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We experimentally measure the density of states (DOS) and dynamical structure factor (DSF)
arising from the thermal fluctuations in a colloidal crystal composed of thermally sensitive micron-
sized hydrogel particles at several different particle volume fractions, φ. Particle positions are tracked
over long times using optical microscopy and particle tracking algorithms in a single two dimensional
(2D) [111] plane of a 3D face-centered-cubic single crystal. The dynamical fluctuations are spatially
heterogeneous while the lattice itself is highly ordered. At all φ, the DOS exhibits an excess of low
frequency modes, a so-called boson peak (BP), and the DSF exhibits a cross-over from propagating
to non-propagating behavior, a so-called Ioffe-Regel (IR) crossover, at a frequency somewhat below
the BP for both longitudinal and transverse modes. As we tune φ from 0.64 to 0.56, the Lindemann
parameter grows from ∼ 3% to ∼ 8%; however, the shape of the DOS and DSF remain largely
unchanged when rescaled by the Debye level. This invariance indicates that the effective degree of
disorder remains essentially constant even in the vicinity of melting.

PACS numbers: 63.50.-x,82.70.Dd,63.20.D-

I. INTRODUCTION

Over the last two decades, there has been much work
examining vibrational properties in disordered solids; pri-
marily in structural glasses. One important question is
whether the effective disorder in the medium changes un-
der changes in external parameters such as pressure [1],
temperature [2], or density [3, 4]. Most studies have fo-
cused on the density of states (DOS) to provide some
measure of these changes. In some glasses [3], the DOS
is invariant under changes in density after a rescaling of
energy by the Debye energy level, as long the geometry
of the glass does not change, signaling an invariance in
the underlying effective disorder. In others, when pres-
sure [1], temperature [2], or density [4] is changed, the
DOS is not invariant. It is not clear a priori which sys-
tems will exhibit this simple scaling property and which
will exhibit more complex changes in the underlying dis-
order.

Colloidal systems have been studied intensely over the
last decade as analogs for atomic systems [4–11], pri-
marily because colloidal particles offer a distinct ad-
vantage over atoms in that colloids can be tracked di-
rectly using optical microscopy. Most studies have used
glass or polymer particles which behave as perfectly rigid
spheres [5–7, 9]. More recently, however, various groups
have begun to study particles which are soft enough
such that they can deform appreciably under Brownian
forces [4, 8, 10, 11].

We have previously shown that crystals built out of
such soft particles can display dynamics which are spa-
tially heterogeneous despite a very high degree of crys-
talline order [11]. These systems represent a new class
of disordered solid in which the underlying disorder does
not arise from geometry but instead arises from disor-
der in the interactions between the particles. Similar

disorder is present in models of elastically disordered lat-
tices [12, 13]. Previously, we showed that the DOS of
these disordered crystals exhibits an excess of modes, a
so-called boson peak (BP) [11], at low frequency, as seen
in structural glasses.
Here, we show that the dynamical structure factor

(DSF), for both the transverse and longitudinal modes,
and DOS remain essentially constant with particle vol-
ume fraction, φ, after Debye rescaling, even close to
the melting transition where the Lindemann parameter
reaches over 8%. The DSF contains information about
the spatial structure of the vibrational modes which is
absent in the DOS and provides a much stronger test
of Debye scaling. The disordered crystal we study is
a three dimensional (3D) face-centered-cubic (fcc) lat-
tice built by deposition of micron-sized hydrogel parti-
cles, resulting in a lattice with vertical [111] axis. We
monitor particle positions in a single horizontal 2D [111]
plane of the 3D crystal via optical microscopy and record
the two-point correlations in the displacement field ob-
tained by averaging over many statistically independent
observations [4, 11, 14]. Assuming that the dynamics of
the particles are governed by the same harmonic energy
function that governs the displacement probabilities al-
lows one to express the DOS and DSF in terms of the
two-point correlations. The DOS and DSF then repre-
sent our primary window on the effective disorder in the
interactions between the particles and its φ dependence.

II. EXPERIMENTAL

Our temperature sensitive microgel particles were
synthesized via dispersion polymerization of N -
isopropylacrylamide (NIPAm) and acrylic acid (AA) [11].
The microgel particles were then suspended in 20 mM
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Tris base buffer at pH = 8. In this buffer, the particles
can be considered sterically stabilized; the measured
pair interaction potential between the particles in dilute
suspension [15] did not show any long range electrostatic
interactions due to AA groups [11]. The size polydisper-
sity of the microgel particles, measured using dynamic
light scattering (DLS), was < 4%. Fig. 1 shows that
the hydrodynamic diameter, measured by DLS, changed
linearly with temperature over a temperature range of
20◦C to 30◦C.
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FIG. 1: The temperature dependence of the hydrodynamic
diameter as obtained using dynamic light scattering.

We created face-centered-cubic (fcc) crystals at the
highest volume fraction using the microgel colloids within
a glass sample chamber of dimensions 18 × 6 × 0.1 mm,
with the [111] plane parallel to the glass surface. The
grains within the fcc crystal had dimensions of a few mil-
limeters parallel to the glass surface and ∼ 60µm perpen-
dicular to the glass surface. Since the microgel particles
were more than 95% water, they were almost index and
density matched. We collected 21, 000 bright-field images
at a rate of 30 frames per second of a single slice of a [111]
plane that was 30− 40µm away from both glass surfaces
and near the center of a grain using an optical micro-
scope (Leica DMI 6000B) equipped with a CCD camera,
100× oil objective (N.A. 1.4) and oil condenser (N.A.
1.25). The temperature of the sample was maintained
using stage (WP-16; Warner Instruments) and objective
warmers (Warner Instruments) to 0.1◦C. At fixed parti-
cle number density, the temperature is increased in steps.
Since the hydrodynamic radius decreases with tempera-
ture, this results in a decrease in the nominal volume
fraction. After each temperature decrease, we waited 6-8
hours for the sample temperature to equilibrate. The φ
is scanned from 0.64 down to 0.56 in steps of 0.2 by in-
creasing temperature from 21.4◦C to 25.0◦C. At each φ,
we tracked the positions of 2, 300 particles using standard
particle tracking algorithms [16, 17].
At each temperature, we make many statistically inde-

pendent observations of the particle displacements, uiα,
away from their time averaged position to ensure that

the two-point correlation matrix, Giαjβ = 〈uiαujβ〉 is
well converged [11]. Here Latin indices indicate parti-
cle identity and Greek indicate Cartesian components.
As expected, Giαjβ increases with decreasing φ as the
system nears the melting transition. As pointed out ear-
lier [11], 〈uiαuiα〉 varies from particle-to-particle in these
disordered crystals. The RMS particle-to-particle fluctu-
ation in 〈uiαuiα〉 is between 0.06 and 0.08 times the av-
erage 〈uiαuiα〉, showing little dependence on φ. The av-
erage mean squared displacement showed a clear plateau
at long time scales indicating solid-like behavior. Fig. 2
shows the average mean square displacements at three
different φ.
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FIG. 2: (Color online) Mean square displacements for φ =
0.56(�), φ = 0.58(△) and φ = 0.64(◦).

Within the harmonic approximation, in thermal equi-
librium, Giαjβ = 〈uiαujβ〉 =

∑

p
kBT
λp

ψp
iαψ

p
jβ , where

kB is Boltzmann’s constant, T is the temperature, and
ψp
iα is the p-th energy eigenmode with eigenvalue λp.

We diagonalize Giαjβ using the eig() routine in MAT-
LAB to find the full eigenmode spectrum. If one as-
sumes that the dynamics are Hamiltonian, then müiα =
∑

jβp λpψ
p
iαψ

p
jβujβ and the energy eigenvalues may be

converted to vibrational frequencies [4]: mω2

p = λp where
m is the particle mass.

III. RESULTS AND DISCUSSION

The DOS, dN/dω = gω, where N is the mode index, is
shown in Fig. 3 for several φ. At low ω, gω ∼ ω2, so we
normalize gω by ω2. As previously shown [11], gω/ω

2 has
a plateau at low ω followed by a BP, and finally a rapid
decay. As with 〈u2〉, the location of the BP, ωBP , varies

with φ. However, when we scale ω by ω∗ =
√

kBT
m〈u2〉 ,

the DOS plots reasonably collapse. We also observe that
the height of the plateau in gω/ω

2 scales with ω∗, and
we identify ω∗ with the Debye frequency. The scaled
location of BP, ωBP /ω

∗ shows some very slight density
dependence, moving to lower values at lower φ. It also
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becomes slightly broader with a shorter plateau region
at lower φ indicating a slight increase in the degree of
effective disorder. However, the good collapse, in spite of
these small changes, indicates that the primary effect of
changes in φ is simply to reset the overall characteristic
energy scale.
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FIG. 3: (Color online) (a) The density of states (DOS) gω =
dN/dω normalized by the frequency ω2 for φ = 0.56, 0.58,
and 0.64. (b) Same as (a), but scaled by ω∗ (see text). The
approximate collapse of the DOS curves demonstrates that
the main effect of changing φ is to rescale ω.

Next we focus on the planewave decomposition of the
eigenmodes and its relationship to the DSF which would
be observed in inelastic scattering experiments. The DSF
can be written as [18–20]:

Sαβ(~q, ω) =
kBT

mω2
q2

∑

p

Ep
αβ(~q, ω) (1)

where Ep
αβ(~q, ω) represents the projection of the p-th

eigenmode, ψp
iα, onto planewaves, ei~q·~r:

Ep
αβ(~q, ω) =

∑

ab

ψ∗
αpaψβpbe

i~q·~rbaδ(ω − ωp). (2)

We define Eαβ(~q, ω) =
∑

pE
p
αβ(~q, ω) so that Sαβ(~q, ω) =

kBT
mω2 q

2Eαβ(~q, ω). S(~q, ω) encodes the contributions from
various planewaves to the true eigenmodes at a given ω.
As usual, one can decompose E (and S) into longitudinal
(EL = Eαβqαqβ/q

2) and transverse (ET =
∑

αEαα−EL)
components. We note that inelastic scattering exper-
iments which probe density fluctuations are generally
insensitive to ST , while our microscopy/tracking tech-
niques give us full access to both SL and ST .
Following reference [11], we interpolate each eigenmode

onto a regular grid and perform an FFT to obtain Ep
L(~q)

and Ep
T (~q). To regularize Eq. 2, we replace the delta

function with a window with a 10% width in ω. Our re-
sults are not sensitive to the particular choice of window
size. We then perform an isotropic average of E(~q, ω)
over angles to obtain E(q, ω), again using a 10% win-
dow in |~q| for averaging. We checked that restricting ~q
to high symmetry directions (e.g., nearest neighbor and
next nearest neighbor) gives similar results for E(q, ω).
In Fig. 4(a) (and 4(b)), we show ET (q, ω) (and

EL(q, ω)) for several different q at φ = 0.64. For low
enough q, both the transverse and longitudinal profiles
have a single, well defined peak. The peak region can be
well fit by the response function for a damped harmonic
oscillator [21]:

E(q, ω) ∝
Ω(q)2Γ(q)

(ω2 − Ω(q)2)2 + ω2Γ(q)2
(3)

with characteristic frequency, Ω(q), and damping rate
Γ(q). Ω and Γ both increase with q. Note that one gen-
erally obtains similar Ω and Γ from E(q, ω) and S(q, ω),
although, as they differ by a factor of ω2/q2, the pre-
cise numerical values of Γ may be affected for very broad
peaks [19]. Similar profiles are observed in scattering ex-
periments [22, 23], and simulations [18, 19, 24–27].
In Fig. 4(c), we plot the fit parameters, Ω(q) and πΓ(q),

for both ET and EL. The solid line represents q2/3 and
is a good fit through the data for Ω(q). The Ω(q) pro-
file is typically linear in scattering experiments and both
2D and 3D computer simulations as long as q is well be-
low the (pseudo-) brillouin zone boundary. Departures
from linearity in those cases represent true variations in
elastic wave-speed and have important consequences for
the DOS [27]. The large non-linearity observed here is
rather benign and results from the fact that we make
observations of a 2D slice of a 3D system. We have ob-
served similar non-linearities when observing 2D slices
in 3D computer simulations of perfect crystals. As we
have argued elsewhere [11], to the extent that q repre-
sents a good quantum number, one expects ω ∼ q2/3

at low ω. We also note that we currently do not know
the q-dependence of Γ(q) when observing 2D slices of 3D
crystals.
When πΓ ∼ Ω, the peak width is on the order of the

center frequency and the oscillator would become over-
damped. Following conventional approaches [18, 27–29],
we take the q at which Ω = πΓ to define the Ioffe-Regel
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FIG. 4: (Color online) (a) Transverse planewave decomposition of eigenmodes, ET , as a function of mode frequency, ω at several
different wavevectors: q = 0.268(◦), 0.356(�), 0.443(⋄), and 0.655(⊲). (b) same as (a) but for longitudinal modes, EL. The
profiles can be well fit to the response function for a damped harmonic oscillator for the small q shown here. (c) Parameters, Ω

and πΓ, of the fits to Eq. 3 as a function of q for the same data set as in (a) and (b). Solid line represents q2/3. The horizontal
gray line is ωBP .

(IR) crossover. However, at the crossover, the damped
oscillator fit to the E(q, ω) profile is not particularly ro-
bust, so Ω = πΓ should be taken as suggestive rather
than definitive evidence that the given wavevector is suf-
ficiently coupled to others so as to be overdamped. For
the present system at φ = 0.64, we see that the IR
crossover is slightly below the BP for both longitudinal
and transverse waves, with longitudinal waves crossing
over at ω = 4.3× 105 rad/s and transverse wave crossing
at ω = 4.8× 105 rad/s.
Many scattering experiments on atomic and molecular

glasses show that longitudinal modes propagate at fre-
quencies well above the BP. In simulations of structural
glasses [18, 27], one observes that the IR limit occurs for
the transverse modes near the BP, while the longitudinal
modes propagate up to frequencies much higher than the
BP. This is in sharp contrast to the behavior observed
here in our system. These results suggest that the IR
crossover for different branches of the DSF and its re-
lationship to the BP may depend on the details of the
underlying disorder.
In Fig. 5, we show both longitudinal and transverse

branches for φ = 0.64 along with φ = 0.56. We scale Ω
and πΓ by ωBP and we scale q by q∗ where Ω(q∗) = ωBP .
The transverse branch in the φ = 0.56 case crosses over
much closer to ωBP , but still somewhat below. As with
φ = 0.56, the longitudinal crossover is somewhat lower.
At all φ, we find that the IR crossover for the transverse
branch is below but within about 80% of the BP with
the longitudinal IR crossover even further below.
The Debye scaling we observe here provides a strong

check on the invariance of the underlying disorder with
respect to changes in φ. The invariance of the DSF pro-
vides an even stronger check than the invariance of the
DOS and indicates that the structure of the underly-
ing normal modes is essentially unchanged, even in the
vicinity of the melting transition. One might have imag-
ined that on approach to melting, the particle dynamics
would have become more hard-sphere-like, masking the
effect of disorder coming from particle-to-particle varia-
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FIG. 5: (Color online)(a) Ω(q) and πΓ(q) scaled by the BP fre-
quency, ωBP as determined from Fig. 3, for transverse modes
for both φ = 0.56 and φ = 0.64. q∗ is chosen such that
Ω(q∗)/ωBP = 1. (b) Same as (a) but for longitudinal modes.

Solid lines are q2/3 (see text). The Ω(q) curves collapse al-

most perfectly to the q2/3 form at both densities on both
branches, while the πΓ(q) curves show slightly more scatter.
The horizontal gray line is ωBP .

tions in elastic properties. This is not at all what we
observe. The Debye scaling is rather special and fails in
most structural glasses [1, 2], even when they are far from
any transition. Other systems near a transition, such as
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colloidal glasses near the jamming transition, do exhibit
pronounced changes in mode structure indicating a lack
of scaling [4]. This makes the invariance in our system
all the more striking.

IV. CONCLUSIONS

In conclusion, we have measured the DSF and DOS in
a disordered colloidal crystal. Both transverse and longi-
tudinal branches of the DSF are invariant under changes
in φ when rescaled by the Debye level, even near the melt-

ing transition. Both branches become overdamped (the
IR limit) at a common frequency, somewhat below the
BP frequency. This shows that while disordered crystals
exhibit some common features with structural glasses,
many vibrational properties depend on the detailed na-
ture of the underlying disorder.
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