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Computing the ground state of Ising spin-glass models with p-spin interactions is, in general, an NP-hard

problem. In this work we show that unlike in the case of the standard Ising spin glass with two-spin interactions,

computing ground states with p = 3 is an NP-hard problem even in two space dimensions. Furthermore, we

present generic exact and heuristic algorithms for finding ground states of p-spin models with high confidence

for systems of up to several thousand spins.
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I. INTRODUCTION

Disordered materials, such as spin glasses, exhibit a

rich equilibrium and nonequilibrium behavior. While the

Edwards-Anderson Ising spin-glass model [1] incorporates

the disorder and frustration required to replicate glassy be-

havior [2], more generic models of disordered and glassy ma-

terials can provide insight into a number of related problems.

In particular, spin-glass models with p-spin interactions have

found a variety of applications across disciplines. They are

excellent examples of disordered model systems in which the

symmetry of the global states can be different than that of the

local degrees of freedom.

For example, the mean-field theory of p-spin models with

p > 2 is closely related to the behavior of structural glasses

[3–5]. The dynamics of mean-field p-spin models has a close

similarity to mode-coupling theory [6] for the dynamics of su-

percooled liquids: Both the dynamical transition below which

ergodicity breaking occurs and the thermodynamic transition

below which replica symmetry breaking occurs (at the one-

step level) [7] can be found in p-spin models [7]. Because

the study of models of interacting particles poses hard analyt-

ical and numerical challenges, there have been many efforts

in modeling structural glasses and supercooled liquids using

p-spin models [8].

Similarly, there is a close relationship between imple-

mentations of topologically-protected quantum computing

and p-spin models with disorder. To compute the er-

ror tolerance of topologically-protected quantum comput-

ing proposals the problem is mapped onto a statistical

Ising spin-glass model with p-spin interactions [9]. The

point in the disorder–temperature phase diagram where

the ferromagnetic–paramagnetic phase boundary crosses the

Nishimori line [10] represents the error threshold—an impor-

tant figure of merit—of the quantum computing proposal. For

example, in the presence of bit-flip errors the Kitaev proposal

[11] with four-spin interactions maps onto a two-dimensional

random-bond Ising model (with p = 2), the density of nega-

tive bonds representing the density of bit-flip errors. Topolog-

ical color codes [12] instead map onto Ising spin-glass-like

Hamiltonians with three-spin interactions in the presence of

bit-flip errors [13, 14].

A common approach to better understand the low-

temperature behavior of spin glasses is to study in detail the

structure of the ground state: Zero-temperature optimization

over the energetics of the system reveals properties of the

finite-temperature thermodynamics of the system. This ap-

proach is complicated by the fact that these systems are, in

general, NP-hard. This means that they belong to a large class

of problems which are believed, in the worst case, to be solv-

able only by investing time exponential in the size of the prob-

lem [15] (e.g., the number of spins). Elaborate techniques ex-

ist for solving NP-hard spin-glass optimization problems [16],

however, there are special cases, such as the two-dimensional

Ising spin glass with p = 2, that are not NP-hard, and where

exact efficient optimization is possible [17]. Without disor-

der, the two-dimensional Ising model can be even solved ex-

actly [18], and techniques related to exact solutions of the pure

model have been directly useful for producing efficient algo-

rithms for simulating the two-dimensional Ising spin glass as

well [19–21]. Ground-state studies of two-dimensional spin

glasses with p = 2 have proven useful in many aspects of

spin-glass theory, including chaos [22], reentrance [23], and

nonequilibrium behavior [24]. Although the two-dimensional

pure Ising model with p = 3 also permits an exact solution

[25, 26], no efficient simulation techniques are known for the

corresponding disordered problem.

Here we study the optimization of spin glasses with p-spin

interactions. The optimization problem of finding ground

states of a generic spin-glass with p-spin interactions is NP-

hard. In contrast to the two-dimensional Ising spin glass with

p = 2, we show here that even the special case of the two-

dimensional spin glass on any tripartite lattice with 3-spin in-

teractions is an NP-hard problem. This is true despite the ex-

istence of an exact solution for the pure case [25, 26]. The

proof is based on a mapping of the three-dimensional p = 2
Ising spin glass—which is known to be NP-hard—onto the

two-dimensional p = 3 Ising spin glass. Nevertheless, we

present an approach which is capable of computing exact

ground states of the three-spin model for moderate-sized sys-

tems. While the exact approach presented has been developed

specifically for 3-spin interactions, it can be generalized to

other values of p. We also present a heuristic approach that

works quite well for systems of up to several thousand spins.

This technique is general: the same code may be used to op-

timize a spin-glass problem with any geometry and any value

of p. It consists of a genetic algorithm using triadic crossover

[27] combined with a local search.
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In Sec. II we outline details of Ising models with three-spin

interactions, followed by a proof that the disordered three-

spin Ising model is NP-hard. We then present optimization

techniques to study models with p-spin interactions in Sec. IV

followed by some results on test instances in Sec. V.

II. DISORDERED THREE-SPIN ISING MODEL

The standard Edwards-Anderson (EA) spin-glass model

with two-body interactions is given by the Hamiltonian

HEA = −
∑

〈ij〉

Jijsisj , (1)

where the sum is over all nearest-neighbor pairs 〈ij〉. The

Ising spins si ∈ {±1} interact via random couplings Jij .

The three-spin model, on the other hand, has spins placed on

the vertices of a triangulated lattice with plaquette interactions

Jijk between the spins i, j and k on each plaquette△ijk . The

Hamiltonian is

H3 = −
∑

△ijk

Jijksisjsk. (2)

A plaquette is said to be unsatisfied when its contribution to

the Hamiltonian is positive. Typically, this model is studied

either on a triangular or a Union Jack lattice.

Both the triangular and Union Jack lattices are tripartite:

one can assign one of three colors to each site of the lattice

such that neighboring sites never have the same color, i.e.,

there are three colored sublattices. This model is most con-

venient to work with on a tripartite lattice. In this case, all

spins border an even number of plaquettes (see the left side of

Fig. 1). Furthermore, each pair of spins shares an even num-

ber of plaquettes (zero or two), so the spins appear together in

an even number of terms in the Hamiltonian. Flipping a spin

therefore alters the satisfaction of an even number of plaque-

ttes adjacent to each spin. All configurations of the system

can be composed of individual spin flips, so the set of plaque-

ttes with differing satisfactions between any two spin config-

urations must contain an even number of plaquettes touching

each spin. For a 3-spin Ising model on any tripartite lattice,

this gives a conservation rule: the parity of the number of un-

satisfied plaquettes touching each spin depends only on the

instance of disorder. While for the EA Ising spin glass with

p = 2 frustration properties are associated with the plaquettes,

in the three-spin model this conservation rule imparts frustra-

tion properties to the sites of the spin lattice. If the number

of unsatisfied plaquettes touching some spin is even for some

configuration, then it is even for all spin configurations, and

if it is odd for some configuration, then it is frustrated in that

there is no configuration which has zero (or any even number

of) broken plaquettes touching this spin. In particular, if all

spins are unfrustrated, then the partition function is identical

to that of the pure system.

Each term of the Hamiltonian in Eq. (2) involves three spins

which are adjacent to one another, so each spin is a mem-

ber of a different color sublattice. Unlike in standard spin-

glass problems, global spin-flip symmetry is absent: flipping

?

FIG. 1. (Color online) On a triangulated tripartite lattice each spin

touches an even number of triangular plaquettes (top left). If a spin

touches an odd number of triangular plaquettes (bottom left), there

is no three-coloring of the graph, in contradiction with the assertion

that the graph be tripartite. Right panel: A section of a three-spin sys-

tem showing a domain wall separating states of the system. White

(black) circles show spins which are aligned (anti-aligned) with some

reference configuration. White plaquettes correspond to terms which

contribute identically in this new spin configuration as in the ref-

erence configuration, while the gray plaquettes correspond to terms

with opposite sign to that of the reference configuration. To guide

the eye, the domain walls are highlighted with white lines, separating

two states of the system. Unlike in the Ising spin glass with p = 2,

three different states may come together at a point, thus the system

cannot be described entirely in terms of domain-wall loops.

all spins negates the Hamiltonian, rather than leaving it un-

changed. There is instead a four-fold symmetry in the model

from flipping all the spins on certain colored sublattices. Flip-

ping all the spins on any two of the three colored sublattices

leaves every term of the Hamiltonian unchanged, so that the

model is four-fold degenerate. At low temperatures, these

four degenerate states make up domains of the system, with

domain-wall excitations separating the pure state regions. In

the two-dimensional Ising spin glass with p = 2 [28], the

boundaries between different states can be expressed entirely

in terms of the domain-wall loops. In the three-spin model, a

similar loop description may be used to describe the domain-

wall separation between any two domains: the loops connect

only sites on the same sublattice, and any plaquette the loop

crosses is a member of the domain wall. The loop descrip-

tion is incomplete in this model, because it is possible to have

three different states come together at a point (see the right-

hand side of Fig. 1). In this sense, and because of the four-

fold symmetry of the model, the Ising model with three-spin

interactions closely resembles a four-state Potts model. De-

spite the presence of domain walls which cannot be classified

as loops, a loop description of the problem will be a useful

limiting case to consider. This loop description is helpful for

proving the three-spin ground-state problem is NP-hard and

for developing an optimization algorithm for this ground-state

problem.
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III. THE THREE-SPIN MODEL IS NP-HARD

While instances of the bond-disordered Ising model with

two-body interactions in two dimensions may be solved ex-

actly (i.e., find a ground-state configuration or compute the

partition function) with efficient algorithms, the same model

in three space dimensions is NP-hard [17]. We show here

that the two-dimensional three-spin Ising model is NP-hard as

well by constructing a polynomial mapping by which three-

dimensional spin-glass ground states may be found using

specially-constructed instances of the two-dimensional three-

spin model.

First, we examine the Ising spin-glass model with p = 2.

In two dimensions, there is a one-to-one correspondence be-

tween spin configurations and polygonal structures on the dual

lattice, the sets of domain-wall loops. These polygons cross

the bonds which are broken, relative to some reference con-

figuration [21, 28]. Therefore each state of the Ising model

corresponds to a state of the loop model with the same en-

ergy, and the converse is also true: the models are equivalent

and have the exact same physical properties. In two dimen-

sions, the lowest-energy loop configurations may be found by

mapping the problem to a minimum-weight perfect matching

problem on a related (nonbipartite) lattice. Minimum-weight

perfect matchings may be solved efficiently using Edmonds’s

blossom algorithm [29] (with subsequent fast implementa-

tions [30, 31]).

The correspondence between domain-wall configurations

and spin configurations is exact in any space dimension, i.e.,

a similar construction may be made in general. In three di-

mensions, the domain-wall structures are polyhedra: sets of

two-dimensional surfaces. The energy of the system is given

by the sum over all faces in each set of polyhedra. Each face

of the domain-wall polyhedra crosses one edge from the spin

lattice. The faces of these polyhedra are defined on a polyhe-

dral graph, another cubic lattice with one node at the center of

each cube of the spin graph. The polyhedral graph is closely

connected with the spin graph: each face of the polyhedral

graph crosses one edge of the spin graph, while each edge in

the polyhedral graph is in turn crossed by one face of the spin

graph. A wire-frame graph may also be defined which will be

convenient for specifying the set of domain walls which corre-

spond to one spin configuration. Each node of this wire-frame

graph corresponds to either a face or an edge of the polyhedral

graph (all faces and edges are represented). The graph is bi-

partite: the nodes corresponding to a particular face (edge) of

the domain wall graph are connected to the nodes correspond-

ing to the edges (faces) touching this face (edge). Note that,

because the faces (edges) of the polyhedral graph correspond

to the edges (faces), that this wire-frame graph is also defined

on the faces and edges of the spin graph. A small subset of

the polyhedral graph and the corresponding elements of the

wire-frame graph is shown, for example, in Fig. 2.

We now specify the energetics of the spin system in terms

of the domain walls on the polyhedral graph. Start by defin-

ing a reference spin configuration ri. For each bond among

nearest-neighbor pairs 〈ij〉, let Rij ≡ rirj . For a face f ,

which crosses the bond between sites i and j, let the weight

FIG. 2. (Color online) Simplest possible relative domain wall for

the three-dimensional Ising spin glass. On the left, one spin, in the

middle, is flipped relative to a reference configuration, changing the

bonds which are drawn thicker (and shown in red), and imposing the

domain-wall polygon (the shaded cube in the center, here blue). The

dashed lines shown on the right are the intersections of this surface

with the plaquettes (faces) of the cubic lattice. This projects the do-

main wall onto a wire-frame representation which will be useful for

mapping onto the three-spin problem. Only the plaquettes which in-

tersect the domain wall are shown. In general, each plaquette touches

an even number of these dashed edges, while each edge touches ei-

ther zero or four of them.

w be defined by w(f) ≡ 2JijRij . Then the Hamiltonian may

be rewritten

H = −
∑

〈ij〉

Jij (sisj −Rij + Rij)

= HR +HP , (3)

where HR ≡ −
∑

〈ij〉 JijRij is the constant con-

tribution of the reference configuration and HP ≡
−

∑
〈ij〉 Jij (sisj −Rij) =

∑
f∈P w(f) is the contribution

from a polyhedral structure P corresponding to the domain

wall separating configuration si from ri. When HP is mini-

mized, so isH.

These polyhedral structures may be uniquely defined by a

wire-frame representation: here each face of the polyhedral

graph is replaced by the intersections of the polyhedra with

the faces of the original spin lattice, the graph given by the

spins and their interactions, as is shown in Fig. 2. In this

representation, each edge e sits on a face fe of the polyhe-

dral structure P , and has weight w(e) = w(fe)/4, so that

HP =
∑

f∈P w(f) =
∑

e∈Pe
w(e). The set of edges Pe

corresponding to the set of faces P making up a valid poly-

hedral set has two constraints. First, when four edges meet

at the center of a single face on the polyhedral graph (at an

edge of the spin graph), then the face must as a whole be se-

lected or not, so either none of the edges is included, or all

four are. We call these “type 1” constraints. Second, when

four edges meet at the center of a face of the spin graph, these

are the edges on the polyhedral graph, and any even number

of these edges may be included to give a valid polygon. We

call these “type 2” constraints. In Figs. 3 and 4, the square

junctions follow the first constraint, while the circle junctions

follow the second constraint. This defines the set of all poly-

hedral structures that are equivalent to the three-dimensional

Ising spin glass model.

This wire-frame description may be drawn sliced into seg-
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FIG. 3. (Color online) The three-dimensional Ising model on a cubic

lattice (spins sit at the vertices of the cubic lattice) is split into slices.

The intersection of a domain-wall surface with the faces and edges of

the graph uniquely defines the spin configuration. Below, the graph

is converted to a wire-frame form where the set of all spin configura-

tions is equated with the set of all selections of edges where squares

(corresponding to edges of the cubic lattice above) are type 1 junc-

tions which always touch either zero or four of the selected edges.

Circles—corresponding to faces of the cubic lattice above—are type

2 junctions which always touch an even number of selected edges.

The edges are allowed to cross (crossing edges correspond to a type

0 junction). Colors are used to guide the eye.

FIG. 4. (Color online) Junctions used in the mapping from the graph

in Fig. 3 to the three-spin model. Top: the junction type is shown as

a crossing with no symbol (type 0), square (type 1) and circle (type

2). Below the junctions is an enumeration of all possible edge se-

lections for each junction. Bottom: the junction is represented as

a specific plaquette disorder case. White plaquettes are given pro-

hibitively large weights such that they may not flip. The only re-

maining spin configurations correspond to flipping the plaquettes on

paths according to the rules above. The shaded (red) plaquettes all

have zero weight, except for one arbitrarily-chosen plaquette in each

square junction which is given the weight of the face of the polygon

it corresponds to.

ments, as shown in Fig. 3; edges are allowed to cross, as is

necessary if one is to embed a three-dimensional graph in two

dimensions. Crossing edges must not interact with one an-

other, introducing one more junction (type 0). Zero or four of

the edges that come together may be included, or two edges

opposite one another, but no turns are allowed. This is shown

in Fig. 4.

With three types of junctions, this wire-frame graph may

be embedded in the two-dimensional glassy three-spin model.

We take the wire-frame graph, as drawn in Fig. 3, and replicate

each item of the graph by setting the three-spin interactions

Jijk of the spin problem as appropriate. One of the colored

sublattices (as defined in Sec. II) of the three-spin model is

chosen to house all the domain walls in this graph. This is

enforced by setting bulk plaquette weights (i.e. the weights

of all plaquettes that are not allowed to be in a domain wall

or in a junction) to be prohibitively large, such that they must

be satisfied in the ground state. In Fig. 4, these bulk plaque-

ttes are colored white; they make up the domains for which

the domain-wall loops separate. Each edge of the wire-frame

graph is mapped to a zero-energy domain-wall segment: a set

of plaquettes with zero weight, but surrounded by bulk pla-

quettes so that any valid spin configuration either has all or

none of the plaquettes unsatisfied (in the case of a zero-weight

plaquette, we choose to use the terms satisfied and unsatisfied

as though it had positive weight). Finally, the three types of

junctions are replaced by the three types of plaquette “cities”

shown in Fig. 4 which are consistent only with spin configu-

rations that produce satisfactions in the domain walls so that

they interact with one another in exactly the ways the edges in

the wire-frame model are constrained to interact. The weights

of the plaquettes in the cities are all zero, except in each square

junction, where one plaquette is chosen to have the weight of

the face in the corresponding polyhedral model. As either all

or none of the plaquettes in this junction are satisfied, it does

not matter which plaquette is given the nonzero weight.

The sum of the weights of all the bulk plaquettes does not

depend on the weights in the wire-frame model, so it is a

constant, Hc. The sum of the weights of the remaining (do-

main wall and junction) plaquettes depends only on the sat-

isfaction of each square junction, as all other plaquettes have

zero weight. Therefore the Hamiltonian H3 of the three-spin

model with these plaquette weights may be written in terms

of the polygonal structure P as

H3 = Hc +
∑

f∈P

w(f)−
∑

f /∈P

w(f). (4)

Calling Hf =
∑

f w(f) a disorder-dependent constant re-

lated toHR, we obtain

H3 = Hc +Hf + 2HP (5)

such that

H = HR −
1

2
Hc −

1

2
Hf + 1

2
H3. (6)

Because HR, Hc, and Hf are all constants which may be

computed efficiently for each instance of the disorder, this di-

rectly relates the ground state of a specific instance of the two-

body three-dimensional Ising spin glass to a specific instance

of the two-dimensional three-spin model.

The number of spins necessary in the three-spin model is

polynomial in the number of spins in the three-dimensional

Ising spin-glass problem. This is because the only constraint

forcing the number of spins in the three-spin model to scale

faster than linearly with the number of spins in the three-

dimensional Ising spin glass model is that a new junction must
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be created for each crossed edge. If we assume the worst scal-

ing possible, i.e., that the length of every domain wall must

scale linearly with the total number of domain walls in the

problem, then the number of spins necessary in the three-spin

model is bounded from above byO(N2)×O(N2) = O(N4),
for N spins in the three-dimensional Ising spin glass, which is

still polynomial. As the ground state of any three-dimensional

two-body Ising spin glass may be found by solving an in-

stance of the two-dimensional three-spin model ground-state

problem with a number of spins polynomial in N , finding the

ground state of this three-spin model is NP-hard.

IV. OPTIMIZATION METHODS FOR p-SPIN MODELS

The three-spin spin-glass model is NP-hard, so it is unsur-

prising that we have not found any fast (i.e., polynomial run

time with system size) exact algorithm for computing ground

states. We start by describing an exact integer linear program

(ILP) technique for optimizing the three-spin glassy model us-

ing cutting planes. This technique scales exponentially with

the system size to find exact results, but it is particularly use-

ful because one may quickly find tight lower bounds on the

ground-state energy. We then present an efficient heuristic

technique for arbitrary p using the triadic crossover genetic

update of Pal [27], with which we can solve, with high confi-

dence, systems with discrete disorder up to several thousand

spins.

A. Cutting plane technique (exact algorithm)

Ground states of the Ising spin glass have been computed

using ILP approaches [16, 32]. Here we show that the three-

spin model may also be optimized exactly by mapping the

problem onto an ILP combined with a cutting-plane tech-

nique. This approach does not depend on the distribution of

disorder, and its performance is roughly comparable for Gaus-

sian and bimodal disorder.

An ILP may be expressed in canonical form with coefficient

vectors c and b, coefficient matrix A, and vector x of integer

variables as

Minimize cT x (7)

Subject to Ax ≤ b.

The function to minimize, cT x, is called the objective func-

tion; the elements of Ax ≤ b are the constraint inequalities.

The problem is specified by giving the values of all elements

of A, b and c. The function cT x is, up to a linear transfor-

mation, equal to the Hamiltonian to be minimized, while each

row of the constraint inequality equation is a constraint on the

values of the plaquettes designed to enforce that only valid

spin configurations are allowed (the number of rows of A and

the number of elements of b is the number of constraints in the

linear program). An optimal vector x gives the lowest value

of the objective function among all possible x that satisfy the

constraints. This problem is often posed as a maximization

problem; this is equivalent, as one may replace c with −c
and solve the maximization problem. Typical linear program

solvers can optimize in either direction.

Solving an ILP is an NP-hard problem, but linear programs

without the integer constraints permit efficient solutions, e.g.,

by simplex or interior point methods [33]. It is therefore pos-

sible to solve ILPs by successively adding cutting planes to

linear programs: additional constraints are added to enforce

that the solution vector x contains only integers. This can be

achieved by constructing a tight convex hull around the per-

mitted values with intersections only at permitted integer val-

ues. This tight hull requires exponentially many constraints to

specify, so in practice one tries to find and add only the most

important extra constraints.

For both the two-body Ising spin glass and the three-spin

spin-glass model, the Hamiltonian is not linear in the spin de-

grees of freedom. Therefore, expressing the problem as an

ILP requires additional work. One may perform a change of

variables such that the Hamiltonian is linear in the new vari-

ables. For the Ising spin-glass problem, the Hamiltonian is

quadratic in the spin degrees of freedom, so the Hamiltonian

is a weighted sum of edge satisfactions eij ≡ sisj . The spin

values are uniquely defined by the edge satisfactions, up to a

global spin-flip degeneracy. In the three-spin case, the Hamil-

tonian is linear in three-spin plaquette terms x(ℓ) ≡ sisjsk

where plaquette ℓ touches spins i, j and k. The vectors x and

c therefore are of size Np, the number of plaquettes in the sys-

tem, and for each plaquette ℓ defined as above, c(ℓ) = Jijk .

Performing a linear transformation on the plaquette satisfac-

tion variables from x(ℓ) ∈ {−1, 1} → x(ℓ) ∈ {0, 1} opti-

mizes the new Hamiltonian HLP = (H + Np)/2, for which

the optimization problem is equivalent, and which trivially

maps back to the original problem. The spin values may be

extracted by changing variables back to the original spin de-

grees of freedom; the configuration is only determined up to

the four-fold degeneracy of the model, so two spins (prefer-

ably adjacent to one another) may be assigned randomly and

this forces the values of all other spins.

As in the spin-glass case, the change of variables to reduce

the cubic program to a linear program moves the complexity

of the optimization problem from the cubic objective function

which produces a very complex energy landscape (but with no

constraints besides the variables being integers) to a linear ob-

jective function which has additional constraints to ensure that

the two formulations are equivalent. The extra constraints are

necessary because not all plaquette configurations correspond

to a valid spin configuration. The constraints to be added are

a generalization of the odd-cycle (OC) constraints used in the

spin-glass technique.

The parity conservation rule introduced in Sec. II implies

a related principle: the number of plaquettes whose satisfac-

tion differ between any two spin configurations must be even.

This can be seen by changing from one spin configuration to

the other one spin flip at a time. No spin flip can change the

parity, so it is always even. Furthermore, the interaction of

any loop on one of the colored lattices (using the representa-

tion in Fig. 1) with any spin configuration has the same parity

constraint. In the bulk of the sample, this constraint is im-
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plied by the previous one, but when the system has periodic

boundaries, it adds the case of system-spanning loops, which

do not correspond to spin configurations. The inclusion of

these system-spanning loops ensures that the solution is in the

correct topological sector, which is necessary for the spin con-

figuration to be well-defined when converting from plaquette

values to spin values (c.f. the extended ground state in spin

glasses [28]).

These parity constraints lead to OC-like inequalities. Let

C be a set of objects for which the vector x has Np elements

given by the union of the set of all spin-configuration differ-

ences with the set of all loop differences (as defined in Sec. II)

with a spin configuration. These objects can be defined by

the vector x which gives (possibly fractional) plaquette satis-

factions. For each member C ∈ C, all F ⊂ C with |F | odd

satisfy

x(F )− x(C \ F ) ≤ |F | − 1. (8)

Each such equation rules out the case where ∀ℓ ∈ F, x(ℓ) = 1
and 0 otherwise – with |F | odd, this is not allowed by the par-

ity constraint. Thus this set of constraint inequalities provides

the cutting planes to eliminate invalid solutions. Clearly, the

number of constraints is huge: every possible spin configu-

ration contributes many constraints of this type to the linear

program, so it is unreasonable to include them all. It is there-

fore necessary to find the most important constraints without

which the solution is incorrect and ignore as many others as

possible, i.e., such that A and b are not too large. If too few

constraints are included at a given step, the solution given by

the linear program at that step will not correspond to a valid

spin configuration. It will have energy lower than the ground-

state energy because the problem is underconstrained (adding

new constraints can only raise the value of the solution).

Given a test solution where the linear program solution con-

tains either odd-plaquette violations or non-integer variables

(typically both), one searches for new constraints which are

violated by the current configuration. These are added to the

problem, and the linear program is solved again. This is re-

peated until the result is a valid plaquette configuration, in

which case all constraints are satisfied (including the integer

variables condition). Also, for discrete disorder distributions,

the solution is complete if the lower bound given by this tech-

nique is close enough to confirm that a heuristic solution is an

exact solution.

If adding constraints does not produce a solution to the

ILP, one may also branch: assign the values of one or more

variables, and search given these variables. The full solution

requires exhausting the exponentially-many possibilities, but

some of these possibilities can be eliminated if both good up-

per and lower bounds can be computed for the cases. Many

practical frameworks exist for combining branching with cut-

ting planes. For the implementation of the algorithms de-

scribed here, we use the Coin Branch and Cut (CBC) frame-

work with the Coin Linear Program Solver (CLP) simplex al-

gorithm to solve individual linear programs [34].

We outline the procedures used for finding new constraints

step-by-step:

2 Local spin-flip constraint finder — The simplest sets of

constraints involve C being the six plaquettes adjacent

to a given spin. With 2|C|−1 = 32 possible choices

of F , all possible constraint violations may be tested

around each spin, although this is typically unneces-

sary: it is often simple to identify which combinations

are most likely and only test those (for example, in the

case where all weights are currently integers, adding

the x = 1 cases and subtracting the x = 0 cases is

the only one of the 32 which can produce a violated

constraint). The simplest generalization of the local

spin-flip constraint finder is taking the plaquettes which

change when flipping multiple nearby spins. We have

tried all combinations of up to four spins. These help

the convergence of the ILP only marginally. Therefore

they are only included as a last resort check if all other

constraint finders fail.

2 Loop constraint finder — In analogy with the constraint

finders for the Ising spin glass presented in Ref. 32, one

can use all the finders used for loops in the Ising spin

glass on the loops of the tripartite sublattices. The ma-

jor difference is that each edge in the loop description

of the three-spin model contains two plaquettes. This

actually simplifies some aspects of the computation be-

cause all loops are guaranteed to have even length. Two

constraint finders, the spanning tree heuristic for odd

cycles (SHOC) and the shortest paths exact finder, odd-

cycle (OC) in Ref. 32 are particularly useful for our ap-

plication, although any constraint finder from the spin-

glass problems could be similarly ported to the three-

spin problem. Some of these constraint finders will nat-

urally produce some even-cycle violated “constraints”

which are not valid because all constraints must contain

an odd number of items in F . These are normally dis-

carded, but it is useful to store them for later use in the

genetic constraint finder below.

2 “Worm” constraint finder — All the constraint finders

for the ILP solution of the Ising spin glass work with

loops; this is not the only kind of constraints available

in the three-spin model, i.e., another class of finders is

also needed. One approach employed to find nonloop

constraints is to do a search by flipping adjacent spins

successively. At each step of the search, we keep the

set of flipped spins and the direction in which the set

of spins (the “worm”) is growing. Four possibilities are

considered: capping the worm and testing if it produces

a valid constraint, or letting the worm grow straight or

turn to the left or right. If the worm is to grow, the

weights of the two new plaquettes are recorded. For

each plaquette ℓ, if x(ℓ) < 0.5, one adds x(ℓ) to the

total weight so far, otherwise add 1 − x(ℓ). If the total

weight so far ever exceeds 1, the search may stop be-

cause no constraint found after this point can satisfy a

constraint in the form of Eq. (8).

2 “Genetic” constraint finder — If the above constraint

finders are insufficient, we have developed one addi-

tional powerful constraint finder. Any spin configura-
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tions may give valid constraints, and finding the tight-

est convex hull is very difficult, even with the highly-

effective constraint finders outlined above. Additional

constraints may be found by combining sets of plaque-

ttes from different constraint inequalities using a sym-

metric difference. In the case where the two constraint

inequalities contain at least one common variable, the

new inequalities are not simply a linear combination of

the two previous ones, so they exclude a different region

of parameter space and may be useful. It is particularly

helpful when the cases where |F | is even are kept in the

above constraint finders, because one is most likely to

find a constraint inequality with |F | odd when combin-

ing an odd case with an even case. In practice, these

often produce new constraint inequalities that are vio-

lated. We call this a genetic constraint finder because it

takes the population of currently known constraint in-

equalities, all of which might be satisfied by the current

configuration, and it generates new constraint inequal-

ities (better offspring) by combining two constraints at

random. This constraint finder would also allow one to

find new constraints in ILP solutions of the Ising spin

glass.

The exact technique presented here depends on finding

good constraint inequalities; the machinery for finding these

inequalities is more developed for quadratic programming, so

we have developed a partial reduction technique to take advan-

tage of this (the loop constraint finder) in addition to our con-

straint finders which work directly with the three-spin prob-

lem. This reduction is highly influenced by the geometry of

the problem, which makes it effective for finding good con-

straints. Buchheim and Rinaldi have also recently developed a

different technique which fully reduces a cubic programming

problem to a quadratic program [35]. This reduction does not

take advantage of known geometrical constraints, but it has

the substantial advantage that it would eliminate the need for

the more specialized constraint finders, allowing one to only

use quadratic programming techniques to solve the problem.

It would be interesting to compare these two methods for solv-

ing this ground state problems.

B. Local search optimization

We describe a simple generic local search algorithm. It

is similar to standard local search optimization methods

[36]. While it is not particularly effective for continuous

disorder distributions (in that case a variable-depth search

performs better), it works quite well for the case of discrete

disorder. This local search algorithm has been designed with

the three-spin problem in mind, but it is generic: it works

well for all the spin systems we have tried when they have

discrete energy levels, regardless of space dimension or the

value of p. It consists of a depth-first search where at each

step in the search a spin is test-flipped and the search may

overcome energy barriers up to some cutoff energy. It is most

easily implemented with a boolean recursive function. In

all, N searches are run, one starting from each spin in the

system, in random order, for a given cutoff search depth dmax

and energy barrier Emax to overcome. One of these searches

is implemented by calling, for site i, searchstep(0, i),
where this is the boolean function defined by

boolean function searchstep(d, i)
if d > dmax

return false

flip si ← −si

if E({si}) <= Emax

if E({si}) <= Et

return true

for each j which neighbors i
if searchstep(d + 1, j) returns true

return true

reset si ← −si

return false

When the function returns true, the energy has been lowered

by switching to a new spin configuration. When it returns

false, no change has been made to the spin configuration.

For bimodal disorder, this procedure typically finds the true

ground state in small systems of up to∼ 300 spins (L ≤ 18 in

two space dimensions), when dmax > L and Emax is given by

twice the smallest energy increment in the system. It is also a

useful search technique for the genetic algorithm described in

the next Section.

C. Genetic algorithm with local search

Genetic algorithms are useful heuristic techniques for solv-

ing optimization problems with complex energy landscapes.

A genetic algorithm consists of a population of solutions—

many distinct instances of the problem that eventually evolve

towards the solution of the optimization problem. One way

for a genetic algorithm to proceed is that at each step of the

algorithm parent instances are chosen and reproduced: the

offspring (or child instances) are generated by combining the

parent solutions in some way and the children are added to

the population. Some members of the population are elimi-

nated according to a fitness criterion to keep the population

size from growing.

In order for a genetic algorithm to be effective, there must

be an efficient mechanism for reproduction: child solutions

must be as fit as their parents, or they are likely to be elimi-

nated soon, although there must be enough variation such that

child solutions are not simply repeats of previous members

of the population. One effective reproduction mechanism for

spin systems is triadic crossover [37, 38]. Like in standard

crossover reproduction, the bits of two children are created by

swapping bits of two parents. In this case, which parent’s bit

goes to which child is decided by comparing one of the par-

ents with a third parent. When the spin values in parents 1

and 3 are equal, child 1 inherits the spin value from parent 1,

while child 2 inherits the spin value from parent 2. When the

spin values differ between parents 1 and 3, child 1 inherits the
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spin value from parent 2 and child 2 inherits the spin values

from parent 1.

Other than the Hamiltonian, which spatially couples the

spins, the triadic crossover technique does not use the spa-

tial structure (good regions of spins to flip are chosen solely

from their correlation among different instances) so storing

each spin as one bit and using bitwise operations on strings of

bits significantly decreases both the storage space necessary

and the number of operations necessary to perform the steps

of this algorithm.

Pal originally used the triadic crossover technique with only

very simple randomized local optimization techniques. Tri-

adic crossover has also been exploited in conjunction with

highly-sophisticated optimization procedures to find heuris-

tic ground states in the three-dimensional Ising spin glass up

to 143 [39]. We employ an intermediate approach: the local

optimization algorithm from the previous subsection is quite

simple but performs very well. At each step of the genetic

algorithm we perform a triadic crossover reproduction to pro-

duce two child instances from three randomly chosen parents.

Each of these child instances is then optimized by a single

local search sweep (starting once from each spin in the sys-

tem, with a depth cutoff of L). Then, each child is compared

against a randomly-chosen instance in the population with fit-

ness below the median (energy above the median of the whole

population). If the child’s fitness is better, it may replace this

randomly-chosen instance. To keep the population heteroge-

neous, we allow this replacement only if the child is not a

repeat of any current member of the population. No addi-

tional randomization is carried out in this procedure. This is

adequate for some cases (such as the Ising spin glass results

presented below), while in other cases it helps to carry out

parallel evolution starting from several different initial popu-

lations to increase heterogeneity.

We have produced a highly portable code which is effec-

tive for systems of up to several thousand spins (performance

is similar to that of the highly-sophisticated code in Ref. 39).

The simplicity of this technique makes it particularly conve-

nient to port to different types of interactions: we can use

the same code to optimize the two-dimensional and three-

dimensional Ising spin glass, the Sherrington-Kirkpatrick

(mean field) Ising spin glass, as well as for arbitrary p-spin

models.

D. Combining the techniques

While the exact solution of the three-spin problem using

the ILP solution is quite time consuming for more than∼ 300
spins, the cutting planes technique quickly provides an exact

lower bound on the ground-state energy which is often very

close to the true ground state. It is common to use heuris-

tic solutions as a part of a branch-and-cut technique [16]; in

cases of discrete disorder, in particular, the ILP lower bound

is quite commonly below the heuristic solution by less than

the energy of a single spin flip. The heuristic ground state

solution is therefore shown to be exact. For a system with 3-

spin interactions and 242 spins, we find that the solution can

be confirmed exact in a reasonable amount of time in 95% of

the samples. In the other cases, it is likely that the heuristic

solution is still correct, but we have not proven it with this

technique.

V. GENETIC ALGORITHM RESULTS

This algorithm is intended for use on p-spin models for any

p, but it is difficult to test its performance in these models be-

cause there are no exact techniques known for the optimiza-

tion of large instances of p-spin models. To study the perfor-

mance of the algorithm, we therefore use the two-dimensional

Ising spin glass with p = 2, followed by some tests on the

three-spin case. We then compute the ground-state energy per

spin E0/L2 for the disordered Ising model with p = 3 on a

triangular lattice.

A. Benchmark case: Ising spin glass (p = 2)

Fast algorithms for optimizing the two-dimensional Ising

spin glass with p = 2 are readily available [17, 28, 40, 41],

so we can find the parameters for which the genetic algorithm

does produce correct solutions with high confidence. We use

the Ising spin glass with bimodal interactions; bond values are

chosen to be 1 or−1 with equal probability. For simplicity, we

compare against cases where the ground state is equal to the

extended ground state [28]; these ground states are expected

to behave as the other ground states, so that this choice should

not affect the performance results significantly. For a given

population size Np, we find the probability that the genetic

algorithm gives an incorrect result, as shown in Fig. 5. For

Np ≥ N , with N being the number of spins, these errors are

very rare up to rather large system sizes; for Np = 4N , we

failed to find any errors for L < 50 in 2× 104 attempts, while

for Np = N , the same is true for L < 40.

For the two-dimensional Ising spin glass, the local search

algorithm is quite effective, so for small systems, it takes few

updates to find the true ground state. For larger systems the

number of updates necessary to reach the true ground state in

a two-dimensional Ising spin glass with p = 2 scales expo-

nentially (or at least as a power law with exponent > 6). In

Fig. 6, the number of reproduction steps necessary to reach the

true ground state is plotted in the cases where the true ground

state can actually be reached – when the true ground state is

unreachable for some samples, we exclude the run-time data.

B. The disordered Ising model with p = 3

Because the algorithm outlined in Sec. IV C is intended for

cases where p > 2, we investigate the disordered Ising model

with p = 3 on a two-dimensional triangular lattice. The pla-

quette energies Jijk are chosen independently to be 1 or −1
with equal probability. With the integer linear program tech-

nique detailed above, the genetic algorithm is seen to success-

fully find ground states with high probability up to L ≈ 24,
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FIG. 5. (Color online) Probability pe that the genetic algorithm de-

scribed in Sec. IV C gives an incorrect ground state for the two-

dimensional Ising spin glass with ±J disorder and p = 2. Increasing

the population size allows for more genetic variation, such that the

algorithm is able to find the true ground states of large systems. No

parallel runs are performed to further increase variation in this case.

Where the statistical error bars are not visible, they are smaller than

the symbols.
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FIG. 6. (Color online) Number of steps tc necessary to find the

lowest-energy state (in the cases where the true ground state is ac-

tually found) for the two-dimensional Ising spin glass with ±J dis-

order. If more than one error has occurred at a given system size L
(see Fig. 5), the solution technique is presumed ineffective at L and

the data point is omitted. The time required to find the correct result

scales exponentially with L for the system sizes studied, however

with a small enough prefactor to make these computations reasonable

up to L ≈ 50. Statistical error bars are smaller than the symbols.

but beyond this system size we have no exact check of the

technique. Performance tests are therefore much more dif-

ficult to perform. In Fig. 7 a histogram of the ground-state

energy probability is given for L = 36 for population sizes

Np = N, 4N, 8N . The fluctuations in the rate of occurrence

of each ground-state energy p(E0) show that the convergence

is not exact even at this moderate system size. However, the
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FIG. 7. (Color online) Ground-state energy E0 histogram showing

the fraction of samples at each energy, for the disordered three-spin

Ising model on a triangular lattice with L = 36. Variation among

the population sizes shows that the true ground state is not reached

in every case, although the centers of the distributions are very close

together and shapes of the distribution are similar.

distribution shifts only slightly as the population size changes,

implying that the distribution is converging to the exact result.

Finally, we estimate the ground-state energy density of the

two-dimensional spin glass with p = 3 on a triangular lat-

tice. The ground-state energy E0 [the lowest energy possible

in Eq. (2)] is computed for 400 samples for each of L = 12,

18, 24, 30, 36, and 42. Based on the convergence of the

ground-state energy histogram, the error is dominated by the

statistical fluctuations among samples: any systematic error

in the average is expected to be less than this statistical error.

To extrapolate to the thermodynamic limit we plot the energy

density at each system size L, E0/L2 as a function of 1/L and

take the limit as 1/L → 0, as shown in Fig. 8. Because the

system sizes are moderate, finite-size effects can be seen in

the data. In order to fairly extrapolate to L→∞, we perform

linear and quadratic curve fits, varying which system sizes to

include in the curve fits. Two example linear curve fits are

shown in Fig. 8: the solid line includes L ≥ 24, whereas the

dot-dashed line includes L ≥ 18. The quadratic fit, which

includes all L values shown, gives a similar value for the ther-

modynamic extrapolation. From these fits, we estimate that

the ground-state energy density in the disordered Ising model

with p = 3 on a triangular lattice is −1.499(3).

VI. CONCLUSIONS

We have shown that the optimization of a disordered Ising

model with 3-spin interactions is an NP-hard problem in two

dimensions, so that efficient exact algorithms are not expected

to exist, even for simple cases of glassy p-spin models. Opti-

mization of NP-hard problems is a difficult task: we map this

problem onto an integer linear program problem and can find

exact ground states using a branch-and-cut technique. This

works well in small systems, but takes time exponential in the
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FIG. 8. Ground-state energy density, E0/L2 of the disordered Ising

model with p = 3 on a triangular lattice. The plaquette interactions

are bimodally distributed with positive and negative interactions be-

ing equally probable. To extrapolate to the thermodynamic limit, we

performed linear and quadratic fits, as shown. Our estimate of the

ground-state energy density in this model is −1.499(3).

size of the system. To better address physical problems in p-

spin models, heuristic approaches are important. We present

an effective heuristic algorithm which combines a genetic ap-

proach with local search optimization to give ground states

with high confidence in systems of up to several thousand

spins. This algorithm is simple and general: our implemen-

tation can work for any geometry and with any spin interac-

tions. These techniques should prove useful for future work

on the low-temperature glassy dynamics of p-spin models.
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[33] V. Chvátal, Linear Programming (Freeman, New York, 1983).

[34] Coin-or, http://www.coin-or.org/.

[35] C. Buchheim and G. Rinaldi, SIAM J. Optim. 18, 1398 (2007).

[36] O. C. Martin, in New Optimization Algorithms in Physics,

edited by A. K. Hartmann and H. Rieger (Wiley-VCH, Berlin,

2004).

[37] K. F. Pal, Biol. Cybern. 73, 335 (1995).

[38] K. F. Pal, Physica A 223, 283 (1996).

[39] A. Hartmann, Europhys. Lett. 40, 429 (1997).

[40] G. Pardella and F. Liers, Phys. Rev. E 78, 056705 (2008).

[41] F. Liers and G. Pardella, Computational Optimization and Ap-

plications p. 1 (2010).


