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Abstract

We extend the results from the first part of this series of two papers by examining hyperuni-

formity in heterogeneous media composed of impenetrable anisotropic inclusions. Specifically, we

consider maximally random jammed packings of hard ellipses and superdisks and show that these

systems both possess vanishing infinite-wavelength local-volume-fraction fluctuations and quasi-

long-range pair correlations scaling as r−(d+1) in d Euclidean dimensions. Our results suggest a

strong generalization of a conjecture by Torquato and Stillinger [Phys. Rev. E. 68, 041113 (2003)],

namely that all strictly jammed saturated packings of hard particles, including those with size-

and shape-distributions, are hyperuniform with signature quasi-long-range correlations. We show

that our arguments concerning the constrained distribution of the void space in MRJ packings

directly extend to hard ellipse and superdisk packings, thereby providing a direct structural expla-

nation for the appearance of hyperuniformity and quasi-long-range correlations in these systems.

Additionally, we examine general heterogeneous media with anisotropic inclusions and show for

the first time that one can decorate a periodic point pattern to obtain a hard-particle system that

is not hyperuniform with respect to local-volume-fraction fluctuations. This apparent discrepancy

can also be rationalized by appealing to the irregular distribution of the void space arising from

the anisotropic shapes of the particles. Our work suggests the intriguing possibility that the MRJ

states of hard particles share certain universal features independent of the local properties of the

packings, including the packing fraction and average contact number per particle.

∗ czachary@princeton.edu
† yjiao@princeton.edu
‡ torquato@princeton.edu
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I. INTRODUCTION

In the first part of this series of two papers (henceforth referred to as paper I), we pro-

vided a detailed examination of local-volume-fraction fluctuations in maximally random

jammed (MRJ) packings of polydisperse hard disks. The MRJ state is defined to be the

most disordered configuration of impenetrable particles, according to some well-defined order

metric, that is rigorously incompressible and nonshearable [1]. Packings of MRJ monodis-

perse hard spheres in three dimensions (3D) have been shown to be hyperuniform, meaning

that infinite-wavelength local number density fluctuations vanish [2–4]. Additionally, these

systems exhibit unusual quasi-long-range (QLR) pair correlations decaying as r−(d+1) in d

Euclidean dimensions [3]. Based on the rigidity of the MRJ packings and the presence of a

well-defined contact network, Torquato and Stillinger conjectured that any strictly jammed,

i.e., incompressible and nonshearable, saturated packing of monodisperse hard spheres is

hyperuniform [2], a conjecture for which no counterexample has been found to date. How-

ever, research into MRJ packings of polydisperse particles has suggested that the conjecture

is not true for these systems and that QLR correlations are peculiar to the aforementioned

monodisperse sphere packings [5, 6].

In paper I, we extended the results of a recent letter [7] by presenting definitive evidence

that even polydisperse MRJ hard sphere packings in d dimensions are hyperuniform under

the more general framework of local-volume-fraction fluctuations, whereby one also observes

signature quasi-long-range correlations [8]. In particular, these packings possess asymptotic

local-volume-fraction fluctuations decaying faster than one over the volume of an observation

window even though the variance in the local number density grows as the volume of the

window. These properties are apparently invariant to the degree of polydispersivity and

must therefore arise from a fundamental structural origin in the MRJ packings. We have

argued that maximal disorder of the packings competes with the constraints of saturation

and strict jamming to homogenize the void space external to the particles while inducing the

observed QLR pair correlations, and our results support a generalization of the Torquato-

Stillinger conjecture that all strictly jammed packings of hard spheres (monodisperse or not)

in d Euclidean dimensions are hyperuniform with signature QLR correlations.

However, it is not clear that these results should hold for MRJ packings of nonspher-

ical particles. Figure 1 provides local configurations of jammed hard binary ellipses and
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FIG. 1. (Color online) Illustrative configurations of binary hard ellipses (a) and superdisks (b).

Excluding particles at the boundary, the packings are locally jammed. Both types of particles have

an additional rotational degree of freedom not found in sphere packings, and the anisotropy of the

particle shapes has a substantial effect on both the types of local contacts and the shapes of the

local voids between particles.

superdisks (defined below). The anisotropy of the particle shapes has a drastic effect on the

packing properties of these systems compared to hard disks. Specifically, each particle has an

additional rotational degree of freedom, allowing for a variety of interparticle contacts. The

average number of contacts per particle at the MRJ state is indeed known to be higher for

each of these systems compared to hard disks [9–12], and MRJ packings of hard ellipsoids

in three dimensions are able to achieve greater packing fractions than hard spheres [10].

Particularly for the superdisk packings, the four-fold rotational symmetry of the particles

favors contacts along the faces [13, 14], but corner-corner and corner-face contacts are also

possible and are common at the MRJ state. The distortions of the interparticle void shapes

are therefore quite drastic, owing to the complexity of the contact network. Even if our

arguments above concerning the importance of the void space are true, there is certainly no

simple reason to believe that these systems should be hyperuniform at the MRJ state in the

generalized sense reported in paper I.
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In this paper we provide direct evidence that, despite the aforementioned effects of particle

anisotropy on the properties of the MRJ state, MRJ packings of nonspherical particles are

indeed hyperuniform with respect to local-volume-fraction fluctuations. In accordance with

results reported in a recent letter [7], we show that these systems also have the same types

of quasi-long-range correlations decaying as r−(d+1), which are a likely universal signature

of the MRJ state. Similar QLR correlations have also been observed in noninteracting

spin-polarized fermion ground states [15, 16], the ground state of liquid helium [17], and the

Harrison-Zeldovich power spectrum of the density fluctuations of the early Universe [18], and

recent work has provided a direct connection between the presence of QLR correlations and

the extent of structural order in a many-particle system [19]. Our results therefore suggest

that all of these systems are “jammed” in the generalized sense that the local structure

is statistically rigid on the global scale of the system. We also show that our arguments

concerning the void space of the MRJ packings directly extend to the case of nonspherical

particles, thereby providing a unified explanation for the appearance of hyperuniformity and

QLR correlations in these systems. It follows that the Torquato-Stillinger conjecture can be

further generalized to the rather strong statement that all strictly jammed saturated packings

of hard particles (spherical or not) are hyperuniform with signature QLR correlations.

We also examine the converse problem to one considered in paper I and above. Namely,

is it possible to construct a general heterogeneous medium from a regular point distribution

(e.g., a Bravais lattice [20]) that is not hyperuniform with respect to local-volume-fraction

fluctuations? We provide an affirmative answer to this question by considering regular

distributions of impenetrable squares in the plane. By arranging the squares on a square

lattice, the anisotropy of the particles skews the void-space distribution of the medium and

prevents infinite-wavelength local-volume-fraction fluctuations from vanishing. However,

by examining instead a checkerboard structure, we are able to recover hyperuniformity by

effectively averaging over the induced anisotropy in the void space. These results complement

our analyses of MRJ packings here and in paper I by emphasizing the inherent connection

between the void-space distribution and hyperuniformity.

Section II briefly reviews the concepts of hyperuniformity and jamming as they apply

to hard-particle packings. Section III presents our calculations of local-volume-fraction

fluctuations in MRJ packings of hard ellipses and superdisks using the methodology discussed

in paper I and reviewed in Section II. We then consider the effects of particle anisotropy on
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hyperuniformity in general heterogeneous media in Section IV. Discussion and concluding

remarks are in Section V. A short appendix provides the analysis necessary for our numerical

calculations of the two-point correlations in MRJ hard ellipse and superdisk packings.

II. BACKGROUND AND DEFINITIONS

A. Hyperuniformity

Our focus in this work is on local-volume-fraction fluctuations in heterogeneous media.

Formally, a two-phase random heterogeneous medium is a region of space partitioned into

two distinguishable sets (phases) V1 and V2 with interfaces that are known probabilistically

[21, 22]. The fraction of space occupied globally by phase i is the volume fraction φi of

that phase. However, one can also define a local volume fraction τi(x) as the fraction of

space occupied by phase i within some local observation region W(x;R) with geometric

parameters R.

Unlike the fixed quantity φi, the local volume fraction fluctuates according to the un-

derlying probability distribution of the heterogeneous medium and the location x of the

window. These fluctuations are completely determined by the two-point information of the

heterogeneous medium, contained within the two-point probability function S
(i)
2 (r), where

S
(i)
2 (r) = 〈I(i)(r1)I(i)(r2)〉 (r = r2 − r2). (1)

The function I(i)(r) is the indicator function for phase i:

I(i)(r) =











1, r ∈ Vi

0, r /∈ Vi.
(2)

Note that we assume statistical homogeneity of the heterogeneous medium.

For arbitrary two-phase random media, one can write down successive upper and lower

bounds, incorporating increasingly higher-order correlation functions, on the two-point prob-

ability function of the void space external to the particles [23]. For packings of particles,

these bounds truncate and become exact at terms involving the pair correlation function

[24]; namely [25]

S2(r) = 1− 2ρv(R) + ρvint(r;R) + ρ2(g2 ∗ vint)(r;R), (3)
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where v(R) is the volume of a (possibly anisotropic) particle with geometric parameters R

and vint(r;R) is the intersection volume of two such particles with centroids separated by a

displacement r. The corresponding result for the particle phase is

S
(p)
2 (r) = S2(r)− 1 + 2ρv(R), (4)

containing only two contributions. The first term in S
(p)
2 (r) is related to the probability of

finding two points separated by a displacement r in the same particle, and the last term

accounts for the probability that the points are in separate particles. It follows from these

considerations that if a packing has quasi-long-range correlations (as at the MRJ state), the

contribution to S
(p)
2 from the pair correlation function must be responsible for this behavior.

The corresponding two-point autocovariance function χ(r) [21, 22, 26] is obtained by

subtracting the long-range behavior φ2
i from S

(i)
2 (r), and this function is independent of the

chosen reference phase Vi, rendering it a global descriptor of correlations within the system.

This property is especially important for MRJ packings because it implies that local-volume-

fraction fluctuations of the particles and the void space are equivalent, thereby motivating

our discussion of the fundamental role of the void space in determining hyperuniformity and

QLR correlations. The Fourier transform χ̂(k) of the autocovariance function is known as

the spectral density [21]. The variance σ2
τ (R) in the local volume fraction is given by [27]

σ2
τ (R) =

1

v(R)

∫

Rd

χ(r)α(r;R)dr, (5)

where α(r;R) is the intersection volume of two d-dimensional spheres of radius R separated

by a distance r, normalized by the volume v(R) of a sphere; see Refs. [2, 28] for exact

expressions of this function. For large R, the local-volume-fraction variance admits an

asymptotic expansion [27]

σ2
τ (R) =

ρ

2dϕ

{

Aτ

(

D

R

)d

+Bτ

(

D

R

)d+1

+ o

[

(

D

R

)d+1
]}

, (6)

where

Aτ =

∫

Rd

χ(r)dr = lim
‖k‖→0

χ̂(k) (7)

Bτ = − Γ(1 + d/2)

DΓ(1/2)Γ[(d+ 1)/2]

∫

Rd

‖r‖χ(r)dr. (8)
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The parameter D defines a length scale for the problem (e.g., the mean nearest neighbor

distance) with a corresponding reduced density, not necessarily equal to the volume fraction,

ϕ = ρv(D/2).

It follows from (7) that any heterogeneous medium with a spectral density that vanishes

in the limit of small wavenumbers possesses asymptotic local-volume-fraction fluctuations

decaying faster than one over the volume of an observation window. These special systems

are known as hyperuniform [2, 27]. Since hyperuniform heterogeneous media lack infinite-

wavelength local-volume-fraction fluctuations, the local volume fraction of a reference phase

approaches its global value over relatively few characteristic length scales, implying that the

system is globally homogeneous.

In the first part of this series of papers, we expressed the spectral density χ̂(k) of a finite

hard-particle packing as a discrete Fourier transform of the local density of particles and the

particle indicator function m(r;Ri), where

m(r;Ri) =











1, r is in particle i

0, else;
(9)

Ri denotes all geometric parameters of the particle shape. Specifically, we showed [8]

χ̂(k) =

∣

∣

∣

∑N
j=1 exp(−ik · rj)m̂(k;Rj)

∣

∣

∣

2

V
, (k 6= 0) (10)

where {rj} denotes the particle centroids and V is the volume of the simulation box. The

wavevectors k are defined by the dual lattice vectors to those of the simulation cell; for

example, with a square simulation box of side length L, the wavevectors are k = (2π/L)n,

where n ∈ Z
2. Note that the zero wavevector is excluded from the expression (10); we

therefore define χ̂(0) ≡ lim‖k‖→0 χ̂(k).

Heterogeneous media with autocovariance functions decaying asymptotically as r−(d+1)

exhibit anomalous local-volume-fraction fluctuations [2, 3, 19, 27]. Though still hyper-

uniform according to the definition above, these quasi-long-range pair correlations induce

logarithmic corrections in the asymptotic expansion of the local-volume-fraction variance:

σ2
τ (R) ∼ B0 +B1 ln(R)

Rd+1
(R → +∞). (11)

In the first paper of this series, we provided strong arguments to indicate that these types of

quasi-long-range correlations, manifested by a linear scaling in the small-wavenumber region
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of the spectral density χ̂(k), are a signature of maximally random strictly jammed packings

of hard d-dimensional spheres. We expand upon those results in this paper by showing that

quasi-long-range pair correlations are likely a universal signature of all MRJ hard-particle

packings, including those packings composed of anisotropic particles.

B. Jamming in hard ellipse and superdisk packings

Torquato and Stillinger [29] have provided a hierarchical classification scheme for jammed

hard-particle packings, introducing the notions of local, collective, and strict jamming. Our

focus in this work is on strictly jammed packings of nonspherical hard particles, in which no

global boundary-shape deformation accompanied by collective particle motions can exist that

respects the nonoverlap conditions of the particles. Strictly jammed packings are therefore

rigorously incompressible and nonshearable.

The maximally random jammed (MRJ) state is defined to be the most disordered jammed

packing, here assumed to be strictly jammed, according to some well-defined order metrics.

This concept has recently replaced the mathematically ill-defined notion of the random close-

packed (RCP) state [1]. Although much work has been done to characterize the structural

properties of MRJ hard sphere packings [3, 30, 32], work has only recently been done to

understand MRJ packings of nonspherical particles [12]. A complete theoretical prediction

of the MRJ state is intractable because the problem is inherently nonlocal with signature

quasi-long-range correlations between particles [3, 8]. Therefore, methods that attempt to

study the MRJ state based only on packing fraction and local criteria, such as nearest-

neighbor coordination and Voronoi statistics, are necessarily incomplete [30]. In particular,

such local criteria cannot distinguish the MRJ state from other “random” jammed states

with higher degrees of order [31].

In this work, we consider binary MRJ packings of hard ellipses and superdisks. An ellipse,

centered at the origin, is defined by the region

|x1|2
a2

+
|x2|2
b2

≤ 1, (12)

where 2a and 2b denotes the lengths along each of the semiaxes. The packing characteristics

of hard ellipses are determined by the aspect ratio α = b/a. Specifically, it is known [11, 30]

that MRJ packings of hard ellipses and ellipsoids (in three dimensions) are hypostatic near
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the sphere point, meaning that the average contact number Z is less than twice the number

of degrees of freedom per particle. Even for large aspect ratios, the particles are still slightly

hypostatic. Interestingly, MRJ packings of hard ellipsoids in three dimensions have been

shown to possess higher packing fractions than the corresponding MRJ sphere packings [10].

A superdisk is defined by the region

|x1|2p + |x2|2p ≤ λ, (13)

where p is the so-called deformation parameter that interpolates between the disk (p = 1)

and square (p = +∞) shapes, and 2λ1/(2p) is the length of the particle along each of its

principle axes. Unlike ellipses, MRJ superdisk packings are highly hypostatic, meaning that

Z is much smaller than twice the number of degrees of freedom per particle for all values

of p [12]. Therefore, to achieve strict jamming, the particles are necessarily correlated in

a nontrivial manner; such correlated structures have been termed nongeneric [12]. Inter-

estingly, these nongeneric structures are not rare configurations [12], reinforcing the notion

that local descriptors of the packings are not sufficient to characterize fully the MRJ state.

III. HYPERUNIFORMITY IN BINARY MRJ PACKINGS OF SUPERDISKS

AND ELLIPSES

In the first part of this series, we clearly demonstrated that “point” information con-

tained in the distribution of particle centers in polydisperse MRJ hard-particle packings is

not sufficient to describe local fluctuations appropriately [8]. Specifically, our results indicate

that including the shape information of the particles via local-volume-fraction fluctuations

is essential to account for the presence of hyperuniformity and quasi-long-range pair corre-

lations in MRJ packings of polydisperse hard disks. However, as previously mentioned, it

is not obvious that the arguments from that study should apply to MRJ packings of hard

anisotropic particles since the types of interparticle contacts are highly dependent on the

particle shape.

We argued in the case of hard disks that strict jamming of the packings competes with

the maximal randomness of the distribution to regularize the void space external to the

particles. Furthermore, the sizes and shapes of the voids are inherently correlated with each

other over several length scales based on the jamming constraint, suggesting the presence
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(a) (b)

FIG. 2. (Color online) (a) Binary MRJ packing of hard ellipses with aspect ratio α = b/a = 1.1.

(b) Binary Packing of hard superdisks with deformation parameter p = 1.5 at the MRJ state. For

both configurations, the size ratio between small (blue) and large (red) particles is β = 1.4.

of signature quasi-long-range pair correlations. Here we extend the results of our previous

work to MRJ packings of hard ellipses and superdisks and provide strong evidence for the

claim that quasi-long-range correlations are a universal signature of the MRJ state while

further supporting our arguments concerning the void space distributions of these systems.

A. Generation of MRJ packings

We have generated configurations of binary MRJ packings of ellipses and superdisks using

the Donev-Torquato-Stillinger algorithm [33], which is a modified version for nonspherical

particles of the Lubachevsky-Stillinger algorithm [34, 35]. Particles of two different sizes with

a fixed size ratio β (here β = 1.4) undergo event-driven molecular dynamics with periodic

boundary conditions while simultaneously growing at a specified rate. Toward the end of

the simulation, the unit cell is continuously deformed in order to minimize interparticle

gaps, and near the jamming point, a sufficiently small expansion rate is used to allow the

particles to establish a contact network and form an essentially strictly jammed packing.
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FIG. 3. Structure factors for binary MRJ packings of hard ellipses with aspect ratio α = b/a = 1.1

(a) and superdisks with deformation parameter p = 1.5 (b). In neither case do infinite-wavelength

local density fluctuations vanish.

The compositions of our packings are γsmall = 0.75 and γlarge = 0.25, where γi is the mole

fraction of species i. Figure 2 provides illustrations of our final MRJ packings.

Although our packings do contain a small fraction of “rattlers,” which are particles free

to move within some small cage, the concentration of these rattlers is much smaller than for

hard disks. Indeed, it is known that the concentration of rattlers practically vanishes at high

aspect ratios for ellipse packings [11] and large deformation parameters for superdisks [12].

The few rattlers that are present in the packings must be kept in the final configurations

in order to calculate accurately the spectral densities. Removing these rattlers introduces

large holes into the system, thereby skewing the distribution of the void space and breaking

hyperuniformity [8].

B. Structure factor and spectral density calculations

Figure 3 shows the calculated structure factors S(k) for our binary MRJ packings. The

structure factor is related to the pair correlation function g2(r) between particle centroids
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FIG. 4. Spectral densities for binary hard ellipse packings with aspect ratios α = b/a = 1.1 (a)

and α = 1.4 (b). Both systems are hyperuniform with signature quasi-long-range correlations.

according to

S(k) = 1 + ρF {g2(r)− 1} (k), (14)

where ρ is the number density of the packing and F denotes the Fourier transform. The struc-

ture factor is related to the fluctuations in the local number density and therefore contains

only “point” information of the MRJ packings. Just as we observed for polydisperse MRJ

hard disk packings, the size distribution of the particles introduces locally inhomogeneous re-

gions of particle centroids such that infinite-wavelength local number density fluctuations do

not vanish, meaning that S(0) 6= 0. Unlike for packings of hard disks, the shape anisotropy

of ellipses and superdisks compounds this effect since rotations of the particles increase the

types of interparticle contacts that can be formed.

Using the expression (10) for the spectral density and the results in Appendix A for the

Fourier transforms of the particle indicator functions for hard ellipses and superdisks, we

have numerically evaluated the spectral densities of the corresponding binary MRJ packings,

and the results are shown in Figures 4 and 5. Both the MRJ ellipse and superdisk packings

are indeed hyperuniform with vanishing infinite-wavelength local-volume-fraction fluctua-

tions. Furthermore, in each case we have observed a signature linear scaling in the small-

wavenumber region of the spectral density, implying the presence of quasi-long-range cor-
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relations between particles. This observation is in accordance with our previously-reported

results for MRJ packings of polydisperse disks, but the appearance of the linear scaling in

this instance is particularly striking since, as we have noted, MRJ packings of anisotropic

particles have markedly different properties from sphere packings. Indeed, despite the fact

that both the ellipse and superdisk packings are hypostatic, the linear scaling persists, sug-

gesting that quasi-long-range correlations must have a structural origin independent of the

average contact number. We have argued [8] that this essential structural feature is the

regularity of the void space external to the particles, and we elaborate on this point below.

We have also verified in Figure 4 that both hyperuniformity and the presence of quasi-

long-range correlations are invariant to the aspect ratio of our ellipses. By increasing the

aspect ratio, it is known that one can increase the density of the MRJ state [10, 11, 30] along

with the average contact number. The resulting packing structure is therefore increasingly

regularized in the sense that the distribution of void shapes and sizes becomes essentially

uniform, an effect shown explicitly in Figure 6. One can immediately see that by increasing

the aspect ratio, one increases the number of three-sided interparticle voids (called n-particle

loops in paper I) relative to topologically higher-order voids. In addition, the average size

of the voids becomes more uniform with increasing aspect ratio, a direct result of the higher

average contact number of the particles. This increased regularity implies that the void

shapes are highly controlled by the jamming constraint, which is consistent with the presence

of quasi-long-range correlations.

Therefore, although the characteristics of MRJ packings of hard superdisks and ellipses

are quite distinct from those properties of MRJ disk packings, the presence of hyperunifor-

mity with signature quasi-long-range correlations as reflected by a linear small-wavenumber

region of the spectral density appears to be a universal feature of the MRJ state. Our argu-

ments concerning the distribution of the void space and its relationship to these structural

signatures are general enough to account for these unexpected properties. These results sug-

gest that the Torquato-Stillinger conjecture may be substantially stronger than previously

thought, namely that any MRJ packing of hard particles of arbitrary geometry is hype-

runiform with quasi-long-range correlations scaling as r−(d+1) in d Euclidean dimensions.

Although we are still unable to account fully for the origin of the linear small-wavenumber

region of the spectral density, which, as mentioned in the first part of this series, is tan-

tamount to providing a full theoretical prediction of the MRJ state, our work provides a
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FIG. 5. Spectral density for a binary hard superdisk packing with deformation parameter p = 1.5.

structural explanation for its appearance by emphasizing the fundamental role of the void

space in the packings.

We remark that one can construct disordered hyperuniform systems with quasi-long-

range correlations using optimization techniques [36], which do not correspond to any strictly

jammed packings. Therefore, it is not our intention to suggest that only MRJ packings can

be hyperuniform or possess quasi-long-range correlations. Nevertheless, such properties are

apparently universal among all MRJ packings, regardless of polydispersity or particle shape,

and our arguments concerning the constrained void space are general enough to incorporate

even the aforementioned disordered heterogeneous media [19].

IV. HYPERUNIFORMITY AND ANISOTROPY IN GENERAL HETEROGE-

NEOUS MEDIA

The binary MRJ packings that we have examined thus far have been statistically homoge-

neous and isotropic, reflecting the symmetry of the chosen decoration for the particle centers.

We have shown that it is possible for a point pattern with non-vanishing infinite-wavelength

local number density fluctuations to generate a hyperuniform heterogeneous medium by en-

forcing strict jamming of the system, thereby constraining the available void space surround-

ing the particles in such a way that the pore size becomes effectively uniform. Furthermore,
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(a) (b)

FIG. 6. (Color online) Local portions of binary MRJ ellipse packings with aspect ratios α = 1.1

(a) and α = 1.4 (b). By increasing the aspect ratio, the particles increase their average contact

number, thereby homogenizing the void-space distribution.

this effect is apparently independent of the particle shape.

Our focus is now on general statistically anisotropic heterogeneous media, and we provide

an example of a system generated by a Bravais lattice that is not hyperuniform with respect

to local-volume-fraction fluctuations. This case is therefore the converse problem to the MRJ

packings we have considered, namely, anisotropic decoration of a globally homogeneous point

pattern results in a non-hyperuniform heterogeneous medium. As before, the reason for this

discrepancy will depend on the distribution of the void space, which is made irregular by

the anisotropy of the microstructure.

We recall from (5) that anisotropy can affect local fluctuations within a system through

either the two-point information of the microstructure or the shape of the chosen observation

window via the scaled intersection volume. In the following analysis we consider systems

composed of anisotropic inclusions and measure local volume fractions using an anisotropic

observation window. As has been previously suggested [2], hyperuniformity of a stochastic

system is independent of the shape of the observation window used to measure local fluctu-

ations. Specifically, so long as the leading-order term in the series expansion of the scaled
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(a) (b)

FIG. 7. (Color online) (a) The checkerboard pattern. (b) An anisotropic heterogeneous medium

obtained by decorating the square lattice with squares; the volume fraction φ = 0.5.

intersection volume α is independent of the size of the window, the volume-order term for

fluctuations in both the number density and local volume fraction is completely determined

by the small-wavenumber region of either S(k) or χ̂(k), respectively. The result is that any

two-phase system with a spectral density χ̂(k) that vanishes at the origin is hyperuniform,

and this quantity is independent of the shape of the observation window. Therefore, statis-

tical anisotropy of the system plays a fundamental role in determining local-volume-fraction

fluctuations and is the main focus of this section.

The two systems that we consider here are shown in Figure 7; unlike for the binary MRJ

packings, these heterogeneous media are composed of nonoverlapping squares in the plane.

The first system shown in Figure 7 is a checkerboard pattern in which squares of equal size

are placed in an alternating manner throughout the plane, thereby filling space to a volume

fraction φ = 0.5. A related system, shown on the right side of Figure 7, is obtained by

decorating the square (Z2) lattice with squares; this decoration can feasibly be made to

obtain any desired volume fraction, and without loss of generality we again choose φ = 0.5.

We will henceforth refer to this system as the square-Z2 lattice.
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A. Local-volume-fraction fluctuations

Local-volume-fraction fluctuations in these systems are measured with respect to a square

observation window of side length L. We note that the calculation of the variance σ2
τ (L)

requires knowledge of the intersection volume between two (oriented) squares of side lengths

ℓ1 and ℓ2; this quantity can be directly evaluated using the definition

vint(r1, r2;R1,R2) =

∫

Rd

m(x, r1;R1)m(x, r2;R2)dx, (15)

where m(x, r;R) is the particle indicator function for a point x within an inclusion centered

at r with geometric parameters R. For a square of side length ℓ, this indicator function has

the form

m(x, r; ℓ) = Θ
[

ℓ−
(

|x1 − r1|+ |x2 − r2|+
∣

∣|x1 − r1| − |x2 − r2|
∣

∣

)]

, (16)

where x = (x1, x2), r = (r1, r2), and Θ is the Heaviside step function. The calculation of

the intersection volume for squares can be further simplified by noting that the statistics

are independent between the orthogonal standard axes for R2. Given this information, one

obtains by direct calculation

vint(r12; ℓ1, ℓ2) =
1

16
(2x12 + ℓ1 + ℓ2 − |2x12 + ℓ1 − ℓ2| − |2x12 − ℓ1 + ℓ2|+ |−2x12 + ℓ1 + ℓ2|)

× (2y12 + ℓ1 + ℓ2 − |2y12 + ℓ1 − ℓ2| − |2y12 − ℓ1 + ℓ2|+ |−2y12 + ℓ1 + ℓ2|) ,
(17)

where r12 = (x12, y12) = (|r11−r21|, |r12−r22|). It follows from (17) and geometric considera-

tions that the intersection volume vanishes when either x12 ≥ (ℓ1+ℓ2)/2 or y12 ≥ (ℓ1+ℓ2)/2.

Note that when ℓ1 = ℓ2, the result (17) simplifies according to

vint(r12; ℓ) = (ℓ− x12)(ℓ− y12)Θ(ℓ− x12)Θ(ℓ− y12), (18)

which is simply the product of one-dimensional intersection volumes. One can now show

using (18) and the general result (5) that the variance in the local volume fraction scales

with the side length L of a square observation window according to

σ2
τ (L) = 4

(

Aτ

L2
+

Bτ

L3
+

Cτ

L4

)

, (19)
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FIG. 8. (Color online) (a) Fluctuations in the local volume fraction for the checkerboard and

square-Z2 heterogeneous media. Note that the standard deviation and not the variance has been

plotted for clarity. (b) Leading-order terms governing local volume fraction fluctuations for these

systems.

where

Aτ =

∫ L

0

∫ L

0

χ(x, y)dxdy (20)

Bτ = −
∫ L

0

∫ L

0

(x+ y)χ(x, y)dxdy (21)

Cτ =

∫ L

0

∫ L

0

xyχ(x, y)dxdy. (22)

In the limit of large observation windows, Aτ ∼ χ̂(0) as expected, meaning that hetero-

geneous media for which local-volume-fraction fluctuations decay faster than one over the

volume of the observation window are hyperuniform [37]. However, unlike for circular obser-

vation windows, the scaling in (19) truncates at O(L−4), meaning that fluctuations cannot

decay faster than one over the square of the observation window volume.

The variance in the local volume fraction for the square-Z2 lattice has been studied

analytically by Quintanilla and Torquato [38] for all volume fractions. Choosing the side
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length of an inclusion to be ℓ =
√
φ < 1 and defining

L = n + λ (λ < 1) (23)

δ = |1− ℓ− λ| (24)

∆ = |ℓ− λ| (25)

m = [nℓ +max{λ− 1 + ℓ, 0}]/L (26)

M = [(n + 1)ℓ+min{λ− ℓ, 0}]/L, (27)

one can show [38]

σ2
τ (L) =

[3δm2 + 2L(M3 −m3) + 3∆M2]2

9
− [δm+ L(M2 −m2) + ∆M ]4. (28)

The result (28) is plotted in Figure 8. We remark that periodicity of the system suppresses

local-volume-fraction fluctuations when the volume of the window is an integral multiple of

the lattice spacing. Quintanilla and Torquato have noted that local-volume-fraction fluctu-

ations in the square-Z2 system are indeed dampened relative to a random distribution of

squares in the plane [38]; however, the exact scaling of the decay in the fluctuations has not

been previously reported. Surprisingly, the right side of Figure 8 shows that, while local

volume fraction fluctuations are suppressed by periodicity of the medium, the decay in the

variance is still controlled by the volume of the observation window; i.e., σ2
τ ∼ 1/L2 for

large windows. We have numerically evaluated the asymptotic coefficient Aτ (cf. (20)) and

obtained Aτ ≈ 0.001805, which is small but nonvanishing. To our knowledge, this system is

the first example of a periodic medium that is not hyperuniform with respect to the variance

in the local volume fraction.

We have also numerically investigated the fluctuations in the local volume fraction for

the checkerboard pattern, and the results are shown in Figure 8. As with the square-integer

microstructure, the checkerboard pattern suppresses local-volume-fraction fluctuations on

length scales equivalent to the size of the unit cell; however, one immediately notes that the

variance decays to its asymptotic value of zero much more rapidly than in the square-Z2

system. This observation suggests that the checkerboard pattern is indeed hyperuniform,

and Figure 8 shows that the decay of the local-volume-fraction variance scales faster than

the volume of the observation window. In fact, it appears that the checkerboard pattern

actually saturates the local-volume-fraction fluctuations, meaning that this system exhibits

the maximum possible decay for a square observation window: σ2
τ ∼ 1/L4. In other words,
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it is not only true for this system that Aτ = 0, but also Bτ = 0; numerical calculations

indicate that Cτ ≈ 1.63793× 10−4.

B. Anisotropy and the void space

In order to understand the differences in the local-volume-fraction fluctuations between

these systems, we again stress that the shape of the observation window does not affect

volume-order fluctuations in the local volume fraction, meaning that any differences between

the square-Z2 and checkerboard systems must be a result of the spatial distribution of the

inclusions themselves. Specifically, we again focus on the effect of this spatial distribution

on the available void space surrounding the particles. Both of these systems are statistically

anisotropic, meaning that the particle inclusions and the void space are anisotropic in their

spatial distributions. This claim is readily apparent for the square-Z2 pattern, where the

distribution of gaps along the standard axes differs from the corresponding distribution along

the diagonal. It is this anisotropy that weakens the uniformity of the void space surrounding

the inclusions, thereby preventing the system from achieving hyperuniformity.

In contrast, the symmetry of the void and inclusion phases in the checkerboard pattern

allows for a more regular spatial distribution even along the diagonals of the system, and

it is this additional symmetry that permits the system to exhibit hyperuniformity with

respect to the local volume fraction. Indeed, we note that the checkerboard pattern can

be generated from the square-Z2 system by rotating each of the particles in the latter

microstructure through an angle of π/4 radians. It follows that the checkerboard pattern

overcomes the limitation of anisotropy because it has effectively averaged over the angular

distribution of the square-Z2 medium, thereby enforcing a much stronger constraint on

the void space and making it highly regular. Therefore, although this example could be

considered the “converse” problem to the MRJ binary packings, it is again the regularity

of the void space that controls the local-volume-fraction fluctuations. Furthermore, we

remark that this example highlights the significance of the variance in the local volume

fraction as a fundamental indicator of hyperuniformity in heterogeneous media. As with

the MRJ packings, the information contained in the underlying point pattern of the particle

centroids is not sufficient to characterize spatial fluctuations resulting from a decoration

of the points. Even the Bragg peaks occurring in the structure factor of a periodic point
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pattern may not be preserved upon giving the inclusions finite volume as with the square-Z2

microstructure, thereby breaking hyperuniformity in such instances. In contrast, local-

volume-fraction fluctuations are highly sensitive to the homogeneity and isotropy of the

microstructure.

V. CONCLUDING REMARKS

In this series of two papers, we have provided a detailed study of hyperuniformity, jam-

ming, and quasi-long-range correlations in MRJ packings of hard particles. Contrary to

previously-published work on polydisperse hard-sphere packings [5, 6], we have shown that

MRJ packings of hard particles with both a shape- and size-distribution possess vanishing

infinite-wavelength local-volume-fraction fluctuations and signature quasi-long-range pair

correlations. Our work generalizes the Torquato-Stillinger conjecture to the strong state-

ment that all strictly jammed saturated packings of hard particles are hyperuniform with

QLR correlations asymptotically scaling as r−(d+1) in d Euclidean dimensions.

We have also identified the first known example of a non-hyperuniform heterogeneous

medium obtained by decorating an underlying point pattern that possesses vanishing infinite-

wavelength local number density fluctuations. Our work emphasizes the effect of particle

anisotropy on local-volume-fraction fluctuations and is consistent with our arguments con-

cerning the void space. By skewing the distribution of voids external to the particles, one can

break hyperuniformity with locally inhomogeneous regions of the microstructure. Therefore,

a complete description of any heterogeneous material, including granular packings, must ac-

count for the shape information of the particles, and “point” information contained in the

particle centroids is insufficient.

It is worth mentioning the results of recent work on MRJ packings of the Platonic solids

in three dimensions. The Platonic solids are convex polyhedra with faces composed of con-

gruent convex regular polygons [39], including the tetrahedron, icosahedron, dodecahedron,

octahedron, and cube. Much attention has recently been given in the literature to the dens-

est packings of these objects [40–44], but relatively little is known about their maximally

random jammed structures. However, current research has provided striking evidence that

these MRJ packings, an illustrative portion of which is shown in Figure 9, are indeed hype-

runiform with the same signature QLR pair correlations [45]. Although in exact accordance
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FIG. 9. (Color online) Local portion of a MRJ packing of tetrahedra. These systems exhibit the

same signature QLR pair correlations as MRJ packings of spheres, ellipsoids, and superballs [45].

with our work, these results are striking since these solids each possess sharp corners and

edges quite different from ellipsoids and superballs, the three-dimensional generalizations of

ellipses and superdisks, respectively. Additionally, of the Platonic solids, only the tetrahe-

dron is not centrally symmetric with densest packings that are non-Bravais lattices [40, 41].

Nevertheless, the densest known tetrahedral packings possess a volume fraction much greater

than spheres. Very little is currently known about the average contact numbers and packing

densities of the MRJ states for these solids, and it is therefore not a trivial conclusion that

they should exhibit the same signatures in the MRJ state as the packings in our work.

The linear small-wavenumber scaling of the spectral densities of MRJ packings appears

to be a universal feature of these systems, invariant to the particle shape and the size

distribution of particles. We have discussed the importance of the homogeneity of the

void space external to the particles in promoting hyperuniformity and have outlined how

correlations between void shapes and sizes may contribute to the onset of QLR correlations.

Nevertheless, a complete explanation for the origin of these signature correlations is still

unavailable, and likely to remain so in the near future because this problem is equivalent to

quantifying the nature of the MRJ state itself. Developing such a model is immensely difficult

because the problem is inherently non-local, meaning that any local analysis is necessarily

incomplete [30]. Of particular interest in this regard is recent work suggesting that sub-
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linear scaling is indeed inconsistent with the jamming and impenetrability constraints of the

packings [19], further supporting our arguments concerning the void space.
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Appendix A: Details on the Donev-Torquato-Stillinger algorithm for generating

MRJ packings

As discussed above, we employ the Donev-Torquato-Stillinger molecular dynamics algo-

rithm to generate disordered jammed hard-particle packings. Initially, small nonoverlapping

particles with a prescribed size distribution and concentration ratio are random placed in a

simulation box and given random initial velocities. The system then evolves according to

Newtonian dynamics as the particles grow with a specific growth rate γ under the constraint

of a fixed size ratio. To maximize disorder, relatively large growth rates [i.e., γ ∈ (0.05, 0.1)]

are initially employed. Near the jamming point, very small growth rates are necessary

[γ ≈ 10−6] for the particles to establish a rigid contact network and strict jamming. In

addition, a deformable simulation box is used to facilitate any possible collective motions

coupled with boundary deformations, ensuring strict jamming of the final configuration.

Jamming is verified by shrinking the particles slightly and equilibrating the system with a

variable simulation box for a sufficiently long time, after which the packing is rejammed. If

there is no sufficient structural relaxation, the packing is considered strictly jammed [11, 12].

These parameters have been shown to be consistent with the translational and orientational

order metrics [31]. Statistics for the binary ellipse and superdisk packings were obtained by

averaging over 20 configurations of 1000 particles each. We verified that our results were

invariant to system size by comparing the calculations with systems of up to 10000 particles.
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Appendix B: Indicator functions for ellipses and superdisks

In order to calculate the spectral densities for binary MRJ packings of ellipses and su-

perdisks, it is necessary to evaluate the Fourier transforms of the respective particle indicator

functions. Since the analyses for these two systems are similar, we discuss the Fourier trans-

form of the ellipse indicator function in detail and then state the corresponding result for

superdisks.

We recall that an ellipse centered at the origin is defined by the region

|x1|2
a2

+
|x2|2
b2

≤ 1, (B1)

where 2a and 2b denote the lengths of the ellipse along the x1 and x2 semiaxes. Since ellipses

in MRJ packings have an additional rotational degree of freedom, we must determine how

this region is defined upon rotating the ellipse by an angle θ (counterclockwise) with respect

to the x1 axis. Noting that we can always find a coordinate system (y1, y2) where (B1) holds,

it follows that the reference frame (x1, x2) is related to the rotated frame by an orthogonal

transformation

x = Ay, (B2)

where

A =





cos(θ) − sin(θ)

sin(θ) cos(θ)



 (B3)

with detA = 1. In the reference frame we therefore have the following representation of the

ellipse:
|x1 cos(θ) + x2 sin(θ)|2

a2
+

|x2 cos(θ)− x1 sin(θ)|2
b2

≤ 1. (B4)

The particle indicator function m(x; a, b, θ) of the ellipse can now be written as

m(x; a, b, θ) = Θ

[

1− |x1 cos(θ) + x2 sin(θ)|2
a2

− |x2 cos(θ)− x1 sin(θ)|2
b2

]

, (B5)

where Θ(x) is the Heaviside step function. The Fourier transform of this function is

m̂(k; a, b, θ) =

∫

R2

exp(−ik · x)m(x; a, b, θ)dx1dx2, (B6)

which can be simplified by passing back to the rotated frame and noting that det J = 1,

where J is the Jacobian of the transformation. The result is

m̂(k; a, b, θ) =

∫

R2

exp(−iω · y)Θ
[

1− |y1|2
a2

− |y2|2
b2

]

dy1dy2, (B7)

25



where ω = ATk.

The integrals in (B7) can be evaluated stepwise, first noting that

I1 ≡
∫

R

exp(−iω1y1)Θ

[

1− |y1|2
a2

− |y2|2
b2

]

dy1 (B8)

= 2

∫ +∞

0

cos(ω1y1)Θ

[

1− y21
a2

− |y2|2
b2

]

dy1 (symmetry) (B9)

= 2Θ

[

1− |y2|2
b2

]
∫ a

√
1−|y2|2/b2

0

cos(ω1y1)dy1 (B10)

= 2Θ

[

1− |y2|2
b2

]

sin
(

ω1a
√

1− |y2|2/b2
)

/ω1. (B11)

Substituting this expression into (B7) gives

m̂(k; a, b, θ) = (2/ω1)

∫

R

exp(−iω2y2)Θ

[

1− |y2|2
b2

]

sin
(

ω1a
√

1− |y2|2/b2
)

dy2 (B12)

= (4/ω1)

∫ b

0

cos(ω2y2) sin

(

ω1a
√

1− y22/b
2

)

dy2 (symmetry). (B13)

Equation (B13) can be expressed as a Laplace convolution according to

m̂(k; a, b, θ) =

(

2b

ω1

)
∫ 1

0

y−1/2 cos
(

ω2by
1/2

)

sin
(

ω1a
√

1− y
)

dy, (B14)

and this integral can therefore be evaluated analytically using Laplace transforms. The final

result is

m̂(k; a, b, θ) = 2πabJ1

(

√

ω2
1a

2 + ω2
2b

2

)

/
√

ω2
1a

2 + ω2
2b

2, (B15)

where J1 is the first-order regular Bessel function. Note that as ‖k‖ → 0, we recover the

expected result m̂(0; a, b, θ) = vE(a, b) = πab, where vE(a, b) is the volume of an ellipse with

parameters a and b. Also, as a → b, the expression (B15) reduces to the known result for a

disk [2].

A similar analysis can be done for a superdisk of orientation θ, defined by the region

|x1 cos(θ) + x2 sin(θ)|2p + |x2 cos(θ)− x1 sin(θ)|2p ≤ λ, (B16)

where p is the deformation parameter and λ determines the diameter of the superdisk along

one of its principal axes. The Fourier transform of the particle indicator function for a

superdisk can also be expressed as a Laplace convolution according to

m̂(k; p, λ, θ) =

(

4ζλζ

ω1

)
∫ 1

0

uζ−1 cos
(

ω2λ
ζuζ

)

sin
[

ω1λ
ζ(1− u)ζ

]

du, (B17)

26



where we have defined ζ = 1/(2p). Although in principle this integral can also be evalu-

ated analytically with Laplace transforms, for arbitrary ζ the resulting expressions become

intractable. We therefore opt for a series representation of (B17) that can be efficiently

evaluated numerically. Using the known expansions

uζ−1 cos
(

ω2λ
ζuζ

)

=
+∞
∑

j=0

ω2j
2 λ2ζjuζ(2j+1)−1

Γ(2j + 1)
(B18)

sin
[

ω1λ
ζ(1− u)ζ

]

/ω1 =
+∞
∑

ℓ=0

ω2ℓ
1 λζ(2ℓ+1)(1− u)ζ(2ℓ+1)

Γ[2(ℓ+ 1)]
, (B19)

we find the result

m̂(k; p, λ, θ) = 4ζ

+∞
∑

n=0

n
∑

ℓ=0

ω
2(n−ℓ)
1 ω2ℓ

2 λ2ζ(n+1) · Γ[ζ(2ℓ+ 1)]Γ[2ζ(n− ℓ) + ζ + 1]

Γ(2ℓ+ 1)Γ[2(n− ℓ+ 1)]Γ[2ζ(n+ 1) + 1]
,

(B20)

where we have utilized the Cauchy product of two infinite series in order to facilitate a

numerical evaluation of the final result. One can immediately verify that

m̂(0; p, λ, θ) = vS(p, λ) = (2/p)λ1/pB[1/(2p), 1 + 1/(2p)], (B21)

where vS(p, λ) is the volume of a superdisk and B(x, y) = Γ(x)Γ(y)/Γ(x + y) is the beta

function. Note also that as p → 1, m̂(k; p, λ, θ) converges to the known result for a circular

disk.
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