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We study the propagation of quasi-discrete microwave@witn a nonlinear left-handed coplanar waveguide
coupled with split ring resonators. By considering thevate transmission line analogue, we derive a nonlinear
lattice model which is studied analytically by means of asinhiscrete approximation. We derive a nonlinear
Schrodinger equation, and find that the system supporghitbeinvelope soliton solutions in a relatively wide
subinterval of the left-handed frequency band. We perfarstesnatic numerical simulations, in the framework
of the nonlinear lattice model, to study the propagatiorpprbes of the quasi-discrete microwave solitons.
Our numerical findings are in good agreement with the areypredictions, and suggest that the predicted
structures are quite robust and may be observed in expemen

PACS numbers: 41.20.Jb, 42.65.Tg, 78.20.Ci

I. INTRODUCTION such as harmonic generation, nonlinearity-induced lraali
tion of EM waves and soliton formation, are possible. More

Artificially engineerednetamaterialiave unique electro-  SPecifically, relevant nonlinear phenomena [16, 17] and sol
magnetic (EM) properties, which are of great interest botHon formation h.ave alr_eady.been pred|cteq to occur |n.n9nl|n
tions [1-3]. In such media, the effective permittivitand per-  tion (see, e.g., Refs. [18-25]) or the TL description (seg, e
meability .« is such that, in certain frequency bands, the metaRefs. [26-28]). From the viewpoint of nonlinear TL experi-
material displays either a right-handed (RH) behawvios (0, ~ Ments, pulse propagation [29] and envelope soliton fownati
1 > 0) or a left-handed (LH) behaviok (< 0, x < 0); in [30] were recently observed (see also the review of Ref. [31]
other words, energy and wavefronts may travel in the sam@nd the relevant work of Ref. [32]); moreover, analytical ap
or opposite directions in the RH or the LH frequency re-Proximations, based on a continuum nonlln_ear Schrodinger
gion, respectively. Metamaterials with a LH behavior, ngme (NLS) equation, allowed the description of bright [32, 38] o
LH-metamaterials (LHM), exhibit negative refraction at-mi dark [32, 34] envelope solitons observed in the experiments
crowave [4, 5] or optical frequencies [6]. In this work, we studyguasi-discretemicrowave solitons

Apart from the effective medium description, there has alsghat may be formed in glanar LHM. Such structures have
been a large interest in studying equivalent transmissien | the advantage of being easily fabricated (by means of stan-
(TL) models for LHMs in the microwave frequency region. In dard mask/photoetching techniques), they are compact, and
such a case, the effective permittivitand permeability; are ~ are compatible with monolithic microwave integrated citgu
directly connected to the serial and shunt impedance of thét this point we should mention that, generally, metamateri
TL model; this way, so-calledzomposite right-left handed TLs, operating at microwave frequencies, are artificiagdin
(CRLH) TLs [7] may exhibit either a RH or a LH behavior consisting of a host line loaded with reactive elements.hSuc
depending on the frequency band. In practice, CRLH-TLsILs can be implemented by means of two main approaches:
may be implemented with the coplanar waveguide (CPW) [8]i) the so-called “CL-loaded approach”, where RH-TLs are
or microstrip technology [9]. Importantly, CRLH-TLs have loaded with series capacitances and shunt inductance$ [7—9
led to many microwave applications and devices, includingsee also Ref. [32] for results in a nonlinear case), andh@)
dual-band branch-line couplers, asymmetric backwardewavso-called “resonant-type approach”, where the TLs areddad
directional couplers, resonators, antennas, and so onf]-3 With sub-wavelength resonators, such as SRRs [35, 36]. TLs

On the other handyonlinearmetamaterials, namely struc- of the latter type exhibit controllable electrical chaeatg-
tures in whiche and . (or the serial and shunt impedance in tics, beyond what can be achieved in conventional TLs, im-
the respective TL models) depend on the EM field intensiflemented, e.g., in printed circuit boards (PCBs): the eize
ties (or voltages and currents in the TL models), have alssuch a TL is determined by the size of the resonators and, thus
been a subject of interest. Such structures may be imp|éhey can easily be miniaturized. Note that the fabricatiba o
mented by embedding an array of wires and split ring respertinent prototype device, based on a CPW with an array of
onators (SRRs) into a nonlinear dielectric [10, 11], or by in SRRs being etched at the bottom of the substrate, was first in-
serting diodes into resonant conductive elements (sudheas ttroduced in Ref. [35], while the corresponding TL model was
SRRs) [12-15]. Nonlinear metamaterials may prove usefupresented in Ref. [37].
in various applications, including “switching” the madri Here, we consider a nonlinear counterpart of the TL model
properties from left- to right-handed and back, tunablecstr of Ref. [37], with the shunt capacitors of the model being
tures with intensity-controlled transmission, negatigfac- nonlinear; such a nonlinear TL model may be implemented
tion photonic crystals, etc. Furthermore, fundamentaaf, by incorporating a nonlinear dielectric thin film in the stru
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FIG. 2: The unit cell circuit of the SRR-CPW model.

plemented by three appendices: the first details the parame-
ters of the SRR-CPW model, the second analyzes the method
of multiple scales used to obtain the relevant NLS equation,
while the third touches upon the continuum limit of the quasi
discrete approximation developed herein.
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a Il. THE MODEL AND ITS ANALYTICAL
CONSIDERATION
FIG. 1: (Color online) Top panel: Configuration of the SRRVZP
structure: the dielectric layer of relative dielectric stante,; and A. The nonlinear lattice model
width 1 — ho is linear, while the one of relative dielectric constant

er2 and widthhs is nonlinear. Bottom panel: Layout of the bottom W b ideri i . f the SRR
plate of the configuration, where the SRRs are placed. Shosvalla e start _y consi erl_ng a nonlinear version o t e B
relevant dimensions appearing in the equations of Appefdix CPW model introduced in Refs. [35, 37], as shown in the top

panel of Fig. 2: here, the structure incorporates a nonlinea

dielectric film, of relative dielectric constamt, and width

ho. The rest of the SRR-CPW configuration is identical to the
ture, whose dielectric constant may be controlled by a propepne of Refs. [35, 37]: one may observe the SRRs (of exter-
bias voltage (see, e.g., Refs. [38-40]). In our analysisi-st nal radiusR) at the bottom plate of the structure, which are
ing from the discrete lump element model of the CRLH-TL aligned with the slots (of widtl& and separation distand2)
under consideration, we derive a nonlinear lattice eqoatio gt the top plate of the structure. Notice that below we will
which is then treated in the framework of theasi-discrete  focus on the case where the nonlinear dielectric film is intro
(alias quasi-continuurhapproximation (see, e.g., Ref. [41] duced as shown in the top panel of Fig. 2; according to this
and Ref. [42] for a review): this way, seeking for envelopeconsideration, nonlinearity is only introduced in certale-
soliton solutions of the nonlinear lattice model, charézé®l  ments (j.e., shunt capacitors) in the equivalent discrate u
by adiscrete carrierand acontinuum envelopeve employ  cell model of the system. Nevertheless, below we will first
a multi-scale perturbation method to derive an effectiveSNL consider the case where the serial capacitors, associéted w
equation. The coefficients of this equation, which deteemin the SRRs, are also nonlinear; in practice, this can be done,
the type (bright or dark) of the envelope soliton, are foundla e g., by inserting diodes in the SRR slots [12—15].
itis shown that bright NLS solitons are supported by the SRR- The discrete element model (unit cell) of the considered
CPW structure in a relatively wide range of frequenciesiesi SRR-CPW structure is shown in Fig. 2. Hetlez andCr
the LH frequency band. Our analytical predictions are dmrro denote the equivalent per section inductance and capeeitan
orated by numerical simulations, which reveal (apartframt of the line, respectivelyl, andC, are the equivalent induc-
basic properties) the robustness of the predicted qusstete  tance and capacitance of the SRR, which is coupled with the
microwave solitons. transmission line, while the inductandg, is the equivalent

The paper is organized as follows: in Sec. Il we present thénductance of the shunt strips. The above elements are di-

SRR-CPW nonlinear structure and derive a nonlinear lattic&éectly connected with the physical parameters of the SRR-
model describing the evolution of the voltage across thicst CPW structure (see, e.g., Ref. [43] and details in Appendix
ture; then we employ the quasi-discrete approximation @ad d A).
rive the NLS equation describing envelope solitons thatean ~ Let us now consider Kirchhoff’s voltage and current laws
supported in this setting. In Sec. lll we present numericals  for the SRR (see thé,C combination in Fig. 2) equivalent
ulations in the framework of the nonlinear lattice model, re circuit, namely,
veal the propagation properties of the predicted quasielie ,
solitons, and compare the numerical results with the aiRalyt I @ -V, =V, — LR% 1)
cal predictions. We also propose changes in the configaratio *dt " " dt’
to increase the domains of existence of solitons. Finafly, i , d ( dJn> @)

Sec. IV we discuss our conclusions. Our presentation is com- “ CSE Vi1 = Vo= Lr dt
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The above equations, together with the auxiliary Kirchisoff In the above expressionf,. andf,; denote series and shunt
current lawi; + iy = J,,, lead to the following system for the frequencies, whilef; and fry denote characteristic frequen-

unknown voltage¥,, andU,,:

d2

LRW[CS(UH)UH - CS(Un+1)Un+1]
Lr
+ <1 + L_) (Un - U'n.+1) + (anl -2V, + Vn+1) — 07
®)
d2
LR@[C(Vn)Vn] — (V1 = 2V + Vig1)
L

whereC = 2Cr andL = L /2. At this point, in order

to further simplify Egs. (3)-(4), we need to make some con-

siderations concerning the nonlinear (voltage-depenaeant
pacitanceC = C(V,,) andC(U,,). As discussed abové;
is effectively filled by a nonlinear dielectric, whose dietiéc
constant may be controlled by a proper bias voltage,l5ay
(see, e.g., Refs. [38-

hand, the effective nonlinearity @, is due to the presence :

of a diode, biased at a constant voltage, Eay Assuming

that the voltaged/,, andU,,, respectively applied in the ef-
fective capacitorg’ andC, do not change significantly from

their relevant bias voltaggg, andU,, we can Taylor expand

C(V,,) andC(U,,) taking into regard only the lowest order

terms, namely,

CS(UB + Un) ~ CSO + Cé()Uru

(%)
(6)

whereCy = C(Vp) andCso = Cs(Up) are constant capac-

itances corresponding tdz and U, respectively, and sim-
ilarly C; = (dC/dV) |v,, Cy = (dCy/dU) |y, take
constant values depending on the particular formg&'6F)

and C;(U) (see also below). Next, substituting Egs. (5)—G _
(6) into Eqgs. (3)-(4), and introducing the scale transforma

tionst — wgpt [Wherew?, = (LCo)~ '] and{V,,,U,} —

cies related to the SRR and the RH part of the circuit, respec-
tively; the above frequencies read:

o = 1 L, 1 o= 1
se = LrC.’ T orICy

2\ L,C,
P
S IrCo.

1
2V LsCs’

The system of Egs. (7)-(8) is a model of two coupled non-
linear lattice equations, for the unknown voltagésandU,,,
describing the dynamics of the system. The analysis of the
above system by means of analytical (and/or even numerical)
techniques is a far more involved task and will be deferred
to a future study. In fact, we choose to consider a variant
of the above model, which is analytically (and numerically)

fs = (10)

more tractable, corresponding to the case where only the ca-
pacitanceC' (associated with the CPW structure) is nonlin-
ear, while the capacitancg, is linear (i.e., nonlinearity in the
considered SRR-CPW structure is only introduced by the in-

40] and discussion below). On the oth&Sertion of the nonlinear dielectric film, as shown in Fig. [h).

such a case, the parametefgoverning the SRR nonlinear-

ity) becomess = 0, and the system of Egs. (7)-(8) can be
decoupled, leading to a single nonlinear lattice equation f

the functionV;,, namely:

d*v, d2v, d?
g T+ WQ)W - ﬁQw(VnH Vo1 —2V3)
- /L252(Vn+1 + anl - 2Vn) + 'YQVn
d2vZ  qiv2
2 n n
=0. 11
T g =Y (11)

It is now useful, for the purposes of our analytical and nu-
merical considerations, to adopt experimentally relesait
rameter values. First, following Ref. [37], the parameters
lated to the CPW structure are chosen as follows. The waveg-
uide has a widtlh = 23.7 mm and a thicknegs; = 1.27 mm,
the central strip width i©) = 7 mm, the width of the slots is
1.35 mm, while the main — linear — dielectric substrate
(namely a Rogers RO3010), of width — ho = 1.268 mm,
has a relative dielectric constant = 10.2. The values for

[C5(2C0)~"[{ Vs, U, }, we cast the system of Egs. (3)-(4) into the SRR characteristics are also borrowed from Ref. [37] and

the following form:

d*v, 5 d*V?
di2 _ﬁ (Vn+1 +Vn—1 _2Vn)+Vn+ dr2
= 32(Un = Upt1), (7
and
d2 2 d2 2 2
ﬁ(Un_Un-ﬁ—l)—i_W (Un_Un-Q—l)"i_Uﬁ(Un _UnJrl)
+(7 = 1) (Vag1 + Vo1 —2V,) =0, 8
where the constant parameters are given by:
CoC. se s
o= ? 807 sz ’ :fRH’ = f ) (9)
COCSO fsh .fsh fsh

are assumed to take the following values. The internal eadiu
isr = 2.4 mm, the distance between the ringgis- 0.2 mm

and the rings width isv = 0.6 mm. As far as the nonlinear
dielectric film is concerned, following Ref. [40], we have as
sumed a strontium barium titanate (SBTO) paraelectric thin
film, of width hs = 2 um, and relative dielectric constant
€2 = 300. Using the above parameter values, we may deter-
mine (as per the relevant equations provided in Appendix A)
the values of the effective capacitances and inductanees in
volved in the SRR-based CPW structure. This way, we find
thatLg = 4.11nH,L =0.9nH, L, = 1.33nH,C, = 4.9 pF,
andCy = 2.44 pF. Notice that the value @, is also obtained
consistently from the effective voltage-dependent capace

of Ref. [40], namely:

1

cv
V) (bo +b1VB)+ b1V |’

=Co |1+

(12)
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whereC, = 1.5 pF, by = 0.49, b; = 0.25 V™!, while Vg = effective evolution equations (valid under certain coiodis
4.38 V is the constant (DC) bias voltage. According to the and for appropriate spatial and temporal scales) that ashmu
above expression, the values of the constant coefficients isimpler than the original models [45]. In our case, since our
Eq. (5) are given byy = C,[1+ (bo+2b1Vp) '] = 2.44pF  original model [cf. Eq. (11)] is actually a nonlinear dynami
[identical to the result of Eq. (A1)], and’é = Cobi(bo + cal lattice, we adopt the quasi-discrete approximationtdue

201Vp) ™2 = 0.147 pF/V. the fact that it takes into regard the discreteness of thieisys
According to the above, the frequencies in Eq. (10),this approach, allows for the description of quasi-diseest-
which are in the microwave regime, take the valyfgs =  Vvelope solitons (satisfying an effective NLS model), which

2.272 GHz, f, = 3.395 GHz, f, = 1.975 GHz, and are characterized by a discrete carrier and a slowly-vgryin
fru = 1.592 GHz; accordingly, the values of the normalized continuum pulse-like envelope. Notice that, alternagivehe
parameters, 1 andj appearing in Eq. (11) take the following could adopt a continuum approximation, i.e., take the centi
values: uum limit of Eq. (11) and analyze the latter in the framework
of a multi-scale perturbation scheme (as in Refs. [27, 3]3, 34
v = 0.66, p=0.58, p=0417. (13) However, as we will show below (and as was the case in
Thus, in our simulations (see Sec. II.A), we will use thewabo Ref. [32]), the quasi-discrete approximation is more agtr
values to investigate quasi-discrete microwave solitorieis ~ than the continuum one on providing estimates for the do-
setting, and also discuss possible modifications of theidons mains of existence of envelope solitons. Furthermore, the a
ered setup in order to study how relevant changes in paranglytically determined soliton profile and characteris{gsch
eter values affect the domains of existence of these naline as the center of mass and width) will be found to be in good
structures (see Sec. I11.B). Notice that for the above nometii ~ agreement with direct simulations obtained in the framéwor
choice of the physical parameters, the time unit assoctated Of the original lattice model of Eq. (11) — see Sec. lll.A helo
Eq. (11)isto = (27 fsn) " &~ 50 picoseconds, while the volt-  We seek for solutions of Eqg. (11) in the form:
age unitisvy = 2Cy/C,, ~ 33 \olts. ,
Before proceedirfg (fJurther, we should note the following. Vi = ZJW(X, T)e'" +c.c., (14)
As indicated by Eq. (5), in our considerations we take into =1

regard only the first order_ approximation in th¢V,,) depen- whereV; (¢ = 1,2, - --) are unknown envelope functions de-
dence, while this restriction may not be accurate enough fo{)ending on the slow scale§ = ¢(n — v,t) (whereu, is the
artificial nonl|near|t|e§ (mduged, e.g., by inserting tioear roup velocity, to be determined in a self-consistent mgnne
elements, such as diodes, in the SRR slots — see Ref. [13hq7 — (24 here,0 < ¢ < 1 is a formal small parame-

and [32] for relevant theoretical and experimental StudiBs  ter related to the soliton amplitude (see below). Additityna

spectively). Nevertheless, in our case, where the nortineaine functionexp(if,,), with 6, = wt — kn (with w and &

ity is induced by the insertion of the nonlinear dielectht  gjenoting frequency and wavenumber, respectively) desgrib

film (see Fig. 1), the considered approximation is quite reéathe carrier. In the above ansatz, the envelope (carriefis o

sonable: indeed, in our numerical simulations (see Sec. lllyjoysly continuous (discrete) in space; the results obthin

we use a value for the initial voltage equaltp = 0.5V the framework of the quasi-discrete approximation, may be

(in physical units). For such a value of the voltage (Simi-girectly viewed in the continuum limit (and would correspon

lar, and even smaller, values have also been used in relevagfihe continuum approximation) &f— 0; see also Appendix

experimental works [29-34]), it can be found tl&tly) = .

C(VB) + CyViy = (2.44 + 0.0735) pF = 2.51 pF, i.e.,~ 3% Substituting Eq. (14) into Eq. (11) we obtain the following

higher than the value af\, = 2.44 pF. If we had taken into  results (see more details in Appendix B). First, to or@ét)

regard the quadratic term in the Taylor expansion in Eq. (S)(linear limit), we derive the following dispersion relatio

namely%C0 V2, this term would take the valug00575 pF, N L

i.e., only= 0.2% higher than the above mentioned value of , 4 _ 2 2 s 2 My 2 2 2280 2

C(Vo) = 2.51 pF (that corresponds to the lowest order of W' =1y 45 sin 2)w A sin 2—1—7 0- 19

approximation). Thus, according to the above argumentk, an

given that the initial voltage valué, can also be controlledby  In Fig. 3 we plot the frequency = w /27 fs, (in GHz) as

other additional parameters stemming from our analysis [sea function of the wavenumbaér (in rad/cell). It is clear that,

parameters andn in Eq. (23) below], we will proceed by apart from the shown gaps (where EM wave propagation is not

analyzing Eq. (11) that takes into account only the first orde supported), there exist two different frequency bands (ahe

approximation in the”(V},) dependence [as per Eq. (5)]. propagation of EM waves is possible): a high-frequency (HF)
and a low-frequency (LF) band, with.395 GHz < f <
4.734 GHz and2.102 GHz < f < 2.272 GHz, respectively.

B. The quasi-discrete approximation and the NLS model It should be noticed that the lower (upper) cutoff frequency
of the HF (LF) frequency band is equal 3, (fs.) — see
In this Section, we will employ the quasi-discrete approx-Eq. (10). Obviously, in the HF (LF) band the product of

imation (see, e.g., Refs. [41, 42] and Appendix B). Generthe wavenumbek and the group velocity, = 0w/0k is

ally, this approach is a variant of the multi-scale perturba positive (negative) and, thus, energy and wavefronts trave

tion method, which is a well-known powerful tool to derive in the same (opposite) directions in the HF (LF) frequency
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FIG. 3: (Color online) The dispersion relation, showing fine-
quencyf (in GHz) as a function of the wavenumbler(in rad/cell).
Solid (blue) lines and dashed (red) lines correspond to thesie
discrete and continuum approximations [cf. Egs. (15) anb),(€-
spectively]. There exist a high-frequency RH band X895 GHz <

f < 4.734 GHz, and a low-frequency LH band, far102 GHz <

f < 2.272 GHz; the inset shows a magnification of the dispersion
relation in the LH frequency band.

region. Thus, in the LF band (which is clearly a LH fre-
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quency band) the considered SRR-CPW structure apparentfyfG. 4: (Color online) The dispersion coefficieRt(top panel) and

behaves as a LH transmission line; the dispersion relatio
in this LH frequency band, is shown in the inset of Fig. 3.

Note that in the continuum limit (see pertinent results, for

k — 0, in Appendix C) the LH frequency band under con-
sideration becomes slightly wider, i.e., it extends in thier-
val 1.976 GHz < f < 2.272 GHz; a similar effect is also
observed for the RH bandg (> 3.395 GHz).

Next, proceeding to the next orded(c?)] in the perturba-
tion scheme, we obtain the group velocity, given by:

_Ow B%sin k(w? — p?)
C Ok 2w — (1492 +482sin? E)w’

(16)

Vg

Finally, to orderO(e*), we obtain a nonlinear evolution equa-
tion for the unknown voltag&; (X, T'), namely the following
NLS equation,

i0rVi + POX Vi + QIVi*Vi =0, (17)
with dispersion and nonlinearity coefficienf3and(@ respec-
tively, given by the following expressions:

P Pw _ (1+ 72 +4p%sin® £ — 6w?)v?
Ok?  —4w3 +2(1 + 72 +4p8%sin® E)w
n 4B2v wsink + B%(w? — ,u.Q)QCIE)Sk’ (18)
—4w3 4 2(1 4+ 2 + 4p%sin” 3 )w
and
4w (v? — w?)(4w? — ~2
0 (4 — W) — 1)

[—2w3 + (1 4 42 4 42 sin? %)w]g7
where the functio = G(w, k) is given by:

G = 16w* —4(1 +~7?)w? + 7% —48%(4w? — p?) sin? k. (20)

ghe nonlinearity coefficienf) (bottom panel) as functions of the fre-
quency f (in GHz) in the LH band. Solid (blue) and dashed (red)
lines correspond to the quasi-discrete and continuum appes
tions, respectively. Note that there exist three charatiefrequen-
cies, namely a frequency where the dispersion coefficienian-
ishes, and two frequencies corresponding to poles of thieamity
coefficient@; on the contrary, in the continuum approximation, the
coefficient@ possesses a sole pole.

C. The quasi-discrete soliton solution

As is well known (see, e.g., Ref. [46]), the NLS equation
possesses soliton solutions, the type of which is goverged b
the signs of the dispersion and nonlinearity coefficients. |
particular, if PQ > 0, the NLS model supportsright soliton
solutions, while forP@ < 0 it supportsdark soliton solu-
tions. In the case under consideration, the signs of the coef
ficients P and @ for Eq. (17) depend on the frequency. In
Fig. 4 we show this frequency dependencé’adnd( in the
LH frequency band (the figure show? and @ both in the
guasi-discrete and the continuum approximation, cornegpo
ing to solid blue and dashed red lines, respectively). First
can readily be observed that, in the quasi-discrete apm@xi
tion, the dispersion coefficient (see top panel of Fig. 4dissat
flesP < 0 (P > 0) for f < 2.217 GHz (f > 2.217 GHz)
inside the LH frequency band. On the other hand, the nonlin-
earity coefficienty) (see bottom panel of Fig. 4), which has
two poles (forf = 2.116 GHz andf = 2.199 GHz) inside
the LH frequency band i§ > 0 for f € [2.102,2.116) U
(2.217,2.272] and@ < 0 for f € (2.116,2.199) (in GHz).
Thus, the producP@ takes the following signsP@Q > 0
for f € (2.116,2.199) U (2.217,2.272], while PQ < 0 for
f € [2.102,2.116) U (2.199,2.217) (in GHz); the above re-
sults are summarized and demonstrated in Fig. 5.

Here, it should also be noticed that in the continuum ap-



2972~ are respectively given by:
PQ>0
N\, fepaToHz Vo = 2eny/2[PQ™, (23)
— PQ<0
£ 2,202 - == aNgmmmoe-y 23,199 GAzZ| co = Vg + 2eKP, (24)

g PQ>0 Ky = k+eK, (25)
2152 1=2.116 GHz Qy = w+ e(Kvug + 2eQP). (26)
"""""" PAD” TN T . . - .
210205 1 15 2 25 3 We conclude this Section by mentioning the following. The

Wavenumber k (rad/cell) presented approximate soliton solutions in the LH fregyenc

band have a unique feature as compared to ones that can be
FIG. 5: (Color online) The signs of the product of the dispmrsind ~ formed in the RH frequency band (i.e., f8r395 GHz <
nonlinearity coefficientsl® and@, for various subintervalsofthe LH f < 4.734 GHz — see Fig. 3). This can be understood by
frequency band within the framework of the quasi-discrgtgraxi-  the fact that while in the RH regime the frequency increases
mation. The solid (blue) curve corresponds to the dispensitation  jith the wavenumber, in the LH regime the transmission line
(see insetin Fig. 3); the dashed (black) linegat 2.116 GHz and oy hipjts “anomalous” dispersion, and the frequency deeea
f = 2.199 GHz indicate the location of the poles of the coefficiént with the wave number, as seen in Fig. 3. Thus, the solitons

(see bottom panel of Fig. 4), while the onefat 2.217 GHz shows . -
where the coefficienP vanishes (see top panel of Fig. 4). Notice in the LH frequency band are actualiackward waveswith

that for PQ > 0 (PQ < 0) the NLS model supports bright (dark) 9roup and phase_velocities that are ant_iparallel to eaottoth
soliton solutions. (see also discussion and relevant experimental obsengdtio

Refs. [31, 32]).

proximation the nonlinearity coefficied) has only one pole

(at f = 2.21 GHz); as a result, this approximation estimates . NUMERICAL RESULTS
a broader interval wherein bright solitons can be formed: as
may be seen in Fig. 4 (see also Appendix C), bright soli-
tons can be formed in the intervafs € [1.976,2.203) U
(2.21,2.272] (in GHz). While this pole arises close to the , ,
point where a pole emerges in the quasi-discrete approxima- L€t US now proceed to study numerically the evolution of
tion, the other pole of the latter seems to be missed by the préh€ quasi-discrete solitons presented in the previousosect
sumably less accurate genuinely continuum approximatiorl the framework of the fully discrete model of Eq. (11).
In any case, the above investigation shows that bright solifi'st, we will study the latter, taking parameter values as
tons (corresponding t®Q > 0) are easier to be observed Per Ed. (13) (recall that these were borrowed from Ref. [37],
in the SRR-CPW structure: first, unlike dark solitons (cor-WhICh reported realization of this — as characterized here —
responding toaPQ < 0), bright solitons are supported in a “regular” SRR-CPW structure) and in the next Section, we

wide subinterval of frequencies inside the LH frequencytan will study experimentally _reIeva.nt modification; in the SRR
on the other hand, they can be formed for carrier frequenCPW structure, so as to investigate how pertinent parameter

cies sufficiently far away from frequencies where the disperchanges affect the domains of existence of quasi-disooéte s
sion coefficientP vanishes or the nonlinearity coefficieqt NS _

has resonances (see Fig. 4). This is where we expect this In the r_esults belqw, we have fixed the parameters related
type of approximations to be most relevant in describing thd® the soliton’s amplitude ag = 1 ande = 0.02, which cor-

fully discrete dynamical system. Thus, below, we will con-€Spond to an initial value of the voltage equalto= 0.5V

fine our considerations to the case of bright soliton sohgio (Similar, and even smaller, values have also been used in ex-

of Eq. (17); a single soliton solution can be expressed in th@eriments [29-34]). Furthermore, we have fixed the initial
following form (see, e.g., Ref. [46]): soliton position taX,(0) = 1/2, and we have varied the fre-

guencyf and the soliton wavenumbéf (recall that the latter
Vi(X,T) = nsech[n(X — Xo(t))] expli( KX —QT)], (21)  sets the initial soliton momentum). The chosen intervals of
, . . , , variation have beerf € [2.11,2.18] U [2.21,2.25] (in GHz)
where n is the soliton’s amplitude (and inverse width), 5nqf [0, ). Those values of lie in the LH regime with

Xo(t) = Xo(0) + VT is the soliton centerXy(0) isthe ini-  poih p ~ andQ < 0. Aring of N = 1001 cells (and

tial soliton locationV” is the soliton velocityX' = V' denotes  nerigdic boundary conditions) has been chosen for the simu-
the soliton’s wavenumber, while = (1/2)(K? —n?)isthe  |5ions.

soliton's frequency. The above expression can be used 0 ap-, order to characterize the outcome of the simulations, and
pr:ox'm"’.“e }he ur:jknown volt?glj:él(t).m Eg. (11), in terms of compare analytical and numerical results, we have defined
the original coordinates, as follows: two diagnostics. The first one is the evolution of the center

Via(t) & Vg sechlen(n — cot — no)] cos(Kon — Qot), (22) (alias pseudo-center-of-mass),

A. Analysis of the “regular” SRR-CPW structure

whereny is the initial soliton position, while the soliton’s am- X(t) = Yon nV? 27)
plitude V,, velocity ¢y, wavenumbelK, and frequencylg, o >, V2



and the second one is a measure of the width (alias pseudc >y 00 0.02 NG
width), defined as o Analytical
1500 oor 0O
> n2V2
W(t) = | =2—" — X2(¥). 28 - c
(0 =\ 5 - X0 (28)  cxm 0
According to the results of the previous Section, anal{tica 0 oL 001
forms for these quantities can readily be found in the cantin 0 o -0
ous setting [i.e., approximating the soliton as per Eqg.){21) =200 200 ' ' -100 N 0 100
1 5 454,
X(t) = Xo(O) —|— Cot = 5 + Cot, (29)
0
W(t) = —2\/7% - (30) - Yt
i x ™ 2
Below we provide the outcome of some typical simulations 20 43
(see Figs. 6-9) through density plotsidf, the spatial profile
of V,, att = 2000, as well as the time evolution of the cen- a5 55X

ter of massX (¢) and the width parameté¥ (¢t). Generally, 0 10 Z(DtID A0 0 10 2(I)t300 a0

as we show below in more detail, the direct numerical inte-

gration of Eq. (11), with initial conditions borrowed froiné  FIG. 6: (Color online) Top left: density plot of the time eutibn of
analytical expression of Eq. (22) (for= 0), have revealed YV, obtained numerically. The top right panel compares theytioal
the following: the quasi-discrete bright solitons exisjéed, and numerical profiles of;, at¢ = 2000. The bottom panels show
in the predicted frequency regions inside the LH frequenc;ﬁhe time evolution of the center of mass (left) and the widdydos-
band: furthermore, their form, as well as the evolution eftth tic (right); in both cases, the soli_d line co_rrt_asponds torthmerics
center and width, can be well approximated by pertinent ana@nd the dashed line to the analytical prediction. The patersesed
lytical expressions provided above, especially in casesravh aref = 2.15 GHz andK = 0.

Y p p » €SP y

the carrier frequency is chosen sufficiently different froem-

tain characteristic frequencies (i.e., where the disparso-

efficient P vanishes or the nonlinearity coefficie@thas res-

onances).

Before proceeding with the description of our results, wethe resonance of the nonlinearity coeffici€pt In this last
should also note the following. Although most of our simula- case, itis clear that although quasi-discrete brightcoditex-
tions were performed for relatively large normalized tires ist, the agreement between analytics and numerics becomes
typically of order oft ~ 10 — given our time normalization, Worse (especially as concerns the estimation of the soliton
the physical unit time (set by the frequengy, = 3.39 GHz) ~ Width parameter shown in the bottom right panel of Fig. 8).
is very small, namely, = (27 f,,) "' ~ 50 picoseconds (see This can be attributed to the proximity to the resonance @her
Sec. IL.A). In fact, since all characteristic frequenciéshe  We expect the conditions for the quasi-discrete approxonat
System (See Eq (10)) are in the microwave regime' all Charaéo be violated. Note that similar results have also been ob-
teristic times are less than a nanosecond, rendering lomg si tained for the upper (second) allowable regime inside the LH
ulations extremely time-consuming. Nevertheless, in a paPand [f € (2.217,2.272] (in GHz)].
ticular case where the condition above is fulfilled, we have
performed a few extremely long simulations (with normal- Finally, using parameter values corresponding to the case
ized time horizons of = 107, corresponding to a physical shown in Fig. 6 (i.e., fof = 2.15 GHz andK = 0), we have
time of the order of a millisecond), finding that the agreemenperformed a very long simulation, up to normalized times
reported below is still upheld in these runs. This indic#ites ¢ = 107 (physical time~ 1 ms) in order to check numerically
our predictions concerning soliton formation and robussne the soliton robustness; details are shown in Fig. 9. As far as
may be valid for experimentally relevant times. the width parametdi is concerned (bottom right panel of the

Let us expose our results starting with Fig. 6, which showdigure), it is clear that — despite its fluctuations — it posess
the case of a quasi-discrete soliton with carrier frequencyn almost constant mean value which (although not captured
f = 2.18 GHz and zero initial momentuni{ = 0, which  precisely by the analytical approximation) indicates et
evolves as a stable object over long times. In this case, thiaitial pulse does not spread out. Furthermore, the top pan-
agreement between analytical and numerical results pertai els of the figure — and particularly the snapshots of the pulse
ing to the soliton profile, but also to the evolution of the profile att = 107 — clearly indicate that the soliton persists
center of mass and width diagnostics, is very good. On thas a stable object up to this long simulation time (where the
other hand, Fig. 7 shows the evolution of a soliton with alsonumerical integration was stopped). These results, asasell
f = 2.18 GHz but with nonzero soliton momentuif, = = the ones presented above, indicate that quasi-discrétiersol
(with similar conclusions), while the soliton of Fig. 8 cesr can be formed in SRR-based CPW nonlinear structures, and
sponds tof = 2.11 GHz (for K = 0), which is close to may propagate over experimentally relevant times.
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FIG. 7: (Color online) Same as Fig. 6 but fér= 2.15 GHz and
K =m. FIG. 9: (Color online) The soliton of Fig. 6 is evolved until=

2 x 10°. All the panels are similar to that of Fig. 6 except for the
top right. In this panel, snapshots of the solitort at 2 x 10° and

2000 i x10_3 001 - Nurencal t = 107 are compared to the initial condition of the simulation in
o Analytical order to examine its robustness under a very lengthy timkeigon.
> Y
150 0.005 3
o>
&
+1000 0 QQQ
¢ structure or of the SRRs.
500 Nevertheless, since the considered SRR-CPW structure has
> already been optimally realized in practice [35, 37], one
020 0 20 should consider changes that keep the basic charactestic
n the configuration as close to its experimental realizatisn a
2 possible. We thus choose to keep the characteristics of the
0 “main” dielectric substrate (characterized by the paramset
= hy ande,1), as well as the transverse widthof the CPW
x 2 structure fixed. Furthermore, we also keep fixed the charac-
< teristics of the nonlinear dielectric (with parametégsand
€r2), Since — according to our considerations — they do not
€10 20 30 40 Bl5—0 30 30 40 significantly affect th_e linear response of the system. _Cm th
t t other hand, we consider certain changes that would arige fro

a slightly different realization of the considered setuppar-
FIG. 8: (Color online) Same as Fig. 6 but ffr= 2.11 GHz and tjcular, we will study the changes in the the widthof the
K=0. slots for the CPW structure, and changes of the geometric
characteristics of the SRRs, namely their radiuor fixed
width w and spacing! between the SRRs). As we will show
B. Modifications of the “regular” SRR-CPW structure below, these changes may improve the nonlinear SRR-CPW
configuration, in the sense that they lead to an increasesof th

In the previous section, we have studied in detail quasiwidth of the LH frequency band, and also increase the “cen-
discrete solitons of Eq. (11) that can be formed in the SRRIral” frequency band (i.e., in between the resonances of co-
CPW structure for parameter values given in Eq. (13). Heregfficient@) where bright solitons can be forme#@ > 0).
we will study different scenarios arising from modification Other changes in the parameter values have also been stud-
of either the CPW structure or the SRR geometry. As it isied, but the results will not be exposed here, as they lead to
clear from Fig. 1 (and also the discussion in Sec. II.A andesults qualitatively similar to the ones presented above,
Appendix A), there is a considerable degree of flexibility as€ven worse (i.e., they lead to decrease of the widths of the
concerns the choice of the parameter values that are irvolvd-H frequency band and/or the domains of existence of bright
in the determination of the parameters: and3: indeed, one ~ solitons).
may consider different characteristic widths, hs of the di- A relevant study along the above lines has led to the fol-
electrics (and values of the relative dielectric constants,.o lowing results. First, for a fixed value of the distance betwe
thereof), or different geometrical characteristics of @RW  the slots,D = 7 mm, we have changed the value of the slot
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9 0.25 (top left panel), but it persists for much longer times, ngmm to
E) t = 107 (see snapshots in the top right panels). Once again, the
Hk:_) 0 width parameted?” (bottom right panel) possesses an almost con-
Q stant value, which indicates the soliton-like nature ofittiigal pulse.
o 025
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FlGHz similar to the ones in Fig. 4. One should notice, howevet, tha

the parametef) exhibits an almost flat profile in the central

FIG. 10: (Color online) Top panel: Same as Fig. 5, but for & slo frequency banq WIIIP.Q > 0. - . .

width G = 1 mm. Middle and bottom panels: Same as Fig. 4 (for Numer_|cal simulations shown in Fig. 11 for bright soliton

G = 1 mm). In this case, the values of parameterg: and 3 are  Propagation at the frequengy = 2.15 GHz lead to results

given in Eq. (31). gualitatively similar to the ones presented above (cf. F&gs
and 9). In particular, once again, the soliton is quite rbbus
up to long times (see the snapshots correspondingt® x

width G in the interval.7 mm —1.5 mm (recall that originally
G = 1.35 mm). Such changes result in different values:pf

of the effective circuit model parameters;, Cr, Ly, Cs and

~, p and g [cf. EqQ. (10)]. AsG is decreased (increased) in

the aforementioned interval, the parametgi@nd ., are also
decreased (increased), while the paramgisrincreased (de-

105 andt = 107 in the top right panel of Fig. 11), while the
width parametedV (bottom right panel of Fig. 11) has an
(j = 0,1,2) in Eq. (A4) and, accordingly, to different vaiues almost constant mean value (close to the value correspgndin
to the analytical estimate) indicates that the initial pudses
L., which, in turn, provide different values for the paramster ot spread out, thus featuring genuine soliton charatitesis
Next, keeping fixed the parameter values of the CPW struc-
ture as in Sec. I.A (in this cagé = 1.35 mm), we have stud-
ied changes in the SRR geometry, namely the radiasd

creased). These changes result in a decrease (increabe) of width w of the SRRs (for fixed spacing between the SRRs,

LH frequency, but also lead to an increase (decrease) of thé = 0.2 mm). First, in the case with fixed = 0.6 mm,

“central” frequency band where bright solitons can be fatme the increase (decrease) of the SRR radiusin the interval

As an example, in the top panel of Fig. 10, we show the LHL.8 mm to 2.6 mm — results in a decrease (increase) of the

frequency band, as well as the regimes for soliton formationvalues of parametersandy, while the parametes takes the

in a case corresponding @ = 1 mm, for which the charac- approximately constant value 6f~ 0.48. Accordingly, it is

teristic parameters of the configuration take the values: found that the width of the LH frequency band is increased
(decreased), while the central frequency regime wherébrig

8 =0.48. (31) solitons can be formed is increased (decreased) as well. As
an example, for = 2.6 mm (recall that = 2.4 mm for the

As seen in this figure, the LH band extends frai995 GHz to  “regular” SRR-CPW structure), the LH frequency band ex-

2.245 GHz (i.e., it is decreased by 11%), while the central tends from2.106 GHz up t02.343 GHz, i.e., it has increased

frequency region, where bright solitons exist, extendsnfro ~ 39%. Furthermore, in the same case, the central frequency

2.103 GHz t02.201 GHz (i.e., itis increased by 15%). No-  region where bright solitons can be formed is also increased

tice that the functional form of the parametétand@ shown by ~ 29%, with the frequency dependence of coefficiént

in the middle and bottom panels of Fig. 10, respectively, arédeing similar to the one shown in the bottom panel of Fig. 10.

v = 0.61, w=0.54,
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In this case, the parameteyrsy and3 take the following val-  were in the microwave regime: under any choice, the physi-
ues: cal time unit is less than a nanosecond and, thus, simutation
corresponding to a few seconds would correspond to compu-
~ = 0.69, w=0.57, B =0.48. (32) tation times of order 0of0'°. This difficulty, particular to the
microwave structure under consideration, did not allowaus t
Numerical simulations for bright soliton propagation inisth be definitively conclusive as concerns the robustness of the
regime (e.g., we have performed long evolution runs for thesolitons for realistic experimental times. Neverthelegsy
frequencyf = 2.181 GHz) lead to results qualitatively similar long simulations (corresponding to computing tiraes07 or
to the ones presented above (cf. Figs. 6, 9 and 11). ~ 1 millisecond in physical units) have shown that the pre-
dicted quasi-discrete microwave solitons are quite roaodt
do not appear to be modified during their propagation. This, i
IV. DISCUSSION AND CONCLUSIONS turn, allows us to conjecture that these nonlinear wavesstru
tures have a good chance to be observed experimentally in the
near future.

We have also presented a study showing how certain phys-
cal parameters of the configuration may affect the restuits.

We have studied analytically and numerically quasi-
discrete microwave bright solitons that can be formed in the
left-handed frequency band of a split ring resonator (SRR}

based coplanar waveguide (CPW) structure. We have used tlﬁ)(?mcular, we have focused on two cases, namely the effects
nonlinear transmission line analogue of this structurego d ©f decrease of the width of the slots in the CPW structure,

rive a nonlinear lattice equation governing the voltagessr and _O.f the increase of the SRR radius. These choices led to
the fundamental (unit cell) element of the system. This latnodified values of the parameters of the modeH(, andy),

tice equation was then treated analytically, by means of th§uch that the width of the left-handed frequency band or/and
guasi-discrete approximation. The latter is a variant ef th Fhe domain of existence of quasi-discrete bright sol_ltams a.
multi-scale perturbation method, which takes into regaed t increased. This way, we have also proposed certain experi-

discreteness of the system by considering the carrier (envc%ne_nta”y relevant changes in the considered configuration,
lope) of the wave as a discrete (continuum) object. This ap_acmtate 0bserva'uo_n of SO|.It0nS-In fgture experiments. .
proach allowed us to derive, in the small-amplitude approx- There are many interesting directions for future studies. |
imation and for certain space- and time-scales, a nonlinedhat regard, first, we should mention that in the analysisef t
Schrodinger (NLS) model for the unknown voltage envelopeconsidered SRR-CPW structure we have actually excluded the
function. The NLS model was then used to predict formationSRR from nonlinearity. It would be interesting to see what
of bright solitons in certain sub-regions of the left-hadéie-  happens if SRR is also subject to nonlinear modulation: this
quency band. Importantly, the conditions for soliton forma is certainly a very challenging direction, in terms of the de
tion were found to depend on thiiscretenessf the system: vVelopment of both ana}lytical and nume.rical techniques, due
in fact, if the continuum — instead of the quasi-discrete — apt0 the form of the pertinent models, which are coupled non-
proximation was used, then the allowable (for soliton forma linear lattice equations [see, e.g., Egs. (7)-(8)]. Suablies
tion) frequency bands would be significantly modified. Fur-would lead to potentially interesting and relevant resedts-
thermore, the quasi-discrete approximation predictscesfe Cerning nonlinear wave propagation in such settings, ab wel
such as the appearance of resonance frequencies in the coe®#® the design of nonlinear left-handed transmission liaed (
cients of the effective NLS model, which suggest optimum opJ€lated structures).
erating frequency bands for the observation of quasi-diecr ~ On the other hand, we note that following the analytical
solitons. Generalizing these observations, one should exprocedure adopted in this work, it would be possible to ana-
pect that the adopted analytical approach, based on thé quatyze soliton formation in relevant left-handed structurésr-
discrete approximation, should provide more reliable ltssu thermore, employing this analytical approach, one could — i
concerning conditions for soliton formation in left-hadde principle — derive self-consistently [a(¢*) in the perturba-
structures. tion scheme] a generalized NLS model, incorporating higher
Numerical simulations performed in the framework of the order dispersive and nonlinear effects (see, e.g., Ref).[24
nonlinear lattice equation, with initial conditions bomed ~ Such a higher-order NLS model could also predict soliton
from the effective NLS equation, revealed that the (bright)propagation but, in this case, the soliton characteristmsid
solitons may indeed be formed in the frequency sub-intervalbe modified by the presence of the higher-order effects. ,Thus
predicted in the analytics. Furthermore, it was shown that ian interesting challenge would be the derivation of such a
the carrier frequency is chosen to be sufficiently far fromreh higher-order NLS model, the study of its soliton solutiond a
acteristic frequencies (where the dispersion and noniilyea & comparison of such findings to direct simulations.
coefficients of the effective NLS model vanish or have reso- Finally, while the theory and simulations presented in this
nance poles), the numerically found soliton profile and charwork assume ideal components, for which excellent perfor-
acteristics (center of mass and width) are in very good agreamance can be observed, the reality to be met in possible ex-
ment with the analytical predictions. Although the numeri- periments might deteriorate the performance by unavo#abl
cal simulations were performed for relatively large conaput dispersion in component parameters. The effect of disasder
tion times, the corresponding physical times were small duexpected to be quite significant in nonlinear settings: a,fa
to the fact that all the characteristic frequencies of thetegyp  its paramount importance has been demonstrated even in the
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simpler case of linear resonant systems (see, e.g., RéJ. [47In the above expressions, ~ 0.54 is the fractional area of
and, thus, the presence of disorder may drastically affect t the slots occupied by the rings [37], whilgsgr and Csgr
results in nonlinear structures. In that regard, a studyowf h denote, respectively, the inductance and capacitanceeof th
much the considered system (or other relevant ones) is-senS$RRs, and are given by:

tive to disorder is certainly a relevant and important dicat

for future studies.

2 Lern = (4 ) [M _2}
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Appendix A: The physical parameters of the SRR-CPW

structure
d sinh (%)
The elements’r, L and L, associated with the CPW Rs = o Ko = T (A9)
structure are connected with the physical parameters of the sinh [T}
system by means of the following equations (see, e.g.,
Ref. [43]):
Cr = 2¢ K (ro) +eo(ep1 — 1) K lr1)
K'(ko) K'(k1) . .
Appendix B: The perturbation scheme
+ eoler2 —€r1) K(r2) (A1)
T T KI(K'/Q) I
Lopw As mentioned in Sec. 11.B, the quasi-continuum approxi-
Lr = (1 + AL ) Lepw — Ls, (A2) mation is a variant of the method of multiple scales [45]. We
P thus introduce, at first, a set of new independenttemporal va
L, = chpw +2L,. (A3) ablest, = ¢"t (n = 0,1,2,---), and acordingly expand the
2 derivative operatod, aso; = 9y, + €0y, +- - - . Next, we seek

In the above expressions, is the dielectric constant of vac- Solutions of Eq. (11) in the form:

uum, K and K’ are the complete elliptic integral of the first
kind and its complementary function, respectively [44 th

: . = tn)en + ugy (t,)e? 4. 4 cc., (Bl
arguments of these functions are given by: Vi = eurn(tn)e™ + Etzn(tn)e™ + - + e, (BL)

D sinh (ITL;) . whered,, = wty — kn. Then, we substitute Eq. (B1) into
K= piog T T Tabna] (=1,2), (Ad)  Eq. (11) and employ a continuum approximation for the un-
sinh [T} known envelope functions,,, namelyu,, — u(x), where

x = na anda being the lattice spacing (the latter parame-
and, finally,L,, and Lcpw = 4€0(30m)2K'(ko)/K (ko) de-  ter does not appear in the results below, as one may readily
note, respectively, the inductance of the shunt strip aa@éth rescalexr asx/«). Furthermore, similarly to the introduction
fective inductance of the CPW structure (note that the formeof the temporal variables, we introduce the set of the spatia
takes the approximate valdg, ~ 0.36 nH [37]). As far as variablesr,, = €"x (and, thusg, = 0., + €0, +---). To
the values of the SRR parameteks,andC,, are concerned, this end, equating coefficients of like powersepfve obtain

they are given by the following expressions [37]: the following (first three) perturbation equations:
I 2F2LQCPW (1+ chw/éle)2 (A5) A
" Lspr 1+ F?L2pw/2L,LsrR’ O(e) = Lous =0, (B2)
2y . T T — NT.0,2
C. — LizrCsrr 1+ F?Lipyw/2L,Lsrr 2 (A6) O(e”) €0u2 + €1U1 = ]YOUM (B3)
s 2F2 L2y 1+ Lopw /4L, : O(e?) - Lius + Laus = No[ujus), (B4)



where the operators are given by

R 34 5 o k 2
Ly = at4+<1+'y + 432142 sin® )8t2
+ 48717 sin? g +77 (B5)
R o4 AN
Ly = 2(1 48%p°
L= adan T < 97 457" sin® >6t06t1
2 0°
+ 2if smkatgaxl (B6)
R 4 9 o /{ 2
Ly = 211 4
2 atgat1 + ( + 92 + 45%p? sin? >6t1
2 ° 22 9
4if°sink ———— + 2i ink— B7
+ Zﬂ St 8t06t161‘1 + Zﬂ pos 8,%17 ( )
4 2
No = 2442 (88)

6_756* "F’Ya—t%.

Itis clear that the first-order pertubation solution to EBBY
reads:
uy = Vi(zy, 22, ,t1,t2,- ) exp(ifl) + c.c., (B9)
whereV; is an unknown complex functiod, = wty — kxo,
while w andk satisfy the dispersion relation of Eq. (15). Next,
substituting Eq. (B9) into Eq. (B4), we obtain the following

results: first, the non-secularity condition:

2 o 2_ 2
ovi B2 sink(w? — p?) 4 0, (B10)
oty 2w3 — (1 + 92 + 4% sin® £)w | 021

suggests thalt, = V1 (X, x, -+ ,t2, -+ ), whereX = z7 —

vgt1 andvy is the group velocity of Eq. (16), now consistently
determined; second, we obtain a uniformly valid solution fo
the second-order perturbation equation, in the form:

4w?(y2 — 4w?) _
o exp(i20) + c.c., (B11)

Ug =

12

whereg(w, k) is given by Eq. (20) and the dependence:of

on higher-order scales has been omitted. To this end, substi
tuting Eqgs. (B9)-(B11) into Eq. (B4), and using the variable
X =21 —vyt1 = e(n —vyt) andT = ty = €t, we derive
from the non-secularity condition &t(e*) the NLS Eq. (17).

Appendix C: The continuum approximation

In the continuum limit (fork — 0), the dispersion relation
[cf. EqQ. (15)] is reduced to the form,

wh— (1 +~42 4+ B%kw? + B2k +42=0.  (C1)
The group velocityy, = dw/0k, is now given by
2 2 _ 2
vy = Bok(w” — %) (C2)

2w3 — (1 4+ 42 + f2k2)w
Finally, the expressions for the dispersion and nonlingad-
efficientsP and(@ in the continuum approximation read:
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