unit for η, dominant balances in these equations

provide scaling units relative to those of the creation era. For instance the characteristic cluster size

relative to [n] is N0 in (2.3), and the actual unit of n is N0[n].
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The largest cluster size N(t) satisfies ODE (1.1). In the new units this ODE reads

Ṅ = ηN
1

3 − 1. (3.1)

The scaled PDE (1.4) and conservation identity (1.8) are now

∂tr + ∂n

{(

ηn
1

3 − 1
)

r
}

= 0, (3.2)

in 0 < n < N , and

s

N
1/3
0

η = 1 −
∫ N

0

n r dn. (3.3)

B. The determination of the supersaturation

In the analysis of the creation and growth eras, the conservation identity explicitly deter-

mines η from r(n, t). In the coarsening era this straightforward approach fails: In the limit

ε → 0: s/N
1/3
0 is exponentially small in ε. Hence the leading order approximation of (3.3)

is
∫ N

0

n r dn = 1. (3.4)

The term containing η disappears. Physically, most of the available monomers are contained

in clusters and the super-saturation is vanishingly small. To extract a robust asymptotic

approximation to η from r(n, t) we differentiate (3.4) with respect to t:

Ṅ r(N, t) +

∫ N

0

n ∂tr dn = 0. (3.5)

Next, we substitute Ṅ from (3.1), and ∂tr from the convection PDE (3.2) into (3.5) and

integrate by parts. After some some algebra we (and also Penrose in [19]) find that η can

be expressed as

η =

∫ N

0
r dn

∫ N

0
n

1

3 r dn
. (3.6)

In summary, r(n, t) in 0 < n < N satisfies the integro-differential equation, consisting of the

convection PDE (3.2) with η as in (3.6) and N as in (3.1). An effective initial condition is

determined by asymptotic matching with the tail of the growth era. At n = 0 the convection

velocity is negative, so a boundary condition there is not required.
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C. Changing variables

The growth of the largest cluster size N(t) with time implies that PDE (3.2) has to be

solved on a growing interval of n. We simplify the numerical solution by using a preliminary

change of variables:

x ≡ n

N
, q(x, t) ≡ Nr(Nx, t). (3.7)

The normalized cluster size x ranges in the fixed interval (0, 1) and q is the distribution of

cluster sizes in x−space. We multiply r by N so that q dx = r dn. The convection PDE

(3.2) for r(n, t) transforms into an convection PDE for q(x, t),

∂tq + ∂x {w q} = 0, (3.8)

in 0 < x < 1. Here, w is the convection velocity in x space,

w =
1

N

(

ηN
1

3 (x
1

3 − x) + (x − 1)
)

. (3.9)

Boundary conditions are not required, since w vanishes at x = 1 and is negative at x = 0.

Equation (3.6) translates into a functional dependence of η upon N and moments of q,

N
1

3 η =

∫ 1

0
q dx

∫ 1

0
x

1

3 q dx
. (3.10)

The largest cluster size N is easily determined from the conservation identity (3.4) written

in terms of q and x:
1

N
=

∫ 1

0

x q dx. (3.11)

In summary, both η and N are found explicitly from q(·, t) on the interval (0, 1), and

this makes (3.8) an explicit integro-differential evolution equation for q. It is convenient to

introduce the moments of q(x, t) (themselves functions of time):

M0 ≡
∫ 1

0

q dx, M 1

3

≡
∫ 1

0

x
1

3 q dx, M1 ≡
∫ 1

0

x q dx. (3.12)

Then (3.10) and (3.11) become

N
1

3 η =
M0

M 1

3

, N =
1

M1

, (3.13)

and the convection velocity w can be written as

w = M1

(

M0

M 1

3

(x
1

3 − x) + (x − 1)

)

. (3.14)
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D. Initial conditions and early widening

The t → 0 limit of the coarsening solution for r(n, t) should match distribution (2.4),

which characterizes the tail of the growth era. Hence, we have the effective initial condition

q(x, 0) = N
2

3

0 j
(

N
2

3

0 (1 − x)
)

. (3.15)

Equation (2.4) has been converted into x, q variables. Since N0 ≫ 1, this initial distribution

is a tall spike of height N
2/3
0 concentrated in a narrow interval of x−values near x = 1:

0 ≤ 1 − x ≤ O(N
−2/3
0 ). The initial condition for the largest cluster size N (in coarsening

units) is N(0) = 1.

To our knowledge, the integro-differential evolution equation for q(x, t) does not admit

an analytic solution, so a numerical solution is sought. From a numerical point of view, the

tall, narrow initial condition (3.15) is not desirable for two reasons: First, it is narrow, with

width proportional to ε
4

3 , and thus resolving it numerically would be difficult (for ε ≪ 1).

Second, this initial condition depends on ε via the dependence on N0, thus for every ε we

would need to run the computation again. Some preliminary asymptotics fixes both issues

and supplies us with a global solution: As long as the distribution remains a narrow spike

near x = 1, and thus the three moments—M0, M 1

3

, and M1—are all near 1, the convection

velocity w in (3.14) can be approximated by

w ∼ x
1

3 − 1 = 1
3
(x − 1) + O(x − 1)2, (3.16)

near x = 1. The convection PDE (3.8) with w replaced by its linearization (3.16) can be

solved analytically: The “early” evolution of q(x, t) based upon the linearized convection

velocity (3.16) is given by the widening distribution:

q(x, t) = N
2

3

0 e−t/3j
(

N
2

3

0 e−t/3 (1 − x)
)

. (3.17)

This asymptotic distribution matches the effective initial condition (3.15) for t = 0, and

remains valid as long as the “x−width” remains small, N
− 2

3

0 et/3 ≪ 1.

E. Time-shift and the numerical solution

The strategy now is as follows: First, we assume that our numerical PDE solver accurately

resolves a distribution of width δ with N
−2/3
0 ≪ δ ≪ 1. From the ε−dependent initial

14



condition (3.15), we evolve q(x, t) according to the asymptotic solution (3.17) until the

“x−width” N
−2/3
0 et/3 achieves the value δ. This happens at time

t = 2 log N0 + 3 log 1
δ
. (3.18)

The numerical solver takes over for times greater than t in (3.18). The width δ is chosen

so that it is much larger than the numerical discretization of x, so that the solution can be

resolved, yet much smaller than 1 so that the analytic solution remains valid.

It is convenient to absorb the ε−dependent component 2 log N0 in (3.18) by shifting the

origin of time. The shifted time is

t′ = t − 2 log N0 (3.19)

and the numerical solver is turned on at shifted time t′ = 3 log 1
δ
, with the effective initial

condition

q(x, t′) = 1
δ
j
(

1
δ
(1 − x)

)

, (3.20)

in 0 < x < 1. As desired, the time-shift produces an ε−independent initial condition for the

numerical solver, and thus an ε−independent numerical solution. For a wide range of δ’s in

N
−2/3
0 ≪ δ ≪ 1, the numerical solution at fixed t′ should be close to the asymptotic solution.

We use this later (see Fig. 5) to convince ourselves of the numerical solver’s acceptable

performance. The details of the numerical solution are spelled out in the Section V.

After finding q(x, t′) numerically, we reconstruct r(n, t) using (3.7):

r(n, t) = 1
N

q
(

n
N

, t − 2 log N0

)

. (3.21)

For t < 3 log δ +2 log N0, we use the asymptotic expression (3.17) for q, and for t > 3 log δ +

2 log N0, we use the numerical solution. Figure 4 shows the numerical solution for r as a

function of n/N0 at various shifted times t′.

The coarsening era solution exhibits three phases: widening, transition, and similarity

solution (also called late stage coarsening). During the initial widening, the support of the

distribution has not yet reached x = 0, and the fraction of clusters which have dissolved

completely is negligible (See Fig. 6). The widening is accurately described by the asymptotic

solution (3.17). In the transition phase, the support of q reaches down to x = 0 and the

smaller clusters start dissolving, so the total density of clusters decreases. To resolve this

part of the solution the numerical solver is required. The solution is shown in Fig. 4. During
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t′ = −8

t′ = −6

t′ = −4
t′ = −2 t′ = 0 t′ = 2

FIG. 4. The numerical solution at various times as found using clawpack. Displayed are snapshots

from t′ = −10 to t′ = 2. The solution continues to evolve after t′ = 2, converging to the similarity

solution as t′ → ∞. Prior to t′ = −10, the solution is described by the (analytic) asymptotic

solution. The solution r is multiplied by the size of the largest cluster to help distinguish the

different plots at the later times.

the “tail” of coarsening we observe the convergence of the distribution to the discontinuous

solution of the LS model.

The three phases of the coarsening era can be seen in Fig. 5 which shows the (normalized)

distance‡ between the numerical solution and the asymptotic solution (the solid line), and

between the numerical solution and the discontinuous similarity solution (the dashed line).

Initially, the numerical solution agrees with the asymptotic solution and the normalized

distance is negligible. In the transition, non-linear effects and the non-zero width of the

distribution cause a widening “rift” between the numerical solution and asymptotic one.

These non-linear effects also drive the numerical solution towards the similarity solution

(which is described in greater detail below), until eventually, the numerical solution is almost

indistinguishable from it.

‡ We use
R

1

0
|n(x)−a(x)|dx
R

1

0
|a(x)| dx

to measure the distance between a numerical solution n(x) and an asymptotic

solution a(x). The normalization is used because the similarity solution decays to 0 as t → ∞ and thus a

simple norm might give an impression of convergence when there is none.
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FIG. 5. The normalized distance between the numerical solution and the asymptotic solution given

by 3.17 (solid), and that between the numerical solution and the discontinuous similarity solution

given by (4.15) (dashed).
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FIG. 6. The three moments M0, M 1

3

, and M1 of the numerical solution. Around t′ = −10, their

distance from 1 starts to be noticeable and the asymptotic solution loses validity. Around t′ = −5,

M0 departs from 1 as clusters start dissolving at x = 0.

IV. SIMILARITY SOLUTIONS

In their paper [1], Lifshitz and Slyovoz predict the eventual convergence of any initial data

to a smooth, C∞, distribution. Their derivation shows the possible existence of a family

of admissible, finitely supported distributions, but they argue that only the C∞ solution

is stable against coagulation§. In the Discussion, we mention several other mechanisms

§ In Physical Kinetics [23, §100], it is mistakenly stated that the other solutions violate conservation.

Distributions whose support extends up to a root of the velocity function (C.4) (and no more) do not

violate conservation and for them the arguments set forth in [23, §100] are not true.
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that could cause the selection of the C∞ solution at some as-of-yet unknown time. In this

paper, we ignore the effects that would drive a distribution to the C∞ solution and confine

ourselves to analyzing the mathematically possible solutions to the PDE. Specifically, we

focus on solutions with a finite support.

In the following derivation, we use a parameter, µ, which relates to LS’s parameter, γ,

by the following equality (derived in Appendix C):

γ =
µ3

µ − 1
. (4.1)

A. The 2-parameter family of similarity solutions

The convection PDE (3.8–3.11) admits a separation of variables solution:

q(x, t′) = c(t′) P (x). (4.2)

We start with the temporal part c(t′): In the ODE (3.1) for N(t), substitute N = 1/M1 and

N1/3η = M0/M1/3 as follows from the two equations in (3.13). We get

Ṁ1 = M2
1 ·
(

1 − M0

M 1
3

)

(4.3)

and equations (3.12, 3.13, 4.2, 4.3) imply an ODE for c(t′):

ċ = −c2F · (µ − 1), (4.4)

where F and µ are time independent constants defined by

F ≡
∫ 1

0

xP dx, µ ≡
∫ 1

0
P dx

∫ 1

0
x

1

3 P dx
. (4.5)

The solution of ODE (4.4) is

c(t′) =
1

F · (µ − 1)(t′ − ts)
. (4.6)

Here, ts is a time-shift related to the onset of coarsening. It is determined later in the paper

using the numerical solution and the similarity solution. Thus the two parameters for the

family of solutions are ts, which is a simple time-shift, and µ, which, unlike ts, plays an

important role in the spatial part of the similarity solution, solved next.
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Given c(t′), we find the spatial part of the similarity solution, P (x). Substituting (4.2)

into the convection PDE (3.8), and using ODE (4.4) for c, we find an ODE for P (x):

Px

P
= −

µ
(

2 − 1
3
x− 2

3

)

− 2

µ(x
1

3 − x) + (x − 1)
. (4.7)

Figure 7 shows P (x) for different values of µ, while Fig. 8 shows the distribution in the

variables used by LS in their paper [1].

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

x

P
(x

)

µ = 1.2

µ = 1.5

FIG. 7. Profiles P (x) for various values of µ, 1 < µ ≤ 3
2 . The profiles are normalized so that

∫ 1
0 P (x) dx = 1. Specifically, the values of µ in the figure are 1.05 through 1.5 in steps of 0.05.

The corresponding orders of contact vary from −0.833 through 0 (bold) and on to ∞ (dashed). A

function with order of contact p ≤ −1 is non-integrable, and therefore unphysical.

The parameter µ is related to the order of contact of P (x) (with zero) at x = 1. The

order of contact is the power p so that

P (x) ∼ b (1 − x)p as x → 1−,

for some constant b > 0. The super-script (−) indicates that the limit is from below. One

sees that

p = lim
x→1−

Px

P
(x − 1).¶ (4.8)

Substituting (4.7) into (4.8) gives

p =
5µ − 6

3 − 2µ
, or equivalently µ =

3p + 6

2p + 5
. (4.9)

¶ This formula may appear not to work for p = 0, the precise value that we need it for. However, when

p = 0 the fraction Px

P
has a finite limit as x → 1 and thus (4.8) still works.
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FIG. 8. Profiles p∗(z1/3) = 3z2/3

µ3 P (z/µ3) (using the LS notation, where z = xµ3) for µ = 1.05, 1.1,

1.15, 1.2, 1.225, 1.25, 1.3, 1.5. The same normalization,
∫ 1
0 p∗(a) da = 1, is applicable here, as well

as
∫ 1
0 a p∗(a) da = 1; the critical size is always at z

1

3 = 1.

Since the convection velocity w in (3.14) is regular at x = 1, the order of contact of q(x, t′) at

x = 1 is constant, independent of time [20]. The coarsening era solution is discontinuous at

x = 1, so p = 0, and then (4.9) implies µ = 6
5
. We therefore expect the numerical solution to

converge to the µ = 6
5

similarity solution as t → ∞. This convergence is verified numerically

(see Fig. 10.)

For a general µ the formula for P (x) is rather complicated, however, For µ = 6
5
, the

formula for P (x) is:

P =
125 exp

(

−
√

12
7

(

coth−1
(√

21
)

− tanh−1

(

2x1/3+1√
21

)))

(5 − x2/3 − x1/3)
3 . (4.10)

Here, P (x) is normalized so that
∫ 1

0

P dx = 1. (4.11)

For µ = 3
2

(the value that gives order of contact p = ∞), the formula for P (x) recovers the

LS similarity solution [1]. Using the formula for P , we can estimate F in (4.5) numerically.

It is approximately

F ≈ 0.63257 (4.12)

The dark lines in Figs. 7 and 8 show P with µ = 6
5
. The dashed lines show the C∞ solution

with µ = 3
2
, which is the classic LS similarity solution[1].

The time-shift, ts, is found by matching between numerical and similarity solutions by a
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FIG. 9. Finding the time-shift ts. From around t′ = 0 and later, the value of t′ − 5
M1(t′) stabilizes

on −8.9.

simple method, described next. The resulting ts is independent of ε, and is thus a universal

constant in the solution.

B. Asymptotic Matching with the Coarsening Era

We determine the additive time constant ts in (4.6) by examining the long-time limit of

the coarsening era solution. By substituting q(x, t′) = c(t′)P (x) with c(t′) as in (4.6) into

(3.12) for M1, and setting µ = 6
5
, we find

M1(t
′) =

5

(t′ − ts)
(4.13)

or equivalently,

ts = t′ − 5

M1(t′)
. (4.14)

In order to estimate ts, we calculate M1(t
′) from the numerical solution and find the average

of ts in (4.14) for large times t′. In Fig. 9 one can see horizontal asymptote which is located

at our estimated value for ts: ts ≈ −8.9. In Figs. 6 and 10 we see that the numerical solution

indeed converges to the similarity solution with µ = 6
5

and ts = −8.9. From t′ = 5 and later

the numerical and similarity solutions are practically indistinguishable. Thus, equations (4.6,

4.10, 4.12) and the value of ts imply that the coarsening era solution, q(x, t′), asymptotes

to

q(x, t′) =
625 exp

(

−2
√

3
7

(

coth−1
(√

21
)

− tanh−1
(

2x1/3+1√
21

)))

0.63257 · (t′ + 8.9) (5 − x2/3 − x1/3)
3 (4.15)
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FIG. 10. The numerical solution q(x, t′), scaled so that M1 = 1, at different times. Starting on

the right at t′ = −10 in a narrow distribution, and very close to the similarity solution with µ = 6
5

(Dark line) at t′ = 4.

as t′ → ∞. Again, t′ is the shifted time t′ = t − 2 log σ
1.71ε2 where σ and ε, the free energy

associated with the surface of a droplett and the initial super-saturation are the only physical

parameters in the problem. Time, t′, and the rest of the variables are scaled according to

Table I. These scales are all dependent on s which is given in Appendix A. The numerical

constants involved, 0.63257, and 8.9, are universal, independent of any physical parameters.

V. METHODS

Here we describe the method in which we solved the non-linear convection PDE for

the coarsening era. We solve (3.8–3.10) with the initial condition (3.20) using LeVeque’s

conservation law numerical solver package, clawpack [24], using the Riemann problem solver

rp1adecon (a Riemann solver for conservative convection). Since we expect the solution to

start from a narrow and tall distribution near x = 1 and widen as t increases, we use a

non-uniform grid that becomes more dense towards x = 1. Specifically,

xn =
11n

m + 10n
, (5.1)

where m = 2000 is the number of grid-cells. Notice that x0 = 0 and xm = 1. This

non-uniform grid is chosen so that it has a greater resolution where we expect to find the

biggest gradients, i.e. near x = 1. The non-uniform grid was implemented using a variable

“capacity” in the numerical solver. The capacity of a cell denotes the change in mean value
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which results from a unit flux into the cell. A non-uniform grid can be implemented on a

uniform grid by giving the computational cells that correspond to smaller physical cells a

smaller capacity, and the opposite for the larger cells, and adjusting the convection velocity

as needed. For more information on implementing non-uniform grid-size in clawpack please

see [24, Section 6.17].

We start the numerical solution at t′ = −20 = 3 log δ, so δ = e−20/3 ≈ 1.2726 × 10−3.

The integrals in (3.12) are calculated as Riemann sums∗∗ By comparing the results to those

obtained from a finer mesh and smaller δ, we estimate the relative error to be ∼ 1%.

VI. CONCLUSION

The original LS theory with its scale invariance describes late stage self-similar coarsening,

but not the actual process of how it arises from the initial condition of pure monomer.

In particular, there is no prediction of characteristic cluster size, nor characteristic time

that marks the onset of coarsening. The selection of the smooth member of the family

of possible similarity solution was due to coagulation, the direct interaction between large

clusters. This paper, together with its predecessor on the creation era fill the gap between

“pure monomer” and “late stage coarsening” in a limited sense: They tells the story of the

intermediate processes according to a “classical” aggregation kinetics based on a conservative

union of fundamental ideas due to Becker-Döring, Zeldovich, and Lifshitz-Slyozov. The

only interaction between the clusters that we consider is via the monomer density, the

supersaturation.

Figure 1 is used as a qualitative visual summary of the three eras. Nevertheless, its

actual construction is quantitative. Here, we explain this construction by assembling the

ingredients from Section II (growth), Section III (onset of coarsening), and Section IV (sim-

ilarity solutions and late-stage coarsening) into a single narrative. The segment ab of Fig. 1

is a log-log version of the thick line in Fig. 3, which plots the largest cluster size N as a

function of time t during the growth era. The graph of N(t) in Fig. 1 is constructed from

the solution of (2.3) with initial conditions N(0) = 0, N(t > 0) > 0. Its physical basis is a

narrow distribution of cluster sizes with all the clusters undergoing diffusion limited growth.

∗∗ We use Riemann sums and not the trapezoidal rule. In clawpack, the cell values represent cell averages,

and thus Riemann sum is the correct estimate.
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The growth slows down as the supersaturation is depleted. The nearly vertical segment in

Fig. 1 is the indication of this slowing. Recall that we use the characteristic size [n] and

characteristic time [t] of the creation era (both exponentially large in ε) as a scaling units

to measure clusters sizes and time durations of the remaining growth and coarsening eras.

In particular, the growth era units of cluster size and time, N0[n] = σ3[n]
ε2R

and N
2/3
0 [t] are

indicated on the axes. The segment bc in the figure represents the onset of coarsening. As

we have seen in Section III, this onset features a widening of the narrow, almost stationary

distribution at the end of growth. The widening happens when the supersaturation is so low

that the critical size is located near the average cluster size, with many cluster bigger than it

and many smaller. The smaller clusters shrink and the larger ones grow. The characteristic

time [t]co = N0[t]
s

of coarsening is indicated on the vertical axis. The “onset” segment bc

is based on a simple analytical description of the early widening, together with a numer-

ical description when the width is “big enough” to be resolved numerically. A significant

feature of widening is that the numerical coarsening distribution is ε−independent if time

t is replaced by the shifted time t′ = t − 2 log σ3

ε2R
. The timeshift 2 log σ3

ε2R
has a physical

significance which is manifest in the description of late-stage coarsening: As the numerical

coarsening distribution is advanced in the shifted time, it eventually asymptotes to a LS

distribution, for which the largest cluster size increases at a constant rate. In the figure,

this “late stage coarsening” is represented by the asymptotic line cd of slope 1.

VII. DISCUSSION

Although we have described the three eras, as we have set out to do, the aggregation

story is not over. According to conventional wisdom, the “correct” similarity solution is the

smooth one with order of contact p = ∞, (and µ = 3
2
) and not the discontinuous one we

found with p = 0. In the LS paper [1], it is suggested that the (rare) coagulation of large

clusters is responsible for the unique stability of the smooth similarity solution. A recent

work by Niethammer and Velasquez [25] suggests that screening-induced fluctuations also

leads to the selection of the smooth solution. Even classical kinetics without any additional

physics can lead to smoothing in a characteristic time much longer than [t]co in Table I. In

particular, the convection PDE boundary value problem for r(n, t) is the lowest order of

approximation to a discrete system of ODE’s. The next order of approximation introduces
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an effective diffusion in size space, and this smooths out the discontinuity. Another effect

of the discrete kinetics is that the Zeldovich nucleation rate does not abruptly “turn on” at

t = 0 as we have assumed in our reduced analysis. It has been shown (asymptotically in

[26] and [16], and numerically in [6]) that there is a transient during which the nucleation

rate smoothly increases, with the Zeldovich rate as its long-time limit. According to Kelton

[6], the time lag to establish nucleation, scales like n∗

η
∝ 1

ε2 . Since the characteristic time

[t] of the creation era has ε−dependence proportional to ε
3

5 e
2

5

σ3

2ε2 , the lag time in units of

[t] is ∆ = ε−
13

5 e
2

5

σ3

2ε2 . Hence, the dimensionless flux j(t) plotted in Fig. 2 should start with

j(0) = 0, and rise to value 1 in (dimensionless) time ∆. Since ∆ ≪ 1 for ε ≪ 1, the

modification to Fig. 2 due to the lag time is a thin initial layer at t = 0. During the growth

era, and the onset of coarsening, the cluster size distribution r(n, t) is a scaled and translated

version of j(·) (see Eq. (1.9)). Hence, the cluster size distribution has a boundary layer at

the largest cluster size. It is not hard to see that the relative thickness of this boundary

layer is ∆ when a significant fraction of the smallest clusters have shrunk to zero size and

disappeared. Recalling that x is cluster size divided by the largest cluster size, we can say

that the early coarsening boundary layer thickness in the x−direction is on the order of ∆.

The boundary layer continues to thicken during the rest of the coarsening era, due to the

strain rate wx(1, t
′) = 1

t′−ts
of the x−convection velocity. Therefore the x−thickness of the

boundary layer is on the order of unity at times on the order of 1
∆

in coarsening time units

[t]co.

In summary, the discontinuous similarity solution is structurally unstable due to a variety

of physical and mathematical perturbations. It is now a question of time scales: The mech-

anism that causes the fastest deviation from the discontinuous solution will determine the

timescale of this last era, and will be the main cause for the smoothing of the distribution.
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Appendix A: Creation Era Scaling

The scales [t], [r], and [n] of time, cluster density and cluster size of the creation era are

found (in [2]) to be

[t] = (8π)−
1

5

{

ε
3

5 σ− 7

5

}

e
2

5

G∗

kBT
(

D3vf 3
s ω2
)− 1

5 , (A.1)

[n] = (π
7

10 2
11

10

√
3)

{

Dε4fsv
1

3

σ
7

2 ω

}
3

5

e
3

5

G∗

kBT , (A.2)

[r] = (3 · 211π7)−1/5

{

σ2ω2

ε3D2f 2
s v

2

3

}
3

5

e
− 6

5

G∗

kBT (fs). (A.3)

Here, ε is the dimensionless supersaturation of the initial pure monomer system. It is the

gauge parameter of the asmptotic analysis in this paper. In the exponents, G∗

kBT
= σ3

2ε2

approximates the initial free energy barrier against nucleation in units of kBT . In the

prefactors, ω is the evaporation rate so that ωn
2

3 is the rate at which monomers at the surface

of an n−cluster leave it. The dominant balances leading to these scaling units are based

physically upon the Zeldovich rate of nucleation, diffusion limited growth of created clusters,

and conservation of monomers. In particular the exponential largeness of characteristic

time and cluster size [t] and [n] in ε arise from the exponential smallness of the Zeldovich

nucleation rate (proportional to exp (−σ3/2η3)). The relation [n] ∝ [t]
3

2 as evident from

(A.1, A.2) is a signature of diffusion limited growth (in 3 dimensions).

The scaled surface tension s in the scaled version of the LS equation (1.7) is given by

s =
(

3(4π)2
)

1

3 (Dv
1

3 fs)
[t]
[n]

σ. (A.4)

From (A.1, A.2) we see that s ∝ exp
(

−1
5
σ3/2ε2

)

is exponentially small for ε ≪ 1.
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Appendix B: Growth Era Solution

Let us, for the moment, take η(t) as given. The characteristic curve corresponding to the

“first” cluster—the one that nucleated at time t = 0—is n = N(t), where N(t) satisfies

Ṅ = ηN
1

3 , N(0) = 0, N(t) > 0 for t > 0. (B.1)

The support of r(n, t) lies in R:

R ≡ {(n, t) : 0 < n < N(t), t > 0} . (B.2)

In R the value of r(n, t) is found from

r(n, t) = n− 1

3 g(τ), (B.3)

where g(τ) is the constant value of n
1

3 r(n, t) along the characteristic curve that has n(τ) = 0.

For any point in R, there is one characteristic curve that passes through it, so τ in (B.3) is

a function of n and t. Given τ = τ(n, t), (B.3) is the growth era solution for r(n, t) in R.

The asymptotic determinations of g(τ) and τ(n, t) are simple. It follows from (2.2, B.1)

that

3
2
N(t)

2

3 =

∫ t

0

η(t′)dt′, (B.4)

3
2
n

2

3 =

∫ t

τ(n, t)

η(t′)dt′. (B.5)

Subtracting these equations gives

3
2

(

N
2

3 − n
2

3

)

=

∫ τ(n, t)

0

η(t′)dt′. (B.6)

Characteristics with τ = O(1) are launched during the creation era, and for these we have

that g(τ) in (B.3) is in fact j(τ) from (1.11). During creation, η(t) (in units of ε) differs

from 1 by O(ε2), so for τ = O(1), we replace η(t′) in (B.6) by 1,

τ = 3
2

(

N
2

3 − n
2

3

)

. (B.7)

In the limit N ≫ 1, the terms in Eq. (B.7) remain O(1) for N − n = O(N
1

3 ) and in this

case we replace the difference by its linearization about n = N , so

τ ∼ N−n

N
1
3

. (B.8)
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Once we determine N = N(t), (B.8) gives τ(n, t) and the solution for r(n, t) in the region

0 < N(t) − n = O (N(t))
1

3 . (B.9)

is given by

r(n, t) ∼ N− 1

3 j
(

N−n

N
1
3

)

. (B.10)

For N−n ≫ N
1

3 , τ ≫ 1 and j(τ) asymptotes to zero, corresponding to negligible production

of new clusters after the creation era.

We complete the story of the growth era by an asymptotic determination of N(t). Since

the support of r(n, t) is effectively the narrow front (B.9), the conservation identity (1.8)

reduces asymptotically to

η(t) ∼ 1 − ε2R
σ3 N. (B.11)

Here, R is the (scaled) total number of clusters produced during the creation era, given by

(1.12). Combining (B.1, B.11) gives a simple ODE for N(t),

Ṅ ∼
(

1 − N
N0

)

N
1

3 , (B.12)

where

N0 ≡ σ3

ε2R
.

The solution with N(0) = 0 (and N > 0 for t > 0) is given implicitly by

t

N
2

3

0

=

2
∑

j=0

rj log

(

1 + rj

(

N
N0

)
1

3

)

. (B.13)

Here, rj are the cube roots of −1: r0 = ei π
3 , r1 = −1, r2 = e−i π

3 .

Appendix C: Connection between µ and γ

In this section we put our results in context of the results in the classic LS paper [1]. In

that paper a non-dimensional number γ is introduced††:

γ =
1

3x2 dx
dt

, (C.1)

†† The LS paper does not have the factor of 3, however, the ratio between their units of time and cluster

size is larger than ours by a factor of 3, hence the modification.
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where x is the radius of a critical cluster, normalized by the radius “at time zero”: x(t) =

a∗(t)
a∗(0)

. When the similarity solution is established, we see from equation (3.2) that the critical

radius is proportional to 1
η

and so x(t) = η(0)
η(t)

. Since we normalize η to unity at the tail end

of the growth era (using the units of coarsening era, of course), we can use that as the initial

time and then have a simple expression for x:

x(t) =
1

η
, ẋ(t) = − η̇

η2
. (C.2)

When the similarity solution is established, we have that M0

M 1
3

= µ is constant. Using equa-

tions (3.13) and the ODE for N (3.1), we derive

1

γ
= 3x2ẋ =

3η̇

η2
= −3η̇N

µ3
=

ηṄ

µ3
=

µ − 1

µ3
. (C.3)

And so we get the connection between γ and µ specified in Eq. (4.1).

Our derivation implies that the support of the distribution are the cluster sizes n ∈ [0, N ].

In terms of the variables of the LS paper, this corresponds to z ∈ [0, µ3] (the variable z is

similar to our n except it is scaled so that the critical cluster size has z = 1). Our family

of distribution functions does not violate the arguments set forth in the LS paper if their

support extends exactly up to particle sizes with vanishing velocity in the z−variable:

LS equation (16):
dz

dτ
= (z

1

3 − 1)γ − z, (C.4)

which indeed vanishes at z = µ3 for γ = µ3

µ−1
.
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