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We investigate the properties of the Ising-Glauber model on a periodic cubic lattice of linear
dimension L after a quench to zero temperature. The resulting evolution is extremely slow, with
long periods of wandering on constant energy plateaux, punctuated by occasional energy-decreasing
spin-flip events. The characteristic time scale τ for this relaxation grows exponentially with the
system size; we provide a heuristic and numerical evidence that τ ∼ exp(L2). For all but the
smallest-size systems, the long-time state is almost never static. Instead the system contains a
small number of “blinker” spins that continue to flip forever with no energy cost. Thus the system
wanders ad infinitum on a connected set of equal-energy blinker states. These states are composed
of two topologically complex interwoven domains of opposite phases. The average genus gL of the
domains scales as Lγ , with γ ≈ 1.7; thus domains typically have many holes, leading to a “plumber’s
nightmare” geometry.

PACS numbers: 64.60.My, 75.40.Gb, 05.50.+q, 05.40.-a

I. INTRODUCTION

We study the evolution of the homogeneous Ising fer-
romagnet on a periodic cubic lattice in which the spins
are endowed with zero-temperature Glauber dynamics.
Starting from an initial state of zero magnetization, cor-
responding to a supercritical temperature, conventional
wisdom states that the spins organize into a coarsening
domain mosaic whose characteristic length scale grows as
t1/2 [1–4]. This coarsening continues as long as the typ-
ical domain size is less than the linear dimension of the
system L. At longer times, it is natural to anticipate that
one of the ground states, with magnetization m = +1 or
m = −1, should ultimately be reached.

For the one-dimensional system, this expectation is ful-
filled — the ground state is always reached, independent
of the initial condition. As one might expect by the dif-
fusive dynamics of the spin domain interfaces, the char-
acteristic time to reach this final state scales as L2. In
two dimensions, the ground state is no longer the only
asymptotic outcome. A system that starts at zero mag-
netization may also get stuck in an infinitely long-lived
metastable state that consists of straight single-phase
stripes [5–8]. The probability to reach such a stripe state
was found numerically to be close to 1

3
. Recently, a the-

oretical argument was given [9] that relates the stripe
state probability to certain exactly-calculated percola-
tion crossing probabilities. The resulting probabilities to

reach the stripe state are 1

2
−

√
3

2π ln 27

16
= 0.3558 . . . for free

boundary conditions and 0.3390 . . . for periodic boundary
conditions, in agreement with simulation data [5, 6].

For regular lattices in three dimensions or greater, little
is known about the evolution and long-time state of this
kinetic Ising ferromagnet. If the initial magnetization
is non-zero, it is generally believed that this system (on
an even-coordinated lattice in d ≥ 2) ultimately reaches
the ground state of the majority phase in the thermo-
dynamic limit, no matter how small the initial magne-
tization [10]. This result has not been proved, even in

two dimensions, although it is plausible because of the
connection with percolation [9]. In the d → ∞ limit, the
fact that the (majority) ground state is reached is intu-
itively obvious and has been recently proved in Ref. [10].
Physically, however, the zero initial-magnetization state
is much more important than the general case of a non-
zero magnetization. Indeed, the usual coarsening process
begins at a temperature that exceeds the critical tem-
perature where the initial magnetization (of an infinite
system) equals zero. We therefore focus on the case of
zero initial magnetization in this paper.

An earlier study [6] found that an L×L×L Ising fer-
romagnet on a cubic lattice exhibits a much more com-
plex evolution than the corresponding two-dimensional
system (see also [11] for early hints of this behavior).
In particular, the long-time states were found [6] to be
not static, in general. In this article we examine the
topological complexity of the final states [12], offer new
perspectives to help understand these long-time states,
and present simulation results to quantify their unusual
properties.

While the ground state is a possible long-time outcome
of the dynamics, it happens that a geometrically rich and
infinitely long-lived metastable state (Fig. 1) arises with
overwhelming probability. This long-time state typically
has a sponge-like geometry, with multiple interpenetrat-
ing regions of positive and negative magnetization. The
continuum version of this state is one in which the mean
curvature of the interface is zero. This restriction leads to
a veritable zoo of possible geometries that have been ex-
tensively cataloged [13, 14]. A few illustrative examples
of a subclass of these systems — periodic zero-curvature
continuum interfaces — are given in Fig. 2. These struc-
tures also resemble the geometrically complex arrange-
ments that arise in two-phase micellar systems, and are
popularly known as “plumber’s nightmares” [15–18].

Intriguingly, the long-time state of the three-
dimensional system is generally not static, but rather,
contains stochastic blinker spins that can flip repeatedly
without any energy cost. The interfaces defined by these
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FIG. 1. (color online) A typical example of a state with
blinker spins for a 203 cubic lattice with periodic boundary
conditions. The highlighted blocks indicate blinker spins.

FIG. 2. Triply-periodic minimal surfaces in three dimensions.
Figures provided by K. Brakke (see also Ref. [18]).

spins can therefore wander ad infinitum on a connected
but bounded set of equal-energy blinker states as illus-
trated in Fig. 1. Here the cubes correspond to up spins
(with the spin at the cube center), while the down spins
correspond to blank space. The highlighted cubes indi-
cate spins at the convex (outer) corners of domain in-
terfaces that can flip with no energy cost. There are
also oppositely-oriented spins (blank spaces) adjacent to
the apex of the concave corners that can also flip up
with no energy cost. A blinker state wanders perpetu-
ally on a small set of iso-energy points in state space.
Blinker states first appear (albeit rarely) when the linear
dimension L = 5, but essentially all configurations con-
tain blinkers for large L. While the fraction of blinker
spins is quite small, the fraction of the system volume
over which blinker spins can wander is macroscopic — it
is usually of the order of ten percent for large L.

In Sect. II, we define the system under study. In
Sect. III, we present a simple method to accelerate the
simulations. Details about the accuracy of this accel-
eration algorithm are given in Appendix A. We then
discuss the physical properties of the long-time state of
the system in Sect. IV, including details about blinker
states (Sect. IVA), the asymptotic energy of the sys-
tem (Sect. IVB), and topological characteristics of the
domains (Sect. IVC). Additional facts about the L-

dependence of some basic observables are given in Ap-
pendix B. Typically, domain interfaces have large genus
so that the domains have many interpenetrating protru-
sions. Finally, we investigate the time dependence of the
survival probability (Sect. IV D), namely, the probability
that the energy of the system is still decreasing up to a
given time. Based on the insights gained from studying
blinker states, we can understand some important fea-
tures of this survival probability. Concluding remarks
are given in Sect. V. Basic features of the evolution of
a 23 system, where all states can be enumerated exactly,
as well as a few details of slightly larger systems are pre-
sented in Appendix B.

II. MODEL

The Hamiltonian of the ferromagnetic Ising model is

H = −
∑

〈ij〉
σiσj , (1)

where σi = ±1 denotes the spin at site i, the interaction
strength is set to one, and the sum is over all nearest-
neighbor pairs of sites. If not stated explicitly other-
wise, we consider the cubic lattice of linear dimension
L, with L even, and with periodic boundary conditions.
There are two natural choices for the initial state: (i)
initially uncorrelated and equal fractions of +1 and −1
spins (corresponding to an initial temperature T = ∞),
or (ii) the antiferromagnetic initial condition, in which all
pairs of neighboring spins are oppositely oriented. The
long-time evolutions of the system starting from these
two initial states are similar, with only small quantita-
tive differences in the distribution of basic physical ob-
servables, such as the energy and magnetization in the
long-time state. Thus we focus on the antiferromagnetic
initial state for concreteness and for simplicity.

The spins evolve by zero-temperature single spin-flip
Glauber dynamics [19]. To implement this dynamics at
zero temperature, we keep a list of flippable spins — those
where the energy change of the system ∆E would be
zero or negative if the spin were to flip. (At zero tem-
perature, spin-flips which would lead to an increase of
energy, ∆E > 0, are forbidden [4].) By picking only
the spins from this list, we eliminate the time that would
be wasted in picking and simulating non-flippable spins.
In each update, we pick a flippable spin at random and
flip it with probability 1 if ∆E < 0, or with probabil-
ity 1

2
if ∆E = 0. This update corresponds to majority

rule, as the condition ∆E < 0 means that the majority
of neighbors are antiparallel to the selected spin.

More generally, zero-temperature single spin-flip dy-
namics is defined by the rules,

Flipping probability =











1 if ∆E < 0,

p if ∆E = 0,

0 if ∆E > 0,

(2)
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that depend on the single parameter p. For the heat-bath
and Glauber dynamics, p = 1

2
, while for the Metropolis

algorithm [20] all updates proceed with the same rate
(p = 1). While the behavior for all p > 0 is essentially
independent of p, the p = 0 case is special, as the system
quickly gets trapped in a jammed configuration [21, 22].
Therefore we shall avoid the p = 0 dynamics which allows
only strictly energy-lowering spin flips. (Note, however,
that this case is relevant for a special class of kinetically

constrained systems, see [23] for review.) Since the choice
for the parameter p is arbitrary (as long as p is strictly
positive), we fix p = 1

2
; this choice is essentially a matter

of habit and, e.g., the Metropolis algorithm with p = 1
is more efficient.

For the antiferromagnetic initial condition, all spins
are initially flippable. The number of flippable spins de-
creases rapidly at early times and then the decrease slows
down as the system coarsens. After each update event,
the time is incremented by 1/No.(flippable spins). Thus
in one time unit, each flippable spin changes its state
once on average. This update step is applied repeatedly
and the dynamics is averaged over many realizations to
determine the evolution of the system.

III. ACCELERATION ALGORITHM

The evolution of the system becomes so slow that the
standard Glauber dynamics algorithm described above
is inadequate to probe the long-time properties of even
reasonably-sized systems. Figure 3 illustrates this slow-
ing down for the energy evolution of a typical realiza-
tion of a 203 system. The main panel shows the time
dependence of the gap between the actual energy and
the ground state energy divided by the total number of
spins. Henceforth, we term this normalized difference as
the “energy” EL. For this example, the data are roughly
consistent with the EL ∼ t−1/2 for 1 . t . 102.

For times beyond the coarsening time (which scales as
L2), the energy evolution is characterized by long periods
where only zero-energy spins can flip (those with equal
numbers of up and down neighbors). These long peri-
ods of stasis are punctuated by progressively more rare
energy-decreasing events (inset to Fig. 3). Thus the sys-
tem typically wanders on successive plateaux that define
a set of iso-energy points in state space. Occasionally
there is a drop to a lower plateau by an energy-lowering
spin-flip event (Fig. 4). This feature is illustrated in
Fig. 5, where we plot the configuration averaged time
∆tn between successive energy-lowering spin-flip events
as a function of tn, the average time at which the nth such
event occurred. Over a substantial range, ∆tn appears to
grow exponentially with tn, so that most of the evolution
is spent wandering aimlessly on iso-energy plateaux. A
somewhat related continuum picture of this state space
evolution is presented in Refs. [24, 25].

To reduce the time spent in simulating these iso-energy
wanderings, we constructed an acceleration algorithm
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FIG. 3. Time dependence of the energy for a representative
realization of a 203 system whose energy stops evolving at
t ≈ 41712. The inset shows the long-time tail of the same
data; note that the abscissa is ln t.

E

FIG. 4. Schematic illustration of the state of the system wan-
dering on fixed-energy plateaux at long times.

and tested that the long-time state achieved by this al-
gorithm is virtually identical to that of the true zero-
temperature Glauber dynamics. Our method is based on
imposing a weak field while the system is on any single
iso-energy plateau to reduce the time needed to find the
next energy lowering event. The field is reversed after
each such event so that the average field is zero. The
steps of our method are the following:

• Apply Glauber dynamics (to flippable spins only)
until t = 5L2. This time is sufficiently beyond the
coarsening time that energy-lowering events have
become rare (Fig. 3).

• For t > 5L2, apply an infinitesimal field to drive the
state-space motion along a fixed-energy plateau.
Thus the next energy-lowering event (if it exists)
is found more rapidly than if no field was applied.

• After each energy-lowering event occurs, the sign
of the field is reversed, leading to the alternating
state-space motion sketched in Fig. 4.

• If the number of active spins goes to zero with-
out a drop in energy while the field is applied, the
field is reversed. From this configuration, the sys-
tem evolves by zero-temperature Glauber dynam-
ics with the reversed field. If the number of active
spins again goes to zero without a drop in energy,
then the final energy value has been reached and
the simulation is finished.



4

0 20 40 60 80 100
tn

10
−3

10
−2

10
−1

10
0

10
1

10
2

∆tn

FIG. 5. Average time ∆tn between successive energy-lowering
spin-flip events as a function of tn, the time for the nth such
event for 1024 realizations of a 10×10×10 system. The data
are smoothed over a 100-point range.

We verified that this acceleration algorithm accu-
rately reproduces the energy obtained by straightforward
Glauber dynamics for L ≤ 10, where a direct check of this
acceleration method is computationally feasible. For this
check, we take all configurations that have been evolved
to t = 5L2 by zero-temperature Glauber dynamics and
evolve each one both by continuing the Glauber dynam-
ics and by our acceleration algorithm until no flippable
spins remain. Over 107 realizations the fractional differ-
ence between the energies obtained by these two methods
is ≤ 1.4 × 10−8. Moreover, the distributions of the final
energies are virtually indistinguishable.

For larger L, time to reach the final energy by zero-
temperature Glauber dynamics is too long to amass suffi-
cient statistics. Instead, we compare the ultimate energy
that is reached by starting the acceleration algorithm at
progressively later times. As shown in the Table I in Ap-
pendix A, the energy that is ultimately reached changes
by a negligible amount as the cutoff time is increased.
For example, for L = 100, the error in the final energy
reached by the acceleration algorithm is of the order of
5 × 10−5. Moreover, as illustrated in this table, the ac-
celeration algorithm is considerably faster than the zero-
temperature Glauber dynamics. Thus we use the accel-
eration algorithm for all of our simulation results. On a
32-core machine, we are able to simulate 105 realizations
of a 903 system in approximately ten days of running
time.

IV. THE LONG-TIME STATE

At sufficiently long times, the energy of each realization
stops decreasing, either because a blinker configuration
is reached or occasionally a static final state is reached.
Figure 6 shows that the probability of reaching a blinker
configuration approaches 1 as L → ∞. This observa-
tion is one of our main results, for which preliminary

corroboration was given earlier [5, 6]. Somewhat surpris-
ingly, for the initial condition where the magnetization
is zero but with otherwise uncorrelated spins, the prob-
ability to reach a stationary state vanishes more rapidly
in the L → ∞ limit than for the antiferromagnetic ini-
tial condition. Even though a blinker consists of a set of
states of the same energy, we term the “final state” these
constant-energy configuration(s) that are reached when
the energy stops decreasing.
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FIG. 6. (color online) Plot of 1 − Pb, the complement of the
probability Pb of reaching a blinker configuration (◦), and
1 − P2, the complement of the probability P2 of reaching a
state that consists of 2 clusters (△), as a function of 1/L.

In this final state, the spins almost always parti-
tion into two and only two interpenetrating clusters.
Using the Hoshen-Kopelman cluster-multilabeling algo-
rithm [26] to determine the distribution of the number of
clusters, we find that the probability to find a single clus-
ter (corresponding to the ground state) or more than two
clusters in the final state rapidly decays with L (Fig. 6).
Final states that contain more than two clusters typi-
cally consist of multiple narrow filaments of one phase in
a surrounding background of the opposite phase. In all
of our simulations on the L × L × L cubes with periodic
boundary conditions, the largest number of clusters ob-
served in any realization was seven. (This happened to
occur in a 383 system, where the realization consisted of
six narrow filaments of one phase in a background of the
opposite phase.)

A. Relaxation of Blinker Configurations

As we now discuss, blinker states are responsible for
the very slow relaxation of the spin system at long times.
To appreciate the underlying mechanism, it is instruc-
tive to study the dynamics of the synthetic blinker states
shown in Fig. 7. In this example, the domain of up
spins consists of three orthogonal 4 × 12 slabs, each of
which wraps periodically, so that the apparent slab cor-
ners are merely visual artifacts. In the cavity defined by
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the confluence of the three slabs, a blinker state exists.
By zero-energy spin flips, the portion of the interface
defined by this cavity can be in the extremes of fully de-
flated (left panel of Fig. 7), or fully inflated (right), or
in some intermediate state (middle). Note that each ex-
treme configuration possesses a single blinker spin, while
intermediate configurations have more than one blinker
spin. Although each blinker spin does not experience any
energetic bias, there is an effective geometric bias that
drives the interface to the half-inflated state. This effec-
tive bias is controlled by the difference in the number of
flippable spins on the convex and concave corners on the
interface, N+ and N−, respectively. When the cube is
mostly inflated N+ −N− is positive so that the interface
tends to deflate, and vice versa when the cube is mostly
deflated. Thus the effective bias drives the interface to
the half-inflated state.

We quantify the evolution of this synthetic blinker by
the average first-passage time 〈t〉 for an ℓ × ℓ × ℓ fully-
deflated blinker to become fully inflated. To estimate
this time, it is helpful to first consider the corresponding
two-dimensional system (Fig. 8). Near the half-inflated
state, the interface consists of N+ outer corners and N−
inner corners, with N+ − N− = 1 in two dimensions and
N+ ∼ ℓ. In a single time unit, all eligible spins on the
interface flip once, on average. Since N+ − N− = 1, the
interface area typically decreases by 1. Thus we infer
an interface velocity u = ∆A/∆t ∼ −1. Similarly, the
mean-square change in the interface area is of the order
of N+ ∼ ℓ ∼

√
A. Thus the effective diffusion coeffi-

cient D is proportional to ℓ. The first-passage time is
dominated by the time to move from the half-inflated
state to the fully-inflated state by flipping of the order
of A = ℓ2 spins. Since this process is moving against the
effective bias, the dominant Arrhenius factor [27] in the
first-passage time is τ ∼ exp(|u|ℓ2/D), so that

ln τ ∼ ℓ . (3)

FIG. 7. (color online) An 83 blinker on a 203 cubic lattice,
showing the fully-deflated state (left), an intermediate state
(middle), and the fully-inflated state (right). The bounding
slabs wrap periodically in the three Cartesian directions.

For the corresponding three-dimensional system of vol-
ume V = ℓ3, there are typically N± ∼ ℓ2 outer and inner
corners when the interface is half inflated. The disparity
in their number is now of the order of ℓ. Thus in a sin-
gle time step the displacement of the interface is of the

corner

inner
outer corner

FIG. 8. Two-dimensional analog of the blinker states in Fig. 7.

order of ℓ; this quantity coincides with the interface ve-
locity. Similarly, the mean-square change in the interface
volume in a unit time, which coincides with the diffusiv-
ity, is of the order of N± ∼ ℓ2 ∼ D. Consequently, the
leading behavior of the first-passage time is

ln τ ∼ uℓ3/D ∼ ℓ2 . (4)

The direct generalization of this argument to d dimen-
sions gives ln τ ∼ ℓd−1. Related aspects of slow evolution
in three dimensions were discussed for the homogeneous
kinetic Ising ferromagnet [28] and for a kinetic Ising sys-
tem with competing ferromagnetic and antiferromagnetic
interactions [29].

Figure 9 shows simulation data for the first-passage
time from the fully-deflated to the fully-inflated state
in two and three dimensions. The agreement between
Eq. (3) and the two-dimensional data is excellent. In
three dimensions, simulations are limited to rather small
ℓ, while our crude argument is asymptotic; nevertheless,
the data are qualitatively consistent with Eq. (4).
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FIG. 9. (color online) First-passage time from the fully-
deflated to the fully-inflated state for d = 2 (◦) and d = 3
(△). The line for d = 2 is the best fit τ = 1.40 exp(1.33 ℓ),
while the curve for d = 3, τ = 3 exp(0.8 ℓ2), is merely a guide
for the eye. Each data point is based on at least 128 realiza-
tions.

The crucial feature is that the time for a fully-deflated
blinker to become fully inflated grows rapidly with ℓ.
It appears that the amplitudes in Eqs. (3)–(4) can be
computed through an interesting hidden connection with
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the entropies of appropriately-chosen random tilings [30].
For example, in two dimensions such a connection sug-
gests that an asymptotically precise form of Eq. (3) is
ln τ ≃ aℓ with a = 2 ln 2 ≈ 1.386, in good agreement
with our simulation results (see Fig. 9).

From the dynamics of the synthetic blinker of Fig. 7, we
can now understand the long time scales associated with
the relaxation of a large system. Indeed, consider two
such blinkers that are oppositely oriented and spatially
separated so that they do not overlap when both are
half inflated, but just touch corner to corner when both
are inflated (Fig. 10). As long as the blinkers do not
overlap, their fluctuations do not change the energy of
the system. However, if these blinkers touch, then a spin
flip event has occurred that lowers the energy. After this
irreversible coalescence, subsequent spin flip events cause
the two blinkers to ultimately merge.

_

+

+

_ _

+

+

_

FIG. 10. A schematic two-dimensional projection of a blinker
coalescence event. The tips of the blinkers correspond to the
fully-inflated configuration shown in the right panel of Fig. 7.

Because of the impermanence of a two-blinker config-
uration, we term it a pseudo-blinker. We assert that
each coalescence of a pseudo-blinker corresponds to one
of the increasingly rare energy-lowering spin-flip events
sketched in Fig. 4. The time for pseudo-blinker coales-
cence is extraordinarily long because the time for each
blinker to reach a nearly-inflated state is a rapidly in-
creasing function of its size. These coalescences corre-
spond to energy-lowering spin-flip events at long times.

We now turn to the true blinker states. As might be
anticipated from the example in Fig. 1, simulations indi-
cate that the fraction of blinker spins is small — of the
order 3×10−3 to 4×10−3 of all spins for systems of linear
dimension L ≤ 50. The instantaneous number of blinker
spins also fluctuates substantially so that their number is
not a meaningful characteristic of the blinker states. A
more robust measure is the total volume that is accessed
by blinker spins. We determine this accessible volume as
follows: Once a true blinker state is first reached (which
we define as B0), we drive the system with an infinites-
imal positive field until the spin configuration B+, with
no flippable spins, is reached. Then starting again from
B0, we drive the system with an infinitesimal negative
field until there are no flippable spins and the configu-
ration B− is reached. The difference |B+ − B−| defines
the total blinker volume. The resulting blinker volume
fraction is a slowly increasing function of L and extrap-
olating to L → ∞ gives an asymptotic blinker volume
fraction of approximately 9% — a finite fraction of the
entire system.

B. Asymptotic Energy

An important characteristic of a finite system of lin-
ear dimension L is its energy EL at infinite time. As
mentioned in Sect. III, what we term the energy is ac-
tually the energy gap above the ground state energy per
spin. This energy decreases with L in a manner consis-
tent with the power-law dependence EL ∼ L−ǫ (Fig. 11).
However, there is systematic curvature in this data, and
we extrapolate the local two-point slopes in the plot of
EL versus L to obtain the estimate ǫ ≈ 1, in agreement
with previous results based on smaller-scale simulations
[6]. This dependence implies that the total interface area
between spin domains scales as L2.
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FIG. 11. (color online) Normalized average energy (◦) and
genus of the final state (△) as a function of L. The relative
error for each data point is less than 1.4 × 10−3.
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FIG. 12. (color online) The normalized final-state energy dis-
tribution for L = 54 (◦), L = 76, (△), and L = 90 (▽).

The scaled distribution of energies, P (E/EL), exhibits
an excellent data collapse (Fig. 12). The distribution has
a well-defined peak that is close to a Gaussian; there is
also a noticeable linear tail at low energies. The fact that
the energy distribution P (E/EL) remains broad in the
thermodynamic limit is not surprising as all our numeri-
cal findings show the lack of self-averaging. It would be
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interesting to understand qualitatively the shape of the
energy distribution P (E/EL), or at least the asymptotic
behaviors in the E/EL → 0 and E/EL → ∞ limits.

C. Domain Topology

The long-time state of the three-dimensional system
is, in general, topologically complex because it is possi-
ble — in fact likely — that the interface contains many
holes [31]. The number of holes is also known as the
genus g. Formally, the genus of a connected, orientable
surface is an integer that represents the maximum num-
ber of cuts that can be made through the surface along
non-intersecting closed simple curves without disconnect-
ing the resulting manifold. As elementary examples, the
genus of a sphere is g = 0, while the genus of a doughnut
is g = 1.

FIG. 13. (color online) Simple examples of interfaces with
genus g = 2 and g = 3 for a periodic 2 × 2 × 2 system.

FIG. 14. (color online) Examples of a low-genus (g = 3) and
high-genus (g = 16) domain on a 203 lattice.

The genus of a surface can be expressed through its
Euler characteristic χ (see e.g. [32, 33])

χ = 2(1 − g) = V − E + F. (5)

The latter equality relates the Euler characteristic to
easily-measured features of the domain interface: V,
the number of vertices on the interface, E, the number
of edges, and F, the number of faces. As simple ex-
amples, the Euler characteristic of an isolated cube is
χ = 8− 12 + 6 = 2, corresponding to genus 0. (Topolog-
ically, the cube is identical to the ball, so the boundary
of the cube is a sphere.) The Euler characteristic of a
linear filament that wraps around the torus in one di-
rection is zero. By discretizing this filament as a 2 × 1

cluster that wraps onto itself, we have V = 8, E = 16 and
F = 8, corresponding to genus g = 1. Note that the Eu-
ler characteristic does not depend on the length scale of
the discretization. Similarly for a cluster that percolates
in two directions (Fig. 13), χ = 8 − 20 + 10 = −2 so the
genus g = 2. Finally for a cluster that percolates in all
three Cartesian directions, χ = 8 − 24 + 12 = −4 so the
genus g = 3.

Since blinker spins do not affect the topology, we freeze
these spins in their orientations at the time when the in-
terface topology is measured. To measure the topology,
we first identify all the clusters in the final state by the
Hoshen-Kopelman algorithm [26]. We then compute the
Euler characteristic of each cluster. If there are only two
clusters, then by construction they have the same inter-
face and thus the same Euler characteristic. If a final
state has more than two clusters, we use the maximum
genus among all clusters as the genus of the system. To
determine the Euler characteristic numerically, we first
determine the number of faces F. This quantity equals
the number of neighboring antiparallel spins (accounting
for the periodic boundary conditions) which, in turn, is
directly related to the energy of the system. Once we
identify a new face on the interface, each of the four ver-
tices and the four edges bounding this face are added to
the current counts of V and E, as long as they have not
yet already been counted as part of another previously-
encountered face.

0 1 2 3 4
g/〈g〉

0.0

0.2

0.4

0.6

0.8

1.0

P
(g

/〈g
〉)

FIG. 15. (color online) The final-state genus distribution for
L = 54 (◦), L = 76, (△), and L = 90 (▽).

The resulting domain topologies are quite diverse
(Fig. 14). For example, for L = 20, the smallest genus
observed was 1, the largest genus was 18, while the av-
erage genus is approximately 4.36. The average genus
for a given L, defined as gL, again appears to grow as
a power law in L, gL ∼ Lγ , but with substantial finite-
size corrections (Fig. 11). Analogous to the behavior for
the average energy, the data for gL versus L on a double
logarithmic scale are systematically curved upward and
extrapolating the effective exponent to L → ∞ yields the
estimate γ ≈ 1.7. The scaled genus distributions at long
times for L = 54, 76, and 90 also show excellent data
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collapse (Fig. 15).

5

3

6

4

FIG. 16. (color online) A portion of an interface to illustrate
vertices (labelled) that are shared among 3, 4, 5, or 6 edges.

Although we separately studied the energy and the
genus, these two quantities can be intimately connected
by simple topological considerations. We start by sim-
plifying Eq. (5). For a closed surface that defines the
interface between spin domains, each face has 4 edges
and each edge must be shared between 2 adjacent faces.
Hence

E = 2F. (6)

Similarly, each edge has 2 vertices and each vertex is
shared among 3, 4, 5, or 6 adjacent edges (Fig. 16). This
leads to the bounds

E

3
≤ V ≤ 2E

3
. (7)

Using these two relations in Eq. (5) gives

−F

3
≤ χ ≤ F

3
. (8)

While the lower bound is useful, the upper bound can be
replaced by the much stronger condition χ ≤ 2, with the
maximal value of 2 being achieved for a sphere. With
this replacement, we obtain the following bounds on the
genus:

0 ≤ g ≤ F

6
+ 1. (9)

However, F is directly related to the total energy of the
system because each face corresponds to a single pair of
anti-aligned spins per spin and thus has an energy cost of
+2 (when the interaction strength is set to 1, see Eq. (1)).
Thus F = L3EL.

Finally, we make the guess that the actual value of
g lies roughly midway between the upper and lower
bounds; namely, g ∝ F. Using our exponent definitions
EL ∼ L−ǫ and 〈g〉 ∼ Lγ , our argument leads to the ex-
ponent inequality

ǫ + γ ≤ 3. (10)

Our numerical estimates for these two exponents given
above, ǫ ≈ 1 and γ ≈ 1.7 are consistent with Eq. (10).

We can carry this analysis a bit further by making
use of some simple facts in discrete differential geome-
try [36]. Let us define the number of vertices with m
incident edges as Vm. It is useful to introduce the notion
of a “defect” that is associated with each vertex. The
defect for a vertex is defined as the difference between
the sum of the angles of all the faces at the vertex and
2π. With this definition, it is easy to see that the defect
of a vertices of types 3, 4, 5, and 6 are π

2
, 0, −π

2
, and

−π, respectively. For any domain, the total defect of all
vertices on the surface equals 2π χ; this is essentially the
Gauss-Bonnet theorem for a discrete interface [36]. Thus
we have the general relation (see Eq. (5))

π

2
V3 −

π

2
V5 − π V6 = 2π χ = 4π(1 − g). (11)

Therefore the genus of a surface and the number of ver-
tices of various types are related by

g = 1 +
1

8
(2V6 + V5 − V3) . (12)

From the examples of domains shown throughout this
work, almost all vertices are of type m = 4 while vertices
of type m = 5 seem to be next most common. Vertices
of type m = 3 are associated with blinkers and therefore
should be few in number. Vertices of type m = 6 arise at
a 3-fold branch of the domain and therefore seem to be
the most rare. Thus we expect that vertices of type m =
5 scale the same way as 〈g〉 which numerically appears
to grow as L1.7.

D. Survival Probability

The relaxation process is naturally characterized by
S(t), the probability that the energy of the system is still
decreasing at time t. Since energy-lowering spin flips oc-
cur rarely at long times, it is not immediately evident
whether the most recent energy-lowering spin flip is the
last such event or whether another energy-lowering flip
event will occur sometime in the distant future. To de-
termine if the energy has reached its final value in an
efficient way, we use the following algorithm that is a
variant of our acceleration algorithm. As a preliminary,
we separately track both positive-energy and zero-energy
flippable spins; the former are those for which the en-
ergy decreases if such a spin actually flips. We start the
simulation by running zero-temperature Glauber dynam-
ics until no positive-energy flippable spins remain. At
this time, defined as T0, the configuration C0 may have
reached the final value of the energy.

We now proceed as follows:

• Apply an infinitesimal magnetic field. If an energy-
lowering spin-flip occurs, then the energy of C0 is
not the final energy. In this case, the system is re-
turned to C0 and subsequently evolves by Glauber
dynamics until again no positive-energy spins re-
main and a new candidate final configuration and
final time is reached.
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FIG. 17. (color online) Survival probability S(t) versus time t
for L = 4, 6, 8, 10, 14, 20, 30 and 40 (lower left to upper right)
on a double logarithmic scale. The averaging has been per-
formed over 107 realizations for L ≤ 10, 10240 realizations for
L = 14, 20, 30, and 2048 realizations for L = 40.

4 6 8 10 14 18ln t
10

−2

10
−1

10
0

S(t)

FIG. 18. (color online) S(t) versus ln t for L = 20, 30, and 40
on a double logarithmic scale (lower to upper).

• If an energy-lowering spin-flip does not occur, the
system is returned to C0 and a field is applied in
the opposite direction. Again, if an energy-lowering
spin-flip occurs, the system is returned to C0 and
subsequently evolves by Glauber dynamics until no
positive-energy spins remain and a new candidate
final state is reached.

• If an energy-lowering spin-flip does not occur after
the field has been applied in both directions, then
C0 is at the final energy and the survival time equals
T0.

We record the time when the energy of a system stops
changing, from which we infer the time dependence of
the survival probability S(t). This time dependence is
both surprisingly complex and extremely slow for small
system sizes (Fig. 17). For example, for L = 10, 40 re-
alizations had not yet relaxed to their ultimate energy
by t = 109, a time that is seven orders of magnitude be-
yond the coarsening time scale of 102. The data cutoff
for L ≥ 10 was imposed because of CPU time limitations.

By L = 20, the dependence of S(t) on t becomes smooth
and reasonably systematic and a plot of S(t) versus ln t
on double logarithmic scale (Fig. 18) suggests that the
long-time data can be reasonably fit to an inverse loga-
rithmic dependence S(t) ∼ (ln t)−σ, with σ ≈ 3.

V. DISCUSSION

We investigated the evolution of the kinetic Ising model
that is endowed with single spin-flip dynamics on a finite
cubic lattice with periodic boundary conditions. The sys-
tem starts in the antiferromagnetic state and is quenched
to zero temperature. The details of the initial condi-
tions are secondary as long as the magnetization van-
ishes. (If the initial magnetization is non-zero, the evolu-
tion is much simpler and the Ising ferromagnet falls into a
ground state.) We asked the simple question: what hap-
pens? A natural expectation might be that the ground
state should be reached. A more comprehensive version
of this presumption is encapsulated by the central dogma

of coarsening, which asserts:

1. Ising ferromagnets have just two metastable states,
which coincide with the ground states.

2. If an Ising ferromagnet is endowed with zero-
temperature single spin-flip dynamics, or more gen-
erally with a non order-parameter conserving dy-
namics, then one of the two ground states is neces-
sarily reached.

3. The time to reach a ground state scales with the
linear dimension of the system as L2.

This central dogma is indeed correct in one dimension.
However, for two-dimensional Ising ferromagnets, there
are numerous metastable states that consist of single-
phase stripes whose total number grows as M2 ∼ gL [5],

where g = 1

2
(
√

5+1) is the golden ratio. Nevertheless, the
failure of the central dogma in two dimensions is rather
benign, as one of the ground states is reached [5, 6, 9] with
probability close to 2/3. Moreover, for most realizations,
the final state (either a ground state or a stripe state) is
approached in a time that scales as L2.

In three dimensions, however, the central dogma com-
pletely fails; viz., all its three basic tenets are wrong.
First, the number of metastable states M3 scales expo-
nentially with the system size: ln M3 ∼ L3 [34]. Further,
the ground states are never reached (for sufficiently large
systems) and the relaxation time is anomalously long.
We provided heuristic and numerical evidence that the

relaxation time scales as eL2

. Thus for a macroscopic
system with L ∼ 108 the relaxation time considerably
exceeds any time scale in the Universe.

Since the approach to the long-time state is extraordi-
narily slow, even for a system as small as 10 × 10 × 10,
there are still realizations (albeit a small fraction) for
which the energy has not yet reached its final value by
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t = 109, whereas the standard coarsening time is of the
order of 102. We constructed a physical picture, based
on the coalescence of blinker-like configurations, that in-
stead predicts a relaxational time scale that grows ex-
ponentially in the linear dimension of the system. In
particular, the survival probability S(t), defined as the
probability that the energy has not yet relaxed to its fi-
nal value by time t seems to decay as a power law in
1/ ln t. While the mechanism of blinker coalescence ap-
pears plausible, we do not have a theoretical explanation
for the functional form of S(t). The primary feature of
the relaxation that we wish to emphasize is that the stan-
dard picture of coarsening, characterized by a time that
scales as L2, is inappropriate for the three-dimensional
Ising model with zero-temperature Glauber dynamics.

Another striking feature of the three-dimensional Ising
ferromagnet is that a set of connected metastable mi-
crostates with equal energy is reached rather than a
‘frozen’ metastable state. Each such set of states con-
tains a small number number of flippable blinker spins
that can flip ad infinitum without any energy cost. Thus
the system can wander within one of these iso-energy
sets forever. Even though the number of blinker spins
is small, the spatial volume over which the blinker spins
can roam comprises of the order of 10% of the volume of
system in the limit of large L.

The topology of the long-time state is much richer than
that of the corresponding two-dimensional system. In
two dimensions, the only possible states at infinite time
are the ground state or an even number of alternating
single-phase stripes (for periodic boundary conditions).
In contrast, the long-time states in three dimensions are
highly interpenetrating and contain many holes (Fig. 14).
Correspondingly, the average genus of the domains scales
with linear dimension as L1.7. Aside from this global
characterization of the domains, it is not clear what are
the most useful measures of the domain geometry.

While we focused on the cubic lattice, similar behav-
iors should arise for the kinetic Ising model on other
even-coordinated lattices in three dimensions. We delib-
erately avoided odd-coordinated lattices or other complex
networks where the coordination can be odd, as the zero-
temperature Ising-Glauber system quickly freezes, in dis-
agreement with the central dogma predictions. However,
this freezing has a local and trivial nature. For example,
for an odd-coordinated lattice, single-phase droplets can
arise, in which spins within a droplet each have more in-
ternal than external neighbors [35, 37–40], as illustrated
for the example of a hexagonal droplet on the hexag-
onal lattice (Fig. 19). These droplets can thus remain
forever in the phase opposite to that of the background.
Another example of this local freezing is the Ising model
with zero-temperature Kawasaki (spin exchange) dynam-
ics [4], where again local defects quickly arise that stop
the overall relaxation process.

Intriguing and mostly unexplored behaviors arise for
non-cubic systems (Fig. 20), for example, a L × L × aL
system. When the aspect ratio a is small, the system be-

_

+ +
+ +

+ +

_

_

_

__

FIG. 19. Example of a frozen cluster of up spins on the hexag-
onal lattice.

comes a thin square slab. We are generically interested
in the thermodynamic limit L → ∞ with a fixed, so a
thin square slab does not reduce to a two-dimensional
system. When the slab is thin, the long-time state re-
sembles Swiss cheese, with directed holes perpendicular
to the slab. Because of the periodic boundary condi-
tion in all directions, there is no possibility of forming
the stripe states that arise in the two-dimensional sys-
tem [5–8]. For a ≫ 1, corresponding to a long bar, the
long-time state consists of a series of alternating domains
of the two phases. As the bar becomes wider, percolation
in the long direction eventually occurs, and the geome-
try begins to resemble the plumber’s nightmare (middle
panel of Fig. 20).

FIG. 20. (color online) Example long-time states for a 32 ×
32 × 8 slab, a 323 cube, and a 8 × 8 × 32 bar.

It is striking that the three-dimensional system is so
much more complicated than the corresponding two-
dimensional case. This fact suggests that many more
surprises await discovery for the kinetic Ising model in
higher dimensions. Moreover, most of our findings are
empirical in nature and they beg for the development
of new theoretical perspective and geometrical descrip-
tions of the domains. Another challenging extension of
the present work is to describe the fate of a spin sys-
tem with a non-scalar order parameter, such as the XY
model, which is quenched to zero temperature.

Recent experiments with single-chain magnets [41, 42]
have revived interest in the Ising chain with zero-
temperature Glauber dynamics. The experimental chal-
lenge was to devise systems that evolve according to this
Glauber dynamics. We have seen that the two- and three-
dimensional Ising models endowed with zero-temperature
spin-flip dynamics exhibit a much more rich set of behav-
iors than in one dimension. Experimental realizations of
such dynamics is a tantalizing challenge.

We gratefully acknowledge financial support from NSF
grant DMR0906504 (JO and SR) and NSF grant CCF-
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Appendix A: Accuracy of the Acceleration

Algorithm

To test the accuracy of our acceleration algorithm,
the system is evolved until a cutoff time τ with zero-
temperature Glauber dynamics. Then at time τ , an in-
finitesimal magnetic field is applied, that alternates as
the system descends successive energy plateaux, until no
flippable spins remain. Table I gives the final energy that
is reached (where no flippable spins remain) when the ac-
celeration algorithm is applied for different cutoff times
τ . These data are shown for the cases L = 10, 20, and
100, with 107, 10240, and 128 realizations, respectively.
The extremely weak dependence of the final energy as a
function of τ indicates the level of accuracy of the accel-
eration algorithm.

L τ 〈EL〉 R

10 500 0.4245900960

109 0.4245901020 34

1010 0.4245901020 60

20 2000 0.283285352

105 0.283287939 1.4

106 0.283287939 5.2

107 0.283287939 39

108 0.283288232 378

100 5 × 104 0.083666469

105 0.083663406 1.2

5 × 105 0.083662656 4.7

106 0.083662594 7.2

107 0.083662531 67

TABLE I. Average final energies 〈EL〉 for different cutoff
times τ and system sizes L.

The last column gives the ratio R of the CPU time
needed to simulate the system until no flippable spins re-
main when the acceleration algorithm is imposed at the
cutoff time τ compared to imposing this algorithm at
τ = 5L2. For example, it took 67 times longer to sim-
ulate the L = 100 system by running zero-temperature
Glauber dynamics to t = 107 and subsequently impos-
ing the acceleration algorithm compared to running zero-
temperature Glauber dynamics to t = 5 × 104 and then
imposing the acceleration algorithm. The relative differ-
ence in the energies by the two protocols is approximately
5 × 10−5, thus providing justification for our use of the
acceleration algorithm at t = 5L2.

Appendix B: Small Systems, Blinker States,

Number of Clusters

The evolution of the smallest possible lattice L = 2
helps to illustrate the complexities of larger systems.
When L = 2, there are 8 spins and 28 = 256 possible
states that can be enumerated to determine all details
of the evolution. There are also only two possible final
states: the ferromagnetic ground state (F) and a static
metastable state (M) that consists of a square of four
spins of one sign and an adjacent square of four spins of
the opposite sign. There are nine distinct paths in state
space that start at the antiferromagnetic state and end
at these two final states (Table II). The average survival
time until the system reaches one of the final states is
221

120
= 1.841666 . . ., while the probability of ultimately

reaching the F final state is 11

14
.

path No. flips time prob. final state

1 4 43

56

2

21
M

2 4 143

168

1

14
M

3 6 341

280

1

21
M

4 4 85

56

3

14
F

5 6 1583

840

1

35
F

6 6 1793

840

4

35
F

7 6 127

56

4

21
F

8 6 395

168

1

7
F

9 8 761

280

2

21
F

TABLE II. The nine state-space paths to the final state for
L = 2 starting from the antiferromagnetic initial condition.
Listed for each path are the number of spin flips until the final
state is reached, the time to reach the final state on the path,
and the probability of the path. Also listed is the final state
for each path, either metastable (M) or ferromagnetic (F).

A complete enumeration is already not feasible for lin-
ear dimension L = 4, where the number of states is
264 ≈ 1.84 × 1019; thus simulations are necessary when
L ≥ 4. For L = 4, the average survival time is now 6.16,
while the longest survival time observed in any realization
is 22.2. For L = 6 and 8, the respective average survival
times are 11.9 and 27.9, while the longest survival times
are 128 and 3.43× 106. For L = 10, realizations that live
beyond t = 1010 are possible, although rare, and it is not
possible to quote an average survival time. The existence
of such long-lived realizations for L ≥ 10 contributes to
the difficulty in the understanding of the behavior of the
survival probability.
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L Pg Pf Pb

2 11

14

3

14
0

4 0.6814(1) 0.3186(1) 0

6 0.3523(2) 0.6353(2) 0.01246(4)

8 0.1842(1) 0.7373(1) 0.07853(9)

10 0.1045(1) 0.7170(1) 0.1785(1)

20 0.01377(4) 0.3059(1) 0.6803(1)

32 0.00322(8) 0.1091(4) 0.8877(4)

54 0.00066(6) 0.0406(4) 0.9587(4)

76 0.00040(6) 0.0250(5) 0.9746(5)

90 0.00039(6) 0.0199(4) 0.9797(4)

TABLE III. Probabilities of reaching the ground state Pg, the
frozen state Pf , and the blinker state Pb versus L. The error
in the last digit is shown in parentheses.

It is also worth noting that infinitely long-lived blinker
states first appear for the case of L = 5. Table III
gives the data for the probabilities of reaching the ground
state, a frozen static state, or a blinker state as a func-
tion of L. The former two probabilities decrease rapidly
with L and appear to approach zero for large L, while the

probability that a blinker state is reached approaches 1
as L increases (see also Fig. 6). As mentioned at the
beginning of Sect. IV, the long-time state almost always
consists of exactly two clusters. Table IV gives the proba-
bilities that the long-time state consists of one, two, three
or more than three clusters as a function of L.

L P(1) P(2) P(3) P(>3)

2 11

14

3

14
0 0

4 0.6814(1) 0.3186(1) 0 <.0000001

6 0.3523(2) 0.6475(2) 0.000245(5) <.0000001

8 0.1842(1) 0.8128(1) 0.00303(2) 0.0000004(2)

10 0.1045(1) 0.8866(1) 0.00893(3) 0.000015(1)

20 0.01377(4) 0.96052(6) 0.02475(5) 0.00096(1)

32 0.00322(8) 0.9720(2) 0.0230(2) 0.00180(6)

54 0.00066(6) 0.9802(3) 0.0171(3) 0.0020(1)

76 0.00040(6) 0.9824(4) 0.0150(4) 0.0022(1)

90 0.00039(6) 0.9839(4) 0.0133(4) 0.0024(2)

TABLE IV. Probabilities of reaching a state that contains 1,
2, 3, or > 3 clusters at long times, with the error on the last
digit in parentheses.
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