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The free energy difference between coexisting solid and liquid phases is studied in the context of
classical density functional theory (DFT). A bridge function is used to represent the higher-order
(n > 2) terms in the perturbative expansion of the excess Helmholtz free energy, and the values of
this bridge function within the solid lattice are determined by inversion using literature Monte Carlo
simulation results. Four potential models, specifically hard-sphere and inverse 12th-, 6th-, and 4th-
power repulsive, are studied. The face-centered cubic (fcc) solid is considered for the hard-sphere
and inverse 12th- and 6th-power potentials, while the body-centered cubic (bcc) solid is considered
for the inverse 6th- and 4th-power potentials. For a given solid structure there is a remarkable
similarity among the bridge functions for different potentials that is analogous to the universality
in the sum of elementary diagrams, or bridge functions, of liquid-state theory as originally observed
by Rosenfeld and Ashcroft [Physical Review A 20, 1208-1235 (1979)]. In further analogy with
liquid-state theory, the bridge functions in the present problem are plotted as functionals of the
second-order convolution term in the perturbative expansion. In each case, the plot indicates a
unique functionality in the dense regions of the solid near the lattice sites but a scattered and non-
unique behavior in the void regions. Interestingly, knowledge of the functional relationship in the
unique region near the lattice sites seems to be sufficient to quantitatively model the solid-fluid phase
transition. These qualitative observations are true for both fcc and bcc solid phases, although there
are some quantitative differences between them. The findings suggest that pursuit of a closure-based
DFT of solid-fluid transitions may be profitable.

I. INTRODUCTION

The prediction of solid-fluid phase equilibrium from an
interparticle potential model is an important problem in
condensed matter theory [1, 2]. Classical density func-
tional theory (DFT) [3] is a useful tool in this regard
because of its low computational cost as compared to
particle-based simulation. The key ingredient in DFT is
an accurate model for the excess Helmholtz free energy as
a functional of the density distribution. DFT approaches
may be categorized by the approach to constructing the
functional. The non-perturbative approaches comprising
the weighted and effective liquid theories [4–10] approx-
imate the free energy by mapping the inhomogeneous
state onto an effective homogeneous state determined by
imposing structural and thermodynamic constraints on
the free energy functionals. The perturbative approaches
on the other hand employ a truncated series expansion
for the free energy in terms of direct correlation functions
of the liquid phase. Recently, we proposed [11] the idea of
re-summing the higher-order (n > 2) terms in the pertur-
bative expansion into a bridge function, in analogy with
the approach used by Zhou and Ruckenstein [12] for in-
homogeneous fluids near interfaces. The purpose of this
paper is to study the bridge function for various inter-
action potentials at their freezing transition and identify
further useful analogies with liquid-state theory.

The next section presents key aspects of the theory,
especially the role of bridge functions and how they are
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extracted from literature simulation data. The results
and discussion section is split into two parts, with the
fcc and bcc solid phases presented sequentially. Finally
some conclusions are given.

II. THEORY

Formally the difference in excess Helmholtz free energy
Fex between the solid and liquid states may be repre-
sented with a functional integration as

βF sex[ρs(r)]−βF lex[ρ0] =

∫
dr

∫ ρs(r)

ρ0

δρ(r)
δβFex[ρ]

δρ(r)
(1)

where β = 1/kBT with kB the Boltzmann constant and
T the coexistence temperature, ρ0 is the number den-
sity of the liquid, and ρs(r) is the number density of
the coexisting solid phase. The density of the homoge-
neous liquid is simply a constant. The density of the or-
dered solid is commonly represented by a sum of isotropic
Gaussian functions centered at the lattice points, i.e.
ρs(r) = 1

π3/2l3
Σi=Ns
i=1 exp[−(r − Ri)

2/l2] where l is the
Gaussian width that serves as an order parameter, Ns
is the total number of particles in a fixed volume of the
solid phase, and the Ri are the Bravais lattice vectors,
which are determined by the lattice type and the average
solid density ρs.

The integrand in Eq. 1 is frequently represented more
compactly as the negative of a first-order direct correla-

tion function (dcf), i.e. δβFex[ρ]
δρ(r) = −c(1)(r; ρ). Further-

more, the starting point for many DFTs is a functional
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Taylor series expansion of this dcf about the liquid state,
as

c(1)(r; ρ) = c
(1)
0 (ρ0) +

∫
dr2

∫ ρ

ρ0

δρ(r2)c
(2)
0 (r, r2; ρ0)

+

∫
dr2dr3

∫ ρ

ρ0

δρ(r2)δρ(r3)c
(3)
0 (r, r2, r3; ρ0)

+ · · ·
(2)

The coefficients in this expansion are the dcf’s of the liq-
uid phase, as denoted by the subscript 0. The zeroth- and
first-order terms are relatively straightforward to com-

pute because c
(1)
0 is trivially related to the excess chem-

ical potential and c
(2)
0 may be obtained with high accu-

racy from Ornstein-Zernike (OZ) liquid-state theory or
simulation. However, the rest of the terms involve three-
body and higher correlations that are much more chal-
lenging to obtain. The idea behind perturbative DFT is
to progressively compute these higher order terms until
they become negligible, although previous work on hard
spheres has shown that this is not likely to be profitable
[13]. We propose to represent the entire summation of
these higher-order terms as a bridge function whose char-
acteristics are yet to be determined. Using ρs(r) as the
upper limit in the Taylor series of Eq. 2 yields

c(1)
s (r; ρs) = c

(1)
0 (ρ0) + γ(r) +B(r) (3)

where

γ(r) =

∫
dr2c

(2)
0 (r, r2; ρ0)(ρs(r2)− ρ0) (4)

and B(r) is the bridge function. Equations 1-4 show
that this DFT constructs an excess Helmholtz free en-
ergy functional from the liquid-phase properties (excess
chemical potential and second-order dcf) and the bridge
function. Setting B(r) = 0 recovers the original DFT of
Ramakrishnan and Yussouff [14].

There are some analogies between this DFT of solid-
fluid equilibrium and the liquid-state theory. The convo-
lution term, γ(r), is analogous to the indirect correlation
function, τ(r), in OZ theory. Similarly B(r) is analo-
gous to the OZ bridge function, b(r), that represents the
summation of elementary diagrams. In liquid-state the-
ory, specification of the bridge function is referred to as a
closure. Sometimes the specification is done directly on
the function b(r), like in the MHNC [15] and VMHNC
[16] closures. In other cases b is represented as a func-
tional of the indirect correlation function, as b[τ(r)], like
in the PY, VM and MS closures [17]. However, with the
exception of our previous work on the hard-sphere po-
tential [11], the nature of the closure in the solid-fluid
equilibrium has not been explored yet.

The focus of this work is on repulsive interactions of the
type u(r) = ε

(
σ
r

)n
for which simulation data on solid-

fluid equilibrium are readily available. Specifically hard

spheres (n =∞) and three common soft repulsion mod-
els, n=12, 6, and 4, are employed. Literature studies [18]
have shown that the stable solid phase is fcc for large n
and bcc for small n, with the dividing point being just
above n = 6. We consider the stable solid phase for each
potential, and we also study the metastable fcc phase
for n = 6. Four pieces of information at coexistence are
needed to calculate the bridge function: lattice type, solid
density, liquid density, and Gaussian width parameter l,
which is related to the root mean square displacement of
solid particles about their lattice sites. Table I summa-
rizes the data and sources.

n ρs ρo l Structure Ref.

∞ 1.0409 0.9435 0.1139 fcc [19]

12 0.6804 0.6557 0.1459 fcc [20]

6 0.7494 0.7399 0.1513 fcc [20]

6 0.7339 0.7247 0.1876 bcc [20]

4 1.0225 1.0185 0.1591 bcc [20]

TABLE I. Coexistence data for repulsive potentials. For the
soft potentials βε = 10.

To generate B(r) from these data for a given potential,
a pointwise equality of the total chemical potential in
the solid and liquid phases is enforced [11]. Denoting
the total Helmholtz free energy as F = Fid + Fex with

βFid =
∫
drρ(r) ln

(
ρ(r)Λ3

e

)
, and using the definition of

chemical potential µ = δF [ρ]
δρ(r) , the equality of the chemical

potentials in combination with Eq. 3 yields

B(r) = ln

(
ρs(r)

ρ0

)
− γ(r). (5)

This is the key equation for extracting B(r) from the
simulation data given in Table I. The solid density ρs(r)
is modeled with the sum of Gaussian functions described
above, using the lattice type, ρs and l. The value of γ(r)
as defined in Eq. 4 is evaluated using the liquid-state
dcf from a highly accurate VMHNC calculation at the
density ρ0. Since γ(r) and ρs(r) are periodic in the three-
dimensional solid lattice, these quantities were evaluated
in the smallest repetitive unit cell of the solid.

III. RESULTS AND DISCUSSION

A. A. fcc Lattice Structure

Plots of B(r) for two different two-dimensional slices
through the tetrahedral unit cell of the fcc lattice are
shown in Fig. 1, for the n =∞, 12, and 6 potentials. The
most striking feature of this figure is that B(r) is qualita-
tively similar across the three potentials. The results for
the bottom plane show that higher (less negative) values
are found at the lattice sites, which even become slightly
positive for the hard spheres, while lower (more negative)
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Tetrahedral 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 fcc la/ce 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FIG. 1. (Color online) Location of the subcell of interest in
the fcc lattice (top). Plots of the values of B(r) in planar slices
along the bottom (left column) and middle (right column) of
the unit cell. A plot of the top plane would just be a 90o

rotation of that for the bottom plane.

values are found in the voids. The results for the middle
section show relatively lower values of B because of the
larger amounts of void space, but with high values seen
in the corners because of their proximity to the lattice
sites above and below.

The qualitative similarity of B(r) across the three po-
tentials is reminiscent of observations by Rosenfeld and
Ashcroft on the bridge function of liquid-state theory
[15]. They observed that b(r) had roughly the same shape
across a wide range of interaction potentials and ther-
modynamic conditions (density, temperature) and was
thus deemed to “constitute the same universal family of
curves.” Remarkably, an analogous universality also ap-
pears to hold for B(r) at solid-fluid equilibrium for an fcc
lattice, at least for the three repulsive potentials studied
here. Rosenfeld [15, 16] and Lado [21] were able to ex-
ploit the universality of b(r) in a quantitative way by us-
ing known bridge functions for hard spheres at different
packing fractions bHS(r; η) as reference data. For any in-
teraction potential, one could employ b(r) ≈ bHS(r; η∗)
with the effective packing fraction η∗ chosen to satisfy
thermodynamic consistency or minimize the free energy,
under the conditions of interest. The VMHNC closure of

this type is among the most accurate in predicting liq-
uid structure. However, it is difficult to extend this ap-
proach to the present problem of solid-fluid equilibrium.
Since solid-fluid coexistence for hard spheres occurs at
one thermodynamic state point, there is no natural para-
metric set of hard-sphere bridge functions {BHS(r)} to
employ. Furthermore, even if such a set were available,
there are no a priori thermodynamic consistency criteria
that could be applied in choosing the best one.

As mentioned above, another common approach to the
bridge function in liquid-state theory is to represent it as
a functional of the indirect correlation function, so that
b = b[τ(r)]. The analogy for solid-fluid equilibrium is
B = B[γ(r)]. Eq. 5 can be readily used to generate a
parametric plot of B[γ] with data points taken through-
out the subcell, as seen in Fig. 2. A figure of this type
is often called a Duh-Haymet plot in liquid-state the-
ory. Presenting the data in this form again illustrates
the qualitative similarity in the bridge functions across
the three different potentials. For each potential there is
a region of unique B[γ] functionality at high values of γ
but large scatter and non-uniqueness at lower values of
γ. Further insight can be gained by creating a paramet-
ric plot of γ(r) with respect to ρs(r)/ρ0 as seen in Fig.
3. Now it is clear that high values of γ(r) correspond
to regions of high density in the lattice, which occur in
the vicinity of lattice sites (particle cores). Looking back
at Fig. 2 we conclude that for each potential there is a
unique B[γ] functionality in high density regions near the
lattice sites but no such functionality in the void regions.
This observation also has an analogy in liquid-state the-
ory, where Duh-Haymet plots show unique b[τ ] function-
ality near the particle core (at the first peak region) but
scatter outside [22].
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FIG. 2. (Color online) Parametric plots of B[γ] for three
different interaction potentials with an fcc solid.

Figure 2 begs the question of whether some analytical
form of B[γ] would suffice as a closure. For each inter-
action potential, we proposed the simple quadratic form
B[γ] = aγ2+bγ+c. The values of the coefficients were de-
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FIG. 3. (Color online) Plot showing γ vs. ρs(1)/ρo for the
three potentials with an fcc solid. Note that high values of
γ occurs at high density ratio which happens at the lattice
sites.

termined by iteratively solving the solid-fluid coexistence
problem using the DFT model in Eqs. 1-4 until a set of
values {a, b, c} that satisfied the known properties (Table
I) was found; details of this calculation are given in our
previous publication [11]. Figure 4 shows the quadratic
polynomials thus obtained and how they compare to the
parametric data. Strikingly, each polynomial matches its
corresponding parametric plot at high values of γ, where
there is a unique functionality in the parametric data,
but not in the low-γ scattered region. Thus the thermo-
dynamic properties at the phase transition appear to be
governed by the behavior of the bridge function in the
high-density regions of the solid lattice and rather insen-
sitive to its behavior elsewhere. This observation also has
an analogy in liquid-state theory, where the behavior of
the bridge function at particle-particle separations close
to the location of the first peak in the radial distribution
function has the greatest impact on the thermodynamic
properties [15], and the behavior inside the core is largely
irrelevant [21].

B. B. bcc Lattice Structure

A similar analysis was carried out for the bcc solid-fluid
equilibrium for the n=6 and 4 potentials. The plots of
B(r) for different slices through the unit cell are shown
in Fig. 5. There is clearly a similarity in the bridge
functions of these two potentials. However, these plots
are qualitatively different from those for the fcc solids
in Fig. 1 because of the differences in lattice geometry.
While high values of B(r) still occur in the vicinity of
a lattice site, now the highest values occur slightly off-
center, forming a split peak arrangement.

The parametric B[γ] plots in Fig. 6 also indicate that
the bridge functions of the bcc solids have a slightly dif-
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FIG. 4. (Color online) B[γ] for n =∞ {B[γ] = −0.0665γ2 −
0.0663γ + 2.4689}, n = 12 {B[γ] = −0.0712γ2 + 0.1669γ +
0.6385} and n = 6 {B[γ] = −0.0796γ2 + 0.3005γ − 0.3024}.
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FIG. 5. (Color online) Location of the subcell of interest in the
bcc lattice (top). Plots of the values of B(r) in planar slices
along the bottom (left column) and middle (right column) of
the unit cell. A plot of the top plane would just be a 90o

rotation of that for the bottom plane.
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FIG. 6. (Color online) Parametric plot of B vs. γ(r) for two
different interaction potentials with a bcc solid.
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FIG. 7. (Color online) Plot of γ vs. ρs(r)/ρo for the two
potentials with a bcc solid.
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FIG. 8. (Color online) B[γ] for n = 6 { B[γ] = 0.0206γ2 +
0.2454γ−0.5045}, n = 4 { B[γ] = 0.0522γ2+0.2524γ−1.4305
}

ferent character from those of the fcc solids. The bcc
plots show two distinct sets of branches (as compared to
one set for fcc) within their envelope, causing them to ap-
pear wider (although they actually span a smaller range
of γ). We investigated in more depth how the different
regions of the lattice contributed to the parametric plot.
The points lying along the top-left boundary of the enve-
lope are obtained by moving along a particle-containing
edge of the subcell (as shown in Fig. 5) of the bcc lat-
tice, while the points along the bottom-right boundary
are obtained by moving along a line joining two lattice
sites (i.e. a Bravais lattice vector). We observed the
same to be true for the fcc case as well. Therefore the
different character of the bcc and fcc parametric plots is
a reflection of the different lattice geometries.

Figure 7 shows that high values of γ occur at the high
density regions in bcc lattice, so that the sharp region at
high γ in Fig. 6 corresponds to the sites in bcc lattice,
analogous to our observations for fcc structure. As in
the case of the fcc solids, quadratic polynomials were
found that exactly reproduced the solid-fluid coexistence
properties given in Table I. As seen in Fig. 8, these
polynomials pass through most of the unique function-
like region of the parametric data at the largest γ, but
they are concave up and follow the data in a tangential
fashion in contrast to the direct overlap seen in Fig. 4
for the fcc case.

IV. CONCLUSION

We have constructed a DFT of the solid-fluid transition
wherein the higher-order terms in the perturbative excess
free energy expansion are represented with a bridge func-
tion. We have empirically calculated this bridge function
for four different repulsive potentials, and two different
lattice types, by inverting their known coexistence prop-
erties as determined by simulation. For a given solid
lattice structure (fcc or bcc), the bridge functions for
different potentials, whether observed directly as B(r) or
parametrically as B[γ(r)], show a similarity in shape that
is reminiscent of the universality observed for the bridge
functions b of liquid-state theory. There are significant
differences between the bridge functions found for the two
different solid structures, however. On a practical note,
quadratic representations of B[γ] that exactly reproduce
the known solid-fluid coexistence properties were found
for each potential. Although these closures are purely
empirical in nature, the nature of the findings suggests
that more fundamental methods of closure development
would be worth pursuing. In particular, analysis of B[ρ]
using the formalism of graph theory [17] might gener-
ate useful approximate closures. A successful develop-
ment program along these lines would lead to a situation
like the current one in liquid-state theory, where reason-
ably accurate thermodynamic property predictions may
be made across a wide variety of potential interactions
by choosing judiciously from a small set of closures.
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