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Abstract

Based on counting statistics and Bogoliubov theory, we present a recurse relation for the mi-

crocanonical partition function for a weakly interacting Bose gas with a finite number of particles

in a cubic box. According to this microcanonical partition function, we calculate numerically

the distribution function, condensate fraction and condensate fluctuations for a finite and isolated

Bose-Einstein condensate. For the ideal and weakly interacting Bose gases, we compare the con-

densate fluctuations with those in the canonical ensemble. The present approach yields an accurate

account of the condensate fluctuations for temperatures close to the critical region. We emphasize

that the interactions between excited atoms turn out to be important for moderate temperatures.
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I. INTRODUCTION

The enormous experimental progress in the manipulation of Bose-Einstein condensates

(BECs) [1] has stimulated a great interest in the physics of the ultracold gases and also

brought up some problems which still await final solutions. Among others, the issue of

statistical properties of the finite systems has been a subject of intensive theoretical studies

[2–4] since in the experiment the total number of the particles is roughly fixed and finite.

However, the standard textbook approach based on the grandcanonical ensemble, where

the energy and the particle number are fixed on average, may not be able to approximate

well the experimental situations. Particularly, the grand canonical ensemble predicts the

unphysically large condensate fluctuations. Hence, one must resort to the microcanonical

and canonical ensembles which are free of these flaws.

Statistical properties [5–10] and, in particular, condensate fluctuations have been in-

vestigated for ideal and weakly interacting Bose gases (WIBGs), both within the canonical

[11–21] and microcanonical [11, 18, 19, 21–24] ensembles, where the differences between ideal

Bose gases (IBGs) in the canonical and microcanonical ensembles have also been explored

[11, 24]. Specific experimental conditions determine which statistics should be used to study

a particular system. Magnetic or optical confinement in the BEC experiments [25, 26] sug-

gests that the system is thermally isolated and thus the microcanonical ensemble description

of the trapped condensate is needed [15]. For a WIBG in a microcanonical ensemble, several

useful papers have been published dealing with some limiting cases [18, 19, 21], but to our

best knowledge, so far there has been no microcanonical approach based on the recursive

scheme to treat this problem valid for temperatures close to the critical region. In particular,

the problem of fluctuations in the interacting gas is more complex and less clear than in

the case of the IBG. Under such a circumstance, the issue of the fluctuations as well as the

thermodynamics for the WIBGs requires a more refined approach.

In the present paper, we develop a recursive scheme by using counting statistics and

Bogoliubov approximation. This recurrence algorithm, as an enhanced version of the earlier

ones applied to the IBG [24] in the microcanonical ensemble and the WIBG in the canoni-

cal ensemble [27], gives an accurate description of fluctuations and thermodynamics in the

WIBGs at finite temperatures. Based on Hartree-Fock approximation, we include the inter-

actions between out of condensate atoms to study the fluctuations for temperatures close
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to the critical region, since the Bogoliubov approximation is valid only for temperatures

out of the critical region. Using this recurrence relation, we calculate numerically the par-

tition function, the condensate fraction, and the condensate fluctuations, and compare the

microcanonical fluctuations with the canonical ones. We show that the particle-number con-

straint and the interactions between out of condensate atoms are of importance for moderate

temperatures.

The paper is organized as follows. In the framework of counting statistics and Bogoliubov

theory, in Sec. II we derive the recurrence relation for the microcanonical partition function

in the WIBGs, where interactions between excited atoms and particle-number constraint

are considered. In Sec. III we present the numerical analysis of the distribution function,

the condensation fraction, and the condensate fluctuations. Conclusions are made in Sec.

IV.

II. MICROCANONICAL PARTITION FUNCTION AND PHYSICAL QUANTI-

TIES

In the statistical physics the partition function entirely specifies the statistical properties,

so our first priority is to determine the partition function in the microcanonical ensemble. A

system can be divided into two parts: Ne particles occupying excited levels with the energy

Ee, and N0 = N − Ne particles in the ground state. In the microcanonical ensemble, the

partition function of N bosons with total energy E is given by

Ω(N,E) =

N
∑

Ne=0

Ωe(Ne, Ee)Ω0(N0, E0), (1)

where the total energy E = E0 + Ee and total particle number N = N0 + Ne. Here

the partition function Ωe depends on the condensed number of particles N0 because of

N = N0+Ne. For a WIBG in a cubic box with periodic boundary conditions, the energy of

the condensate subsystem E0 = N0ǫ0 = 0 since ǫ0 = 0. In addition, the partition function

Ω0(N −Ne, 0) = 1. Consequently, the formula (1) becomes

Ω(N,E) =
N
∑

Ne=0

Ωe(Ne, Ee). (2)

According to Bogoliubov approximation [28], the boson operator âk can be written in

terms of the quasiparticle creation b̂+k and annihilation b̂k operators as âk = ukb̂k + vkb̂
+
−k.
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The Hamiltonian can thus be approximated by [17]

Ĥ = ĤB + Eex(N,N0) =
∑

k 6=0

ǫkb̂
+
k b̂k + Eex(N,N0), (3)

where ǫk =
√

(εk + gn0)2 − (gn0)2 = εk
√

1 + 2gn0/εk is the celebrated Bogoliubov energy

spectrum. Eex(N,N0) is the interaction energy between the excited atoms, which can be

determined by the Hartree-Fock approximation: Eex = g
2V

N2
e [17, 29] with V = L3 being the

volume and g = 4π~2a/m being the coupling constant fixed by the s-wave scattering length

a. Here εk = ~2k2

2m
, m is the atomic mass. n0 = N0/L

3 and n = N/L3 denote the ground-

state and total particle densities, respectively. Bogoliubov amplitudes satisfy the relations:

u2
k + v2k = (εk + gn0)/ǫk and ukvk = gn0/2ǫk, i.e., the normalization condition u2

k − v2k = 1.

Note that Bogoliubov amplitudes uk and vk are functions of the condensed particle number

N0, respectively. In the case of a three-dimensional box with periodic boundary conditions,

we note that k = 2πj/L with j = {jx, jy, jz} being integers, and the energy spectrum

ǫj = ǫ1

√

[j2 + 2N0an1/3/(LN1/3π)]2 − [2N0aN1/3/(LN1/3π)], (4)

or

ǫj = ǫ1|j|
√

j2 + 4N0an1/3/(N1/3π), (5)

where ǫ1 = 2π2
~
2

mL2 is the energy gap between the ground state and the first excited state in

the box. It is clear that the energy spectrum of the weakly interacting gas depends on the

actual number of condensed atoms N0 and the gas parameter an1/3 : ǫj = ǫj(N0, an
1/3). For

repulsive interaction, as discussed throughout this work, the scattering length a > 0, and

thus the criterion for weak interaction reads an1/3 ≪ 1.

The total number of the excited particles given by the expectation value of the operator

N̂e =
∑

k>0 â
+
k âk takes the form

〈Ne〉 =
∑

j>0

[nj(u
2
j + v2j ) + v2j ], (6)

where nj = 〈b̂+j b̂j〉 is the number of elementary excitations in the state j. Here the actual

number Ne of the excited particles differs from the total number of excitations due to the

Bogoliubov transformation. And the energy of a given configuration of excitations in various

{nj} is given by

Ee(Ne) =
∑

j 6=0

njǫj + Eex(Ne), (7)
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where the energy spectrum ǫj, given by Eq. (5), depends on the number of the condensed

atoms N0 (or the number of the excited atoms Ne): ǫj = ǫ
j
(N0) [or ǫj = ǫ

j
(Ne)]. So the total

energy Ee of the excited subsystem depends on the actual number Ne of the exited atoms:

Ee = Ee(Ne). In order to enforce the constraint on the total particle number rigorously,

in Eq. (3) we write the energy spectrum as a function of the actual number of condensed

particles. That is, when including the interaction between out of the excited atoms, we use

the energy spectrum in which ǫj = ǫj(N0) [17].

In the microcanonical ensemble the system is assumed to be found with equal probability

1/Ω in any microstate. The microstates are nothing but the configurations of occupation

numbers, {n} = {n0, n1, · · · }. The microcanonical partition function reads:

Ωe(Ne, Ee) =
∞
∑

n1=0

∞
∑

n2=0

· · ·
∞
∑

n∞=0

δ〈Ĥ〉,Ee

δNe,〈Ne〉, (8)

which cannot be explicitly evaluated because of the restrictions δ〈Ĥ〉,Ee

and δ〈Ne〉,Ne
. The

actual number of condensate atoms, N0, affects the partition function Ωe since Ne = N−N0

within the canonical ensemble. To proceed, we shall use the counting statistics to establish a

recursive scheme, that allows to determine the microcanonical partition function numerically.

Analogously to the case of an IBG [24], in the excited subsystem of a WBG we now turn

to the quasiparticle counting statistics. Let Pj[n|Ne, Ee(Ne)] be the probability to find n

quasiparticles out of a total of Ne excited particles occupying the j’th (j > 0) state. This

quantity can be represented by Pj[n|Ne, Ee(Ne)] = P≥
j [n|Ne, Ee(Ne)]−P≥

j [n+1|N,Ee(Ne)],

where P≥
j [n|Ne, Ee(Ne)] is the probability to find at least n quasiparticles in the state j. The

computation of P≥
j [n|Ne, Ee(Ne)] involves summations given in Eq. (8), but the sum over

nj starts at nj = n rather than at nj = 0. This leads to

P≥
j [n|Ne, Ee(Ne)] =

1

Ωe[Ne, Ee(Ne)]

∞
∑

n1=0

· · ·
∞
∑

nj=n

· · ·
∞
∑

n∞=0

δ〈Ĥ〉,Ee(Ne)
δ〈Ne〉,Ne

=
1

Ωe[Ne, Ee(Ne)]

∞
∑

n1=0

· · ·

∞
∑

n′
j
=0

· · ·

∞
∑

n∞=0

δ〈Ĥ〉,E′
e
(N ′

e
)δ〈N ′

e
〉,N ′

e

. (9)

where N ′
e = Ne − n(u2

j + v2j ) and Ee(N
′
e) =

∑

j 6=0 njǫj − nǫj + g[Ne − n(u2
j + v2j )]

2/2V . It is

noted that the right hand side of Eq. (9) stands for the microcanonical partition function

for system of N ′
e excited atoms which share the total energy Ee(N

′
e). That is, the probability
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function P≥
j [n|Ne, Ee(Ne)] has the form

P≥
j [n|Ne, Ee(Ne)] =

1

Ωe[Ne, Ee(Ne)]
Ωe[Ne − n(u2

j + v2j ), Ee(N
′
e)]. (10)

Thus, we find

Pj[n|Ne, Ee(Ne)] =
Ωe[Ne − n(u2

j + v2j ), Ee(N
′
e)]

Ωe[Ne, Ee(Ne)]
−

Ωe[Ne − (n+ 1)(u2
j + v2j ), [Ne, Ee(N

′′
e )]

Ωe[Ne, Ee(Ne)]
,

(11)

where N ′
e and Ee(N

′
e) were defined in Eq. (9), N ′′

e = Ne − (n + 1)(u2
j + v2j ), and Ee(N

′′
e ) =

∑

j 6=0 njǫj − (n+1)ǫj + g[Ne − (n+ 1)(u2
j + v2j )]

2/2V . The mean occupation of quasiparticle

excitations in mode j when the system is composed of Ne excited atoms and N0 condensed

atoms can be expressed as:

〈nj〉
Ne

N0
=

Ne
∑

n=0

nPj[n|Ne, Ee(Ne)]. (12)

Substituting Eq. (11) into Eq. (12), we can readily obtain

〈nj〉
Ne

N0
=

1

Ωe[Ne, Ee(Ne)]

Ne
∑

n=1

Ωe[Ne − n(u2
j + v2j ), Ee(N

′
e)]. (13)

This is just the number of elementary excitation nj in Eq. (6). Combining Eqs. (13) and

(6), we get the recurrence relation for the microcanonical partition function:

Ωe[Ne, Ee(Ne)] =
1

Ne −
∑

j 6=0 v
2
j

∑

j 6=0

Ne
∑

n=1

(u2
j + v2j )Ωe[Ne − n(u2

j + v2j ), Ee(N
′
e)], (14)

where we have taken Ne = 〈Ne〉. This recurrence algorithm is one of main results in this

work. In principle, substituting Eq. (14) into Eq. (2), we can analyze numerically the

thermodynamic properties of the WIBGs at finite temperatures.

From the mathematical point of view, similar to the case of the canonical ensemble

[17, 27], the calculations must be performed within the approximation that Ωe[Ne, Ee(Ne)] =

1
Ne−

∑
j6=0 v2

j

∑Ne

n=1

∑

j 6=0 (u
2
j + v2j )Ωe[Ne − n,Ee(N

′
e)], where Ee(N

′
e) was defined in Eq. (9).

Physically, the actual numbers of excited atoms become integers in the partition functions

Ωe[Ne−n,Ee(N
′
e)] given by the simple formula. Like in the recurrence alogrithm of the IBG

[24], here the initial conditions Ωe(Ne ≥ 0, 0) = 1 and Ωe(0, Ee > 0) = 0 have to be used so

as to the iterative procedure can proceed. For finite energy Ee the sum over j is finite since

Ωe(Ne, Ee < 0) ≡ 0.
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The recurrence algorithm is an enhanced version of the earlier one applied to the IBG case

where u
j
= 1 and v

j
= 0. Unlike in the WIBG case where Ee = Ee(Ne), the energy Ee of the

subsystem and the particle number Ne are two independent control parameters for an IBG.

In this special case, Eq. (14) simplifies to Ωe(Ne, Ee) =
1
Ne

∑N
n=1

∑

j>0Ωe(Ne − n,Ee − nǫ
j
)

with Ωe(0, 0) = 1. We obtain finally the partition function (2), which is equal exactly to the

recurrence relation Ω(N,E) = 1
N

∑N
n=1

∑

j=0Ω(N − n,E − nǫj) derived directly from the

IBG case. Similarly to the case of the WIBGs within a canonical statistics [27, 30], here we

have to separate the ground sate from the excited state since Ne 6=
∑

j 6=0 nj in the WIBG

case.

Eqs. (2) and (14) yield the expression for the condensate distribution function

P0(N0) =
Ωe[N −N0, Ee(Ne)]

Ω(N,E)
. (15)

This is just the probability to find N0 condensate atoms for the system of N atoms. The

mean number of the atoms in the ground state is given by

〈N0〉 =
N
∑

N0=0

N0P0(N0). (16)

To express our result in terms of temperature, we determine the microcanonical temperature

T according to the thermodynamical relation

1

T
=

∂S(N,E)

∂E
, (17)

where the entropy S(N,E) = kB lnΩ(N,E) with kB being Boltzmann constant.

In the microcanonical ensemble, since the total number of the particles is conserved,

〈N〉 = N = Ne + N0, the fluctuations of condensed and excited atoms are equal, 〈δ2N0〉 =

〈δ2Ne〉. The fluctuations are divided into two parts [21]: 〈δ2Ne〉 = 〈δ2Ne〉T + 〈δ2Ne〉Q. The

thermal fluctuations are given by

〈δ2Ne〉T =
∑

k,q 6=0

[(u2
k + v2k)(u

2
q + v2q)(〈n̂kn̂q〉 − 〈n̂k〉〈n̂q〉)

=

N
∑

N0=0

N0
2P0(N0)− 〈N0〉

2. (18)

The quantum fluctuations are written as

〈δ2Ne〉Q = 4
∑

k 6=0

u2
kv

2
k(〈n̂kn̂−k〉+ 〈n̂k〉+

1

2
), (19)
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which would not vanish even at T = 0 in the WIBGs. The average of an arbitrary operator

f̂ in Eqs. (18) and (19) can be given by 〈f̂〉 =
∑N

N0=0 〈f̂〉
Ne

N0
P0(N0), in which the mean

occupation 〈n̂k〉 is given by Eq. (13), and the correlation with the opposite momenta is

(〈n̂kn̂−k〉)
Ne

N0
= 1

Ωe(Ne, Ee)

∑

nl,nj 6=0Ωe{Ne − (nl + nj)(u
2
k + v2k), Ee[Ne − (nl + nj)(u

2
k + v2k)]},

with Ee[Ne− (nl+nj)(u
2
k+v2k)] =

∑

k 6=0 nkǫk− (nl+nj)ǫk+g[Ne − (nl + nj)(u
2
k + v2k)]

2/2V .

Eqs. (14) and (15) together with (18) and (19) provide the complete statistical information

for the WIBG at finite temperatures.

III. NUMERICAL ANALYSIS

In principle, with the knowledge of the microcanonical partition function we can study all

statistical properties of the system in a standard way. The recursive scheme derived above

can be applied to calculation of the statistical properties for the weakly interacting systems

at finite temperatures. The physical quantities, such as the mean condensate population

and the condensate fluctuations, should be dependent on the interaction strength since

the explicit form of the recurrence relation for the partition function depends on the gas

parameter an1/3.

When neglecting the interactions between out of condensate atoms, we can use the rig-

orous spectrum (Bogoliubov energy spectrum) approximation: ǫk(N0), where N0 is the

actual condensed particle number and is current. Although in this approximation the to-

tal particle number is conserved, configurations of the excitation correspond to different

number of excited atoms and thus may lead to different excitation spectrum. Moreover,

the Bogoliubov approximation with the rigorous energy spectrum ǫk(N0) as a mean field

theory is valid only for the well-formed condensate when fluctuations are much less than

the order parameter, i.e., 〈δN0〉 ≪ 〈N0〉. In other words, it holds only for low tempera-

tures, compared to the transition temperature. Therefore, instead of the rigorous energy

spectrum ǫk(N0), we take the common average approximation ( Bogoliubov-Popov energy

spectrum): ǫk(N0) = ǫk(〈N0〉), with 〈N0〉 being determined from self-consistency equation

〈N0〉 =
∑N

N0=0N0P0(N0) [13, 14, 17]. In the grand canonical ensemble where the total par-

ticle number and the total energy are fluctuate, the Popov-approximation is well established

for the analysis of the finite-temperature properties of the WIBGs and is not valid only in

a very small interval near Tc, given by Tc − T < an1/3Tc ≪ Tc [13, 31]. The method using

8



Bogoliubov-Popov spectrum ǫk(〈N0〉) holds in the microcanonical ensemble except too near

and, of course, above the transition point [13]. In such a case we obtain the formulas for

the partition function Ω(N,E) =
∑N

N0=0Ωe[N −N0, Ee(〈N0〉)] and the distribution function

P0(N0) = Ωe[N−N0,Ee(〈N0〉)]
Ω(N,E)

. In order to apply the recurrence relation to calculation of the

weakly interacting Bose gas close to the critical region, we take into account of the interac-

tions between out of condensed atoms . In such a approach, to ensure the conservation of the

number of atoms, we keep only the Hartree-Fock contribution to interactions between quasi-

particles and use the energy spectrum dependent on the actual number of the condensed

atoms [17].

In what follows, we will adopt the three energy spectrum approximations as follows [17]:

(i) rigorous energy spectrum ǫk(N0) without Eex term; (ii) energy spectrum ǫk(N0) with

inclusion of Eex term; (iii) average spectrum ǫk(〈N0〉) without Eex term. We first calculate

the distribution function NP0(N0), then plot the condensate fraction 〈N0〉/N , and at the

end of this section study the root-mean-square condensate fluctuations 〈δN0〉.

A. Distribution function P0(N0)

Now we use our method to calculate the distribution functions for a WIBG in a box with

periodic boundary conditions. In Fig. 1 we plot the distribution function P0(N0) multiplied

by N as a function of N0 for the total particle number of N = 100 at the temperature

T/T 0
c = 0.85 in the three energy spectrum approximations. T 0

c = 2π~2n2/3/kBm[ζ(3/2)]2/3

is the ideal-gas thermodynamic critical temperature in a box for fixed particle density n.

The distribution functions P0(N0), which determine the thermal fluctuations and mean

condensate fraction, calculated with the rigorous spectrum without Eex term merge with

those obtained by average spectrum without Eex term. However, the distribution functions

P0(N0) obtained in the model with rigorous and average spectrum without Eex term differ

substantially from the results obtained in the model assuming Bogoliubov Hamiltonian HB

with inclusion of interactions between excited atoms. Comparison between the ideal and

weakly interacting gases in Fig. 1 reveals that the interactions between atoms increase

the distribution function significantly and essentially sharpen the peak at the intermediate

temperatures, and that the interactions lead to an increase in the value of N0 corresponding

to the maximum of the distribution function P0(N0). This suggests that the condensation
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FIG. 1: Distribution function multiplied by N , NP0(N0), versus condensate particle number N0

for a WIBG with N = 100 and an1/3 = 0.1, described by the rigorous (circles) ǫk(N0) and average

Bogoliubov-Popov ǫk(〈N0〉) spectrum without Eex term (diamonds). Solid line represents the

distribution function of an IBG, while starts correspond to the results for the model assuming the

energy spectrum ǫk(N0) with Eex term.

of the particles at intermediate temperatures should occur more easily in the WIBGs than

in the IBGs. This suggestion will be verified in the next subsection where the condensation

fraction is discussed.

B. Condensate fraction 〈N0〉/N

Figure 2 depicts the condensate fraction 〈N0〉/N for an ideal (an1/3 = 0, solid line) and

weakly interacting (an1/3 = 0.05, solid lines with symbols) Bose gas of N = 200 particles in

a box with periodic boundary conditions. When the interactions between out of condensate

atoms are neglected, the mean condensate population 〈N0〉 obtained from the rigorous spec-

trum is in agreement with that obtained from the average energy spectrum. Fig. 2 shows

that the interactions between out of condensate atoms turn out to be of significance in the

regime near the critical region. We can see from Fig. 2 that the repulsive inter-particle

interaction stimulates BEC, and yields an increase in the mean condensate occupation 〈N0〉

at intermediate temperatures, as compared to the ideal gas. This result, which has been ob-

tained by different ways [13, 14, 27] within the canonical ensemble, occurs for the attraction
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FIG. 2: Condensate fraction 〈N0〉/N versus normalized temperature T/T 0
c for a WIBG with N =

200 and an1/3 = 0.05, described by the rigorous (circles) ǫk(N0) and average ǫk(〈N0〉) Bogoliubov-

Popov spectrum (diamonds). Solid line represents the condensate fraction of an IBG, while starts

correspond to the results for the model assuming the energy spectrum ǫk(N0) with Eex term.

T 0
c = 2π~2n2/3/kBm[ζ(3/2)]2/3 is the ideal-gas thermodynamic critical temperature in a box.

in momentum space and energetic reasons [32].

We would like to point out that in Fig. 2 (as well as in the following figures) the numerical

results determined from the microcanonical ensemble are missing at very low temperatures,

which arises from the large uncertainty in the determination of the microcanonical temper-

ature at low energies of the system. Unlike in the IBG case where all particles occupy the

ground state at T = 0, as follows from Eq. (6), the mean number 〈Ne〉 of the excited atoms

would not vanish even at T = 0.

C. Root-mean-square condensate fluctuations 〈δN0〉

We are now in a position to calculate the condensate fluctuations in the microcanonical

ensemble. In Fig. 3 we plot the average condensate fluctuations as a function of temperature

for (a) N = 100 and (b) N = 200 with an1/3 = 0, 0.1. Noteworthy, the effect of the weak

interaction between atoms on the condensate fluctuations is of great significance for the

system with small N . The condensate fluctuations plotted in Fig. 3 shows the following

novel features:
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FIG. 3: Root-mean-square condensate fluctuations 〈δN0〉 versus normalized temperatures T/T 0
c for

a WIBG of (a) N = 100 and (b) N = 200 with an1/3 = 0.1, obtained from Bogoliubov spectrum

ǫk(N0) with (dot-dashed line) and without (dotted line) energy Eex of interactions between excited

atoms. Solid lines represent the calculations of an IBG, while dashed lines correspond to the results

based on the average spectrum approximation ǫ
k
= ǫ

k
(〈N0〉) without inclusion of Eex.

(i). For interacting particles, the above energy approximations yield slight different con-

densate fluctuations for temperatures much lower than the critical region. However, below

the transition temperature the dependence of 〈δN0〉 on T/T 0
c is even qualitatively differ-

ent from the non-interacting limit. This agrees well with the results obtained in different

approaches [14, 15, 17, 21].

(ii). Both Figs. 2 and 3 show that for the low enough temperatures (T < 0.8Tc), all curves

nearly merge to the same curve. As expected, the difference among the three approaches is

very slight at low temperatures. For the small particle number N = 100, at temperatures

near the critical region, the result obtained by the Bogoliubov Hamiltonian HB with energy

of interactions between thermal atoms differs substantially from the corresponding that

obtained in the model with average spectrum. However, when the particle number N is up

to 200, the differences between the energy spectrum ǫk(N0) with energy of interactions Eex

and the average spectrum ǫk(〈N0〉) is small even at temperatures near the critical point,

which is similar to result obtained in the canonical ensemble [17].

(iii). The microcanonical fluctuations are smaller in the WIBG than in the IBG at

moderate temperatures. This happens because the fluctuations are suppressed by the pairs

of strongly coupled modes in the WIBG [13, 15].
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(iv). Near the critical regions, the condensate fluctuations are smaller in the energy

spectrum approximation with Eex term than in the average energy approximation. For

the dilute Bose gas, the Bogoliubov approximation with rigorous energy spectrum and the

Bogoliubov-Popov approximation with average energy spectrum are invalid in the critical

region, but the critical point lacks a unique definition for the smooth phase transition. This

implies that the improved calculations are reasonable in this temperature region, if one

takes into account the conservations of the particle number and total energy and includes

the interactions between out of condensate atoms.

(v). The interactions essentially enhance the condensate fluctuations at very low tem-

peratures. Physically, this behavior follows from the fact that the excited atoms are forced

by the interactions to occupy the excited levels at very low temperatures (even at T = 0),

so that N0(T = 0) < N , as pointed out in Sec.III B.

(vi). The peak position and the width of the distribution function P0(N0) determine the

values of 〈N0〉 and 〈δN0〉, respectively [17]. Fig. 2 shows that, in the approach based on

the energy spectrum ǫk(N0) with Eex term, the temperature corresponding to the peak of

P0(N0) is shifted toward lower values (compared to the other two approaches), although it

increases because of weak interaction between atoms (compared to the ideal Bose gas case).

Therefore, this approach predicts an increase in the mean number of condensed atoms at

moderate temperatures, but does not indicate the increase of the transition temperature on

the level of the mean number of condensed atoms (See Fig. 2). However, in this approach

the transition temperature on the level of condensate fluctuations, which is determined by

the width of P0(N0) and quantum fluctuations given by Eq. (19), is predicted to increase

because of interaction between atoms (See Figs. 3 and 4).

It is interning to study whether or not the differences between the canonical and mi-

crocanonical fluctuations will hold in the WIBGs. Fig. 4 shows the root-mean-square

fluctuations in the canonical and microcanonical ensembles, respectively, as functions of the

temperature for an ideal (an1/3 = 0) and weakly interacting (an1/3 = 0.1) gas. It can been

seen from Fig. 4 that the microcanonical fluctuations are smaller than the canonical ones [14]

both in IBGs and WIBGs, as expected. Again, Fig. 4 show that, both within microcanoni-

cal and canonical ensembles the transition temperature Tc(N) which can be defined by the

position of the peak of the fluctuations [17] increases because of the effects of interactions

between atoms. We would like to point out that, for Bogoliubov-Popov approximation with

13



FIG. 4: Root-mean-square condensate fluctuations 〈δN0〉 versus normalized temperatures T/T 0
c

for an ideal (an1/3 = 0, solid lines) and weakly interacting (an1/3 = 0.1, dashed lines) Bose gas of

N = 200 particles in a cubic box. The circles and starts represent the canonical and microcanonical

fluctuations [14], respectively.

average energy spectrum, we are not sure of the physical significance near the critical region

shown in Figs. 2, 3 and 4, since the Bogoliubov-Popov energy spectrum is questionable

when temperatures are so close to the critical value. However, the ultimate verification can

be done in experiments. Noteworthy, although the fluctuations at very low temperatures

cannot be determined because of large numerical errors, for the IBGs the microcanonical

fluctuations would vanish for zero temperature since all N particles occupy the ground state.

However, in the weakly interacting gas there exist positive quantum fluctuations given by

Eq. (19) at zero temperature.

IV. CONCLUSIONS

In the present work we have presented a recursive scheme which, for the first time, yields

an accurate account of the distribution function, condensate fraction and fluctuations for a

finite WIBG within the microcanonical ensemble. This recursion algorithm is an enhanced

version of the earlier ones both for an IBG in the canonical and microcanonical ensembles

and for a WIBG in the canonical ensemble.

In a WIBG, we have used three approaches for calculations of the condensate statistics: (i)

with the energy spectrum dependent on the actual number of condensed atoms, which is only
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valid provided the average number of condensate particles is much larger than its variance;

(ii) with the energy spectrum dependent on the average number of condensed atoms, which

is valid for temperatures except too near the critical point; (iii) with the energy spectrum

dependent on the actual number of condensed atoms with inclusion of interaction between

thermal atoms, which may hold even for small systems near the critical region within the

microcanonical ensemble.

In particular we have pointed out the importance of the strict constraint on the particle

number conservation and of the interactions between excited atoms. The effects of interac-

tions between out of condensate atoms have shown to be significant for temperatures near

the critical point.
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