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The glass transition temperature of a broad class of molecules is shown to depend 
on molecular size. This dependency results from the size dependence of the pair 
potential.  A generalized equation of state is used to estimate how the volume 
fraction at the glass transition depends on the size of the molecule, for rigid 
molecule glass-formers.  The model shows that at a given pressure and 
temperature there is a size-induced glass transition: for molecules larger than a 
critical size, the volume fraction required to support the effective pressure due to 
particle attractions is above that which characterizes the glassy state.  This 
observation establishes the boundary between nanoparticles, which exist in liquid 
form only as a dispersion in low molecular weight solvents, and large molecules 
which form liquids that have viscosities below those characterized by the glassy 
state. 

I. INTRODUCTION 

The glass transition has been observed in both molecular and colloidal systems.[1-3] A common 
feature of these systems is that they are granular in nature:  they comprise discrete particles that 
are thermal.[4] Generally speaking, particle diameters in systems of small molecules are less 
than 1 nm, whereas colloidal systems consist of particles in the range of nanometers to microns.  
Particles that are close to 1 nm in diameter are intermediate between colloidal and molecular 
systems but encompass particles of technological significance, including molecular gelators, 
globular proteins, and nanoparticles.[5-8]  Particles in this size range exhibit features that are 
intermediate between colloidal and molecular systems.  They can be dispersed in a solvent, 
thereby resembling a colloidal phase.  However, they can also provide plasticizing effects that 
are usually associated with small molecules.[9] Because these systems are intermediate between 
colloidal and molecular, an understanding of their properties requires concepts from both fields 
of study.   

Colloidal particles in a dispersion are commonly characterized by a pair potential of mean force 
that is mediated by the solvent.  Perhaps the simplest pair potential that can be achieved 
experimentally is the hard sphere potential, in which the particles exhibit an infinite repulsion at 
contact.   The hard sphere potential has been used extensively to model both colloidal and 
molecular systems.[3,4]  Hard sphere systems are known to exhibit a dramatic slow-down in 
particle dynamics, or glass transition, near a volume fraction, φ , of 0.58.[3,10,11]  This value is 
generally taken to be independent of the particle diameter, σ .[12] The size-independence 
underscores the geometrical nature of the glass transition in hard spheres.  It also implies that, to 



the extent that both colloidal and molecular systems resemble hard spheres, generic features of 
the glass transition may be consistent as the particle size continuously transitions from molecular 
to colloidal length scales.   

In general, particles of greater size exhibit greater van der Waals attractions and are more likely 
to form dense, or glassy, phases with long relaxation times under standard temperature and 
pressure (STP).[13,14]  As a result, in the limit that particles approach the colloidal size regime, 
they will not form a liquid at STP unless a solvent is introduced.  The solvent reduces the 
effective attractions between particles, thereby dispersing them into solution and forming a 
colloidal dispersion.[13,15]  These observations imply that in the continuum of particle sizes, 
there exists a boundary that can be used to distinguish between molecular and colloidal systems:  
particles that are less than the critical size can form single component liquids, whereas particles 
greater than the critical size require an additional component, or solvent, to form fluid phases, 
and are therefore colloidal.  Here we define the critical size to be the largest size for which a 
material can exhibit liquid-like behavior, which is the glass transition.  Of particular interest is an 
approach to the glass transition at constant pressure and temperature, in which the size of 
molecules, or particles, is continuously increased.   

The purpose of this paper is to characterize this transition for rigid, non-polar particles, and to 
elucidate the mechanisms by which larger particles give rise to denser phases.  We first use 
literature data to empirically establish how the strength of attraction depends on molecular size 
for non-polar molecules in the size range of 0.3 to 0.9 nm.  This allows us to develop an equation 
of state for a generalized van der Waals molecule that depends only on the size of the molecule 
and which enables us to predict the volume fraction at atmospheric pressure as a function of 
temperature for any given particle size.  We then compare these predictions to experimental data 
obtained from a variety of rigid nonpolar globular molecules.  This comparison allows us to 
predict how the volume fraction at the glass transition depends on the size of the molecule.  We 
then use the equation of state to study to the size-induced approach to the glassy state, showing 
that at a fixed externally applied pressure, the effective pressure due to molecular attractions 
changes little during the size-induced increase in density. We use this insight to model the size-
induced glass transition with a simplified equation of state in which the effective pressure due to 
attractions depends only on temperature and not on the size of the molecule.  Our approach for 
analyzing the dependence of phase behavior on molecular size is relevant for understanding the 
transition from molecular particles to colloidal particles, and limitations of the colloidal 
description of matter.  

II.  THEORETICAL 

To find a general dependence of the strength of attraction on the size of the molecule we use an 
equation of state that includes parameters that describe both characteristics:  the Carnahan-
Starling (CS) equation of state with a van der Waals (vdW) attraction term added to it.[14] The 
CS-vdW equation of state is  
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where Z is the compressibility, P the pressure, v the volume per molecule, kB is the Boltzmann 
constant, T is the temperature, τ  parameterizes the strength of attraction, and φ  is the volume 
fraction 
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where σ  is the hard sphere diameter.  Eq. (1) has been used to predict values for the molecular 
parameters σ  and τ  from knowledge of the density at various P and T.[14]  Values of hard 
sphere volumes, 6/3πσ=hsV , calculated using this method are consistent with other measures of 
molecular volume for a wide variety of molecules.14  In this approach, a given molecular system 
is characterized in terms of values of 0σ  and 0τ  at temperature T0 = 20 ⁰C and their derivatives 
with respect to temperature, 
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evaluated at T0 = 20 ⁰C.  From Ref. [14] we extract values of 0σ , 0τ , γ , and χ  for 20 non polar 

organic molecules that vary in 0σ from 0.35 nm to 0.84 nm.  In order from smallest to largest 
these molecules include methane, ethane, propane, butane, ethylene, propene, n-pentane, 
isopentane, neopentane, n-hexane, cyclohexane, methylcyclohexane, n-octane, isooctane, n-
nonane, n-dodecane, n- hexadecane 3,3-diethylpentane, 4,4-dipentylheptane, and 5.5-
dibutylnonane. Because these molecules are non-polar, we expect that the interactions between 
these molecules are dominated by van der Waals forces and therefore represent a set of 
molecules experiencing minimal attractions.  We use this set of molecules to establish how 
material parameters depend, on average, on the size 0σ  of the molecule.  
 
A plot of 0τ  as a function of 0σ  for all 20 molecules reveals that to a surprising extent, 0τ  is a 

linear function of 0σ  (see FIG. 1).  From a linear fit to the data, 

 2010 BB += στ  (5) 

 



we obtain B1 = 6909 K/nm and B2 = -2021 K.    

 
FIG. 1  The dependence of the molecular attraction, 0τ , on the molecular size, 0σ  for 20 organic 
nonpolar molecules at 20 ⁰C and atmospheric pressure.  The dashed line shows the linear fit, as 
described in the text.  Data from Ref. [14].  

 

We also find that values of γ  become more negative as 0σ  increases, suggesting that the 

temperature sensitivity of the attraction increases with 0σ , as shown in FIG. 2.  We fit this 
dependence using 

 201 CC += σγ , (6) 

 

where C1 = -3036 K/nm and C2 =  1142 K.   



 
FIG. 2  The dependence of γ  on the molecular size, 0σ  for 20 organic nonpolar molecules at 20 
⁰C and atmospheric pressure.  The dashed line shows the linear fit, as described in the text.  Data 
from Ref. [14]. 

 

Finally, we find that values of χ  are roughly independent of 0σ , as shown in FIG. 3.  This 
indicates that the balance of repulsions and attractions defining the effective hard core diameter 
is a weak function of T.  The average value of χ  is χ = -0.0183 nm. 

 

FIG. 3  The dependence of γ  on the molecular size, 0σ  for 20 organic nonpolar molecules at 20 
⁰C and atmospheric pressure.  The average value, χ = -0.0183 nm, is shown by the dashed line.  
Data from Ref. 14. 



 

Using the relations obtained from the fits, it is possible to calculate values of φ  for a given 

combination of 0σ , T, and P.  For a given value of 0σ  this is done by first using the coefficients 

Bi, Ci, and χ  to calculate values of 0τ , γ , and χ  respectively.  Values of τ  and σ  at 
temperature, T, are then calculated using the relations[14,16] 
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where parameters in the equations are obtained from 0σ , 0τ , γ , and χ with the relations 
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where volumes are expressed in units of Å3 and temperatures are expressed in units of 
Kelvin.[14,16]   

The result is an equation of state that is written in terms of a single parameter: 0σ .  Although this 
relation neglects variation between molecules, it provides a generalized, or average relationship 
as a function of molecular size. These equations are expected to be accurate over a range of 
pressures and temperatures near atmospheric conditions for materials in the liquid regime.  Here 
we apply the equations in the region near the glass transition, which exceeds the limits of their 
intended applicability.  We expect that this approach is acceptable because the temperature-
dependence of the liquid density generally exhibits liquid-like behavior for temperatures greater 
than Tg.[17]  Nevertheless, our results are intended only as a first order estimate intended to 
capture general trends in the size-dependence of the glass transition.   

III. RESULTS 



Our objective is to investigate the mechanisms by which the size of the particle determines the 
transition to a dense and glassy phase.  The equation of state allows us to predict φ  for any 

combination of 0σ , T, and P.  In hard sphere colloidal systems, the volume fraction at the glass 

transition, φg,  is generally observed to occur at a critical value that is independent of particle 
size.   This suggests the hypothesis that in molecular systems values of gφ  are independent of 

0σ .  If this is the case, then from inspection of Eq. (1), we expect that Tg 0σ∝ .  This scaling 

relation is obtained by assuming that 0στ ∝ , and that at atmospheric pressure, the term 
1/ <<= TkPvZ B  can  be neglected.  We test this hypothesis by numerically seeking solutions, 

( )T,0σ  to the generalized equation of state for fixed values of φ  and, P, chosen here to be 

atmospheric pressure.   As expected, calculated values of T increase with 0σ  in an approximately 
linear manner, as shown in Fig. 4 for φ = 0.62, 0.66, 0.70, and 0.74.  These lines are slightly 
non-linear because of the dependence of τ  on the temperature, as expressed by Eq. (6).  As 
expected, the lines of lower φ  correspond to higher temperatures.   

 
FIG. 4 Values of Tg are predicted using a generalized equation of state by calculating lines of 
constant volume fraction (shown by the dotted lines).  Values of φ  corresponding to each line 
are shown to the right of the plot.  Linear fits to the lines are shown by solid lines.  Experimental 
values of 0σ  and Tg are shown by the open squares and listed in Table 1.  The dashed line is 
linear fit to the experimental data.  Parameters obtained from all linear fits are listed in Table 2. 

 

 0σ  Tg Ref. 

1. cyclohexene 0.55 81 18 

2. toluene 0.57 113 18 



3. ethylbenzene 
 

0.60 111 18 

4. iso-Propylbenzene 
 

0.63 127 19 

5. 4 tert-butyl pyridine (4-TBP) 
 

0.65 166 20 

6.  phenolphthalein-dimethylether 
(CGE) 

0.66 204 21 

7.  dimethylphthalate (DMP) 0.69 195 20 

8.  o-terphenyl 
 

0.76 244 19 

9.  triepoxide N-N-diglycidyl-4-
glycidyloxyaniline (DGGOA) 

0.78 244 21 

10.  phenolphthalein-
dimethylether (PDE) 

0.84 294 22 

11. diglycyl ether of bisphenol A 
(DEGBA) 

0.85 257 21 

12. kresolphtalein-dimethylether 
(KDE) 

0.88 311 22 

13.  1,3, 5-tri-α -naphthyl benzene 0.96 342 23 

Table 1.  Values of hard sphere diameter, 0σ , and Tg for  

non-polar organic molecules of various size.  The right-hand 
column lists the references from which values of Tg are 
obtained.  The hard sphere diameter is obtained from the 
hard sphere volume, Vhs, which is calculated by first using 
the molecular increments approach to calculate the van der 
Waals volume, VS. Values of VS are converted to Vhs using an 
empirical relation.[14] The data are plotted in Fig. 4.  

If the glass transition were to occur at a critical value, gφ , for all 0σ , we would expect values of 

Tg to fall along one of the predicted lines.  To test the validity of this hypothesis we have 
gathered glass transition temperatures of organic molecules of a variety of sizes, listed in Table 
2.  To ensure that our data set comprises molecules that are approximately rigid,[19] we have not 
included molecules with alkane chains greater than 3 carbons.  We have also chosen molecules 
that do not have strong polar interactions, and that are therefore expected to interact primarily 
through van der Waals forces.  For each molecule we calculate a van der Waals volume, VS, by 
using the molecular increments approach.[24,25]  We then convert values of VS to Vhs, by using 
an empirical relation, Vhs = 1.086(VS – 9.94),[14] where volumes are expressed in Å3.  When the 
experimental values of Tg are plotted as a function of 0σ , several trends are apparent.  First, there 



is a general trend to larger values of Tg with increasing 0σ .  Secondly, the experimental glass 
transition temperatures generally fall between the lines of constant volume fraction predicted by 
the generalized equation of state for φ  = 0.62 and φ  = 0.74, as shown in FIG. 4.  The slope of 

the dependence of Tg on 0σ  is greater for the experimental data than the slopes of the lines of 
constant φ   predicted by the equation of state (see Table 2). This suggests that the volume 
fraction, gφ , at the glass transition decreases as the size of the molecules increases.  This result is 

consistent with the expectation that the glass transition is not an iso-free volume point.[26-28]   

 A1 (K/nm) A2 (K) 

φ  = 0.62 415 -59 

φ  = 0.66 332 -44 

φ  = 0.70 259 -31 

φ  = 0.74 196 -21 

Experimental 633 ± 44 -252 ± 32 
Table 2.  Parameters calculated from fits to the equation 

201 AAT g += σ .  The first four rows are from fits to 

values of Tg calculated using the generalized equation of 
state at various values of φ . The final row is from a fit to 
the experimental data shown in Table 1.  Lines from the 
fits are shown in FIG. 4. 
 

 

FIG. 5.  The linear fit to the experimental data (shown by the dashed line in FIG. 4) is used with 
the generalized equation of state to estimate values of the volume fraction, gφ , at the glass 



transition as a function of 0σ , shown by the solid line.  The dashed lines show the estimated 
uncertainty in gφ based on the uncertainty in values of A1 and A2 obtained from the experimental 
data and shown in Table 2. 

 

By assuming that the linear fit to the experimental data characterizes ( )0σgT  for the generalized 

molecule, we are able to calculate gφ   for all points along the line ( )0σgT .  The resulting function,

( )0σφg , increases to higher values as 0σ  decreases, as shown in FIG. 5.  

IV.  DISCUSSION  

The 0σ -dependence of gφ that is implied by our results suggests that the glass transition in 

molecular systems differs from that in hard spheres, for which gφ  is generally taken to be 

independent of size.  .  One possible explanation is that in molecular systems the glass transition 
is sensitive to the details of the molecules, including shape, anisotropy, and deformability.[29-
31]  Particles that are slightly non-spherical in shape exhibit values of random close packing that 
are larger than those associated with spherical particles.[32]  As the shape of the particle 
transitions from spherical to a more anisotropic shape, there is also an increase in the critical φ  
for the dynamical crossover predicted by mode coupling theory.[33]  These effects are useful for 
rationalizing trends that are apparent in our data.  The larger molecules, such as o-terphenyl and 
1,3,5-tri-α -naphthyl benzene are more spherical than the smaller molecules, many of which 
contain planar rings.  If the non-spherical shape of the smaller molecules allows them to pack 
more efficiently, they would be expected to exhibit higher values of φ  at the glass transition 
than the larger molecules.  This trend is indeed consistent with the experimental data. 

It is also possible to rationalize our result that gφ decreases with size without invoking 

differences in the particle shape.  Even in the idealized case in which all molecules exhibit an 
identical shape, the van der Waals approach, in which the attractions are replaced by an effective 
pressure is not necessarily appropriate for describing the effect of attractions on the dynamical 
effects associated with the glass transition.[34,35]  In one study, the validity of the van der Waals 
approach was tested by replacing the attractive portions of the Lennard Jones pair potential with 
a pressure calibrated to enforce an equivalent density.[34]  For viscous liquids, the van der Waals 
approach underestimates the timescales for particle motion by as much as three orders of 
magnitude.34  However, in the glassy regime, very small changes in volume fraction can produce 
changes in relaxation time scales of this magnitude.  We conclude that the van der Waals 
approach can be used to provide a first order estimate of gφ : to a first approximation, the van der 

Waals approach would predict that vdwgg −≈φφ , which is independent of size.  Additional effects 

that arise from the attractions may be accounted for with higher order corrections to this 



estimate.  In applying such corrections, we expect that increasing the strength of molecular 
attractions increase the difference between vdwg−φ and the true gφ . Because larger molecules 

exhibit greater attractions, then  gvdwg φφ −− would be expected to increase with σ . This would 

tend to cause values of gφ to decrease with increasing σ :  particles of greater size would exhibit 

lower values of gφ because they exhibit greater attractions.  This trend is also consistent with our 

results. 

 

 

FIG. 6 The dotted line shows the σ -induced increase in φ  at STP, calculated by using the 
generalized equation of state.  The open circles show values of φ  calculated directly from values 
of 0τ  and 0σ  at STP for the 20 molecules used to develop the generalized equation of state.  The 
dashed line shows gφ , as shown in FIG. 5.  The difference between the two lines is gφφ −  and 

controls the proximity to the glass transition.  At STP, a 0σ -induced glass transition occurs when 

gφφ = , at near 0.9 nm. The solid line is an approximation of the σ -induced increase in φ , 

obtained by setting effeff PP =  = 0.25 GPa for all 0σ .   

 

Although the van der Waals approach may not accurately model the effects attractions on 
dynamics, it can still be used to estimate structure,[34] and is therefore expected to give 
reasonable estimates of gφ .   Knowledge of gφ can provide a geometrical characterization of the 

proximity to the glass transition. The difference, gφφ − , is linked to dynamical relations through 

free volume theory.   In principle, the glass transition can be approached either by increasing φ  



or by decreasing gφ .  The decrease in gφ  with increasing 0σ suggests the possibility that larger 

molecules may be more glassy, or solid-like, because gφ , is lower for these particles.  We probe 

the importance of this effect, relative to σ -induced increase in φ , by using the generalized 
equation of state.  

We first calculate the σ -induced increase in φ  at T = 20 ⁰C and atmospheric pressure, or STP.  
The trends in ( )σφ  are consistent with values of φ  calculated for the 20 individual molecules 
used to obtain Eqs. (5) and (6), as shown in FIG. 6.  The generalized equation of state predicts 
that for σ  < 1σ  = 0.42 nm, there is no dense phase and the material is a gas.  As σ  increases 
from 1σ  to 2σ  = 1.0 nm, the volume fraction of the liquid phase increases continuously.  In this 
range of σ there is also a continuous decrease in gφ , as shown by the dashed line in FIG. 6.  The 

σ -dependent increase in φ  and decrease in gφ  both cause the difference gφφ − to continuously 

decrease until it vanishes at 0.86 ±  0.03 nm.  For larger sizes, the material is a glass. We 
therefore expect that for hard sphere-like molecules of size greater than approximately 9.0 nm, 
no liquid state is available. This justifies the use of 1≈σ  nm as a natural boundary between 
molecular and colloidal materials. 

This distinction between molecular and colloidal only applies to materials composed of 
monodisperse particles that are rigid, nonpolar and therefore hard sphere-like. For such 
materials, the free volume originates only from the thermal energy associated with the hard 
particles.  Alternatively, liquid phases can be obtained by larger particles to which polymeric 
materials have been grafted.[36]  In this case the free volume necessary to form the liquid will 
originate from the small molecules associated with the polymers and not from the large particles.  
Likewise, polymer melts or star polymers can also form liquid phases at high molecular weights. 
However, these resemble chains or networks of hard particles.  Modeling the size dependence of 
systems with significant internal degrees of freedom is beyond the scope of the present work.  In 
this work we focus on systems that resemble unassociated hard particles because these are 
relevant to the limit in which large and rigid molecules continuously approach the size of hard 
colloidal particles.  
 
Because the continuous increase in σ  drives the system towards a σ -induced glass transition by 
causing φ  to increase, we examine in more detail the mechanisms responsible for this effect.     
It is reasonable to hypothesize that the increase in φ  with σ  occurs because the associated 
increase in τ  causes the effective pressure due to attractions, Peff , to also increase, thereby 
reducing the system volume.  We test this hypothesis by calculating Peff ;  the expression for Peff 
is obtained by rearranging Eq. (1), 
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During the σ -induced increase in φ  at STP, calculated values of Peff  do not continuously 
increase with σ , but exhibit a maximum at Mσ  = 0.65 nm, as shown in FIG. 7.  This represents 
an apparent contradiction; as the size of the molecule is increases for  Mσσ >  = 0.65 nm, the 
liquid becomes more dense, even though Peff decreases. 
  

 

FIG. 7  The dotted line shows the change in Peff during the σ -induced increase in φ  at STP, 
calculated using the generalized equation of state.  The open circles show values of Peff 
calculated directly from values of 0τ  and 0σ  for the 20 molecules used to obtain the generalized 

equation of state.  The solid line shows effP  = 0.25 GPa, calculated by averaging values of Peff 
over the range of 1σ  = 0.42 nm to 2σ = 1.0 nm.   

 
We justify this observation with a further rearrangement of Eq. (13), 
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and note that the expression on the right hand side of the equation increases monotonically  with 
φ .  From this we observe that an increase in φ  can coincide with a decrease in Peff if there is a 

sufficiently large decrease in the entropic stress, 3/σTkB .  Because the entropic stress drives 
particle spreading, a decrease in the entropic stress favors higher values of φ , as illustrated in the 
schematic diagram shown in FIG. 8.   



 

 

FIG. 8 (a) A liquid is modeled as an ensemble of hard spheres that is subjected to an effective 
pressure due to particle attractions, Peff.  This is schematically shown by hard spheres of size aσ  
in a piston in which the applied pressure is Pa.  At constant temperature, the volume fraction, φ , 
of the hard spheres can be increased by two distinct mechanisms: by (b) increasing the applied 
pressure from  Pa to Pb, or by (c) increasing the size from aσ to cσ , thereby causing the entropic 

stress, 3/σTkB , to decrease.  The mechanism shown in (c) plays the dominate role as σ  
increases for Mσσ >  nm at STP.  In this range, the decrease in 3/σTkB , overwhelms the 
decrease in the effective pressure due to attractions,  and causes φ  to increase.  

 
The fact that φ  increases even as Peff decreases indicates that the change in entropic stress, 

3/σTkB ,  is the dominant mechanism responsible for the σ -induced increase in φ .  This 
suggests that it may be possible to approximate the σ -induced increase in φ  by neglecting the 

σ -dependence of Peff .  We test this by setting effeff PP = for all σ , where effP  = 0.25 GPa is 

obtained by averaging values of Peff  over the range of 1σ  = 0.42 nm to gσ = 0.86 nm.  Values of 

φ  calculated using this simplified approach are close to those obtained with the generalized 
equation of state, as shown by the solid line in FIG. 6.  This approximation fails at low φ , near 

the critical point, where values of Peff change significantly with 0σ .  Nevertheless, because the 
glass transition occurs at elevated values of φ , we expect that the effect of Peff  on Tg can be 

approximated by replacing it with a function, effP , that is independent of 0σ  and depends only 

on temperature. 
 
 
 
 



 

FIG. 9 Dependence of effP  on T.  Values of effP are obtained by averaging over a range of 0σ .  
As T is lowered, both the attractions and the density of particles increase, causing effective 
pressure of the generalized van der Waal material to increase. 

 

We test this hypothesis by first calculating values of effP  for T in range of 60 to 400 K by 

averaging values of Peff from 0σ = 0.5 nm to ( )Tgσ  at each temperature. Values of ( )Tgσ  are 

calculated from the linear empirical relation shown in Table 2. Calculated values of effP  increase 

as the temperature decreases, as shown in FIG. 9.   

The function ( )TPeff  allows us to develop a simplified equation of state in which the effective 

pressure due to the van der Waals term is replaced with a constant value, effP , that depends only 

on the temperature, and not on 0σ .  Calculations of the lines of constantφ  obtained with this 
simplified approach approximately agree with those obtained with the generalized CS-vdW 
model, as shown by the solid lines in FIG. 10.  Deviations from the generalized CS-vdW occur at 
elevated values of 0σ  because values of Peff obtained for gσσ >0 were not averaged to obtain 

effP .  We use this simplified equation of state, together with the function ( )0σφg  to predict a 

glass transition line, ( )0σgT that agrees well with the experimental data from which ( )0σφg  was 

obtained, as shown by the dashed line in FIG. 10.  From this we conclude that the approximate 
equation of state is in reasonable agreement with the generalized equation of state, in which Peff 
is allowed to vary with 0σ . Although using the approximate equation of state is not necessarily 

practical, it does offer some physical insight into the mechanisms governing the 0σ -dependence 
ofφ . It shows that entropic effects dominate the σ -induced increase in φ  because the effective 

pressure due to the generalized van der Waals material does not vary significantly with 0σ .  



Nevertheless the dependence of Peff on T is significant.  As temperature decreases at constant P, 
the system loses thermal energy and compacts.  The higher density of particles causes the effP to 

increase.  This dependence is described with the function ( )TPeff , which is useful for describing a 

“material” relationship that is independent of the particular species, and its size.   
   

 

FIG. 10  A simplified model predicts lines of constant φ  that are similar to those obtained using 
the generalized equation of state model (shown by the dotted lines, as in FIG. 4).  In this 
approximation, shown by the solid lines, effP  is replaced by a 0σ -independent function, effP , that 
depends only on T, and is shown in FIG. 9. Values of φ  corresponding to each line are shown to 
the right of the plot.  Experimental values of 0σ  and Tg are shown by the open squares and listed 
in Table 1.  The dashed lines shown the prediction of ( )0σgT  from the simplified model in 

which effP (T) and ( )0σφ g .     

 
 
V. CONCLUSIONS 
 
We have used tabulated data to generate an generalized equation of state that is a function only 
of the molecular diameter, 0σ .  The equation is used with an empirical relation for ( )0σgT  to 

predict how gφ  depends on 0σ  for globular, nonpolar molecules, resulting in a model of the σ -

induced glass transition that occurs at fixed temperature and pressure.  At STP, when ≈gσ  = 0.9 



nm, φ  = gφ  and our model predicts molecules experiencing van der Waals attractions will form a 

glass.  Particles greater than gσ  cannot form a liquid unless steps are taken to reduce the 

magnitude of the effective attractions, such as dispersing the particles in a solvent as a solute or 
colloidal phase.  We have also shown that the σ -induced increase in φ  is dominated by entropic 
effects, and that the effective pressure due to attractions is approximately independent of σ . This 
observation was used to develop an approximate equation of state in which the size-independent 
effective pressure, depends only on temperature.  This relation, together with ( )0σφg is sufficient 

to model the dependence of Tg on 0σ .  
 

A key component of the generalized equation of state is the dependence of τ on σ .  This was 
obtained empirically by fitting results from the literature values obtained from a variety of non-
polar molecules.  A theoretical understanding of this relationship would require knowledge about 
how the van der Waals forces that originate from the individual atoms are summed over the 
volume of the molecule.  This integration was performed by Hamaker;[15] the resulting potential 
applies to molecules that are greater than 0.5 nm in diameter and to colloidal particles.[13]  The 
magnitude of the integral determines the Hamaker constant, which is approximately independent 
of the size of the molecule, or particle, and does not vary by more than an order of magnitude 
over a broad range of materials.[13]  We expect that by characterizing the empirical relations 
determined here in terms of the Hamaker constant and the Hamaker pair potential, it will be 
possible to facilitate additional connections between molecular and colloidal systems.  
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