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The transient electron temperature in a weakly ionized femtosecond laser produced air plasma
filament was determined from optical absorption and diffraction experiments. The electron temper-
ature and plasma density decay on similar time scales of a few hundred picoseconds. Comparison
with plasma theory reveals the importance of inelastic collisions that lead to energy transfer to
vibrational degrees of freedom of air molecules during the plasma cooling.
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FIG. 1. Experimental setup to probe the transient diffraction and absorption of a fs pulse produced air plasma. The inset
shows the diagram for the absorption measurements.

I. INTRODUCTION

Femtosecond pulse induced filaments have gained a great deal of interest in the past two decades (see Refs. [1–3]
for recent reviews). Applications range from lightning control and triggering of discharges [4], to remote sensing [5],
to few-cycle pulse generation [6, 7]. Filaments are initiated when laser pulses self-focus to intensities large enough
to produce multi-photon ionization. The resulting plasma produces a radial refractive index variation (negative lens)
counteracting the self-focusing, which leads to filamentation over distances that can exceed several tens of meters
depending on the energy and duration of the optical pulse [8] . To take full advantage of the potential these plasma
channels offer for many applications their properties including the transient behavior must be known. Two key
parameters of laser plasmas are the electron density Ne and electron temperature Te. Plasma densities produced by
filaments in air are on the order of 1018m−3 to 1024m−3 [9–11]. Previous measurements obtained the electron density
from the electric conductivity of the plasma [9, 12], from interferometry measuring the optical phase shift introduced
by a plasma channel [10], and by optically probing the plasma induced diffraction [11, 13–15].

More recently, a spectroscopic approach was applied to characterize fs laser filaments in argon gas [16] and air [17].
The plasma density was derived from the Stark broadened fluorescence line width, while the electron temperature
was determined from relative line strengths. Typically these techniques average over several nanoseconds (the shorter
of the detector integration time and the fluorescence lifetime). Simulations of kinetic processes in air plasmas suggest
substantial changes of the electron temperature and electron density on time scales of a few hundred picoseconds [18].
While the transient behavior of the electron density in air plasmas was measured with a fs probe in Ref. [13] the
transient electron temperature has not yet been determined with sub ns temporal resolution.

In this paper we determine the transient electron temperature and electron density in an air plasma with ps
resolution by measuring the real and imaginary parts of the time dependent refractive index and applying the Drude
model. The experimental results are compared to plasma kinetic theory that takes into account elastic and inelastic
collisions with ionic and neutral molecules.

II. TRANSIENT ABSORPTION AND DIFFRACTION

A schematic diagram of the experimental setup is shown in Fig. 1. An air plasma channel was produced by focusing
the pulses from a 40-fs, 1-kHz, 2-mJ Ti:sapphire oscillator-amplifier system using an f = 1 m lens. The beam profile
was Gaussian with a beam radius of about 8 mm. The transient absorption and diffraction of the plasma were
measured by a time delayed, weak probe pulse.

A pump-probe technique similar to that described in Ref. [13] was applied to measure the transient diffraction. For
higher sensitivity and to employ lock-in detection we replaced the CCD camera with a pinhole and photodiode to
monitor the negative lens (real part of the dielectric constant) produced by the plasma. The plasma diameter was
estimated from the plasma emission to be d ≈ 200 µm [full width at half maximum (FWHM)]. As will be explained
below the probe beam diameter at the position of the plasma was 2d. L is the distance from the probe’s beam
waist to the plasma. In addition, we avoided delays at which index changes due to molecular alignment revival are
expected [19]. Since our probe diameter was about 0.4 mm each data point represents an average over about 2 ps,
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FIG. 2. Measured plasma absorption as a function of the delay (data points). The solid line is a modeling result with an
initial Gaussian Ne and initial flat-top Te profile (see section IV). The error bars represent the combined contribution from the
absorption and input power measurements (relative error of the latter ∼ 1% ).
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FIG. 3. Measured diffraction signal |∆S| as a function of the delay after subtracting an offset of about 0.3% produced by
heating of the gas (data points). The solid line is a modeling result with an initial Gaussian Ne and initial flat-top Te profile
(see section IV). The inset shows 1/|∆S(t)| (data points), which is clearly nonlinear, together with the modeling results (see
section IV). The error bars represent the combined contribution from the diffraction and input power measurements and from
the far-field approximation.

further reducing the effect of molecular rotation.
For the measurement of the absorption (imaginary part of the dielectric constant), the probe beam was focused

through the plasma center (L = 0) and the transmitted beam was fully collected by the photodiode with the pinhole
removed. To increase the interaction length with the plasma, probe and pump included an angle of β = 30 degrees
(see inset of Fig. 1). The measured absorption (in percent) as a function of delay is depicted in Fig. 2. All results
are plotted for delays τ > 35 ps to avoid complications in the data interpretation resulting from pulse overlap and
non-equilibrium electron distributions.

Figure 3 shows the measured diffraction signal |∆S| as a function of delay. The signal recovers on a time scale of
a few hundred ps, similar to what was observed previously [13, 15]. It is interesting to note that the signal recovery
is not complete after 1.3 ns and that there is a small signal (∼ 0.3%) even for negative delays (note that ps negative
delays actually correspond to a delay of one ms relative to the previous excitation pulse). We attribute this signal,
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which decays on a time scale of a few ms, to a temperature increase of the air. The thermal time constant for heat
dissipation can be estimated with τT = ρaircpd/(4h) ≈ 3 ms [20], where ρair ≈ 1 kg/m3 is the air density (at 1600 m
above sea level), cp ≈ 1 × 103 J/(kg K) is the mass specific heat capacity, and h ≈ 15 W/(m2K) is the heat transfer
coefficient. This signal disappeared at repetition rate of 333 Hz.

To relate the diffraction results to the refractive index change we modeled the signal using Fraunhofer diffraction.
The distance from the plasma to the detector was at a finite distance of about 1 m. To assess the accuracy of the
far-field results, we performed a numerical analysis based on Fresnel diffraction. The results are within 1.5% of those
obtained using the far-field approximation. We show here the semi-analytic expression for the Fraunhofer case because
they show explicitly the parameter dependencies.

The diffraction geometry and the coordinate system used are shown in Fig. 1, with z (x) being the propagation
direction of the probe (pump) and y being perpendicular to both the filament and probe beam axes. The pinhole in
front of the detector selects the zero spatial frequency (ρ = 0) component of the product of the probe field, E(x, y)
and the complex transmission function of the filament, exp [iφ(x, y)]:

S(ρ = 0) = S0 = |F.T.{E(y) exp[iφ(y)]}|2

=
C

w2

∣

∣

∣

∣

∫

exp

[

− y2

w2
+ ik

(

y2

2R
+

∫

ñ(y, z)dz

)]

dy

∣

∣

∣

∣

2

. (1)

Here w and R are the beam radius and the radius of the wavefront of the probe, respectively, at the position of the
filament, C is a constant, k = 2π/λ is the wave vector, and ñ is the (complex) refractive index. Because of the larger
transverse density gradient, the plasma causes diffraction with respect to ”y” only. The beam change with respect
to the ”x” coordinate is that of an undisturbed Gaussian probe beam. For weakly ionized plasmas, as is the case
here, the plasma induced index change at y = z = 0 is |∆ñm| ≪ 1. From the Drude model it can be shown that the
imaginary part of the index nI is much smaller than the real part ∆nm for electron densities Ne < 1024 m−3 and its
contribution to the diffraction signal can be neglected.

Under these conditions the relative signal change is proportional to the index change

∆S(L, w0) =
S0(∆nm) − S0(∆nm = 0)

S0(∆nm = 0)
≈ Q(L, w0)∆nm, (2)

where the calibration factor Q depends on the waist w0 of the probe beam, the distance L between the probe waist
and the plasma center, and on ∆n(y, z). The latter is controlled by the electron density distribution. For example, for
flat-top and Gaussian transverse electron density profiles of FWHM d =200 µm, Q ≈ 910 and Q ≈ 520, respectively,
for our experimental geometry (w0 = 54 µm, L = 20 mm and a beam M2 value of 2.1). For Gaussian profiles and
|∆nm| ≪ 1,
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where w2 = w2
0

[

1 +
(

LλM2/πw2
0

)2
]

. Inserting Eq. (3) into Eq. (2) and neglecting the much smaller ∆n2
m term, we

obtain for Q

Q ≈
2ℜ

(

ÃB̃∗

)

∣

∣

∣
Ã

∣

∣

∣

2 , (4)

where Ã =
√

π/ (1/w2 − i k/(2R)) and B̃ = i (π/
√

2 ln 2)kd/
√

2/w2 − i k/R + 8 ln 2/d2.

Because the excitation beam is Gaussian and the plasma is weakly ionized, it is reasonable to assume that the
initial electron density can be approximated by a Gaussian profile. Because of the density dependent recombination,
the electron density at later times will approach a flat-top profile. For a rough estimation the scale factor Q can be
used to obtain the time dependent refractive index changes ∆nm(t) and the electron density Ne from the diffraction
signal assuming constant (flat-top) profiles as will be explained in the next section.
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FIG. 4. Plasma density Ne(r = 0) as a function of delay. The data points are obtained from the diffraction experiment (data
points in Fig. 3) assuming time-invariant flat-top electron density radial distributions. The solid and dashed line are from
the model ( see section IV) and represent initially flat-top and Gaussian Te(r) distributions, respectively. The initial electron
distribution was Gaussian. The two curves are almost identical.

III. DETERMINATION OF THE INITIAL PLASMA DENSITY AND ELECTRON TEMPERATURE

According to the Drude model of a plasma (see for example [21]), the dielectric constant can be written as

ǫ = 1 −
ω2

pe

ω2 + iωνe
= ñ2 = (n + inI)

2, (5)

where ω is the probe laser frequency and ωpe =
√

Nee2/ǫ0me is the plasma frequency. Here e and me are the electron
charge and mass, respectively, ǫ0 is the permittivity of free space, and νe is the electron collision rate. If we introduce
the critical electron density Ncr = ω2meǫ0/e2 ≈ 1.74×1027 m−3 for which ωpe = ω, and use the fact that νe ≪ ω and
Ne ≪ Ncr in an underdense plasma, we can approximate the real part of the refractive index by n ≈ 1 − Ne/(2Ncr).
This yields for the plasma induced (real) index change as a function of the plasma density

∆n(t) ≈ −1

2

Ne(t)

Ncr
. (6)

If we make the approximation that the shape of the electron density profile does not change in time we can estimate
Ne(r = 0) at different delays using Eqs. (2) and (6) and the data points from Fig. 3 for flat-top and Gaussian profiles.
The data points in Fig. 4 show the normalized electron density assuming a flat-top profile for Ne. The initial plasma
density is about Ne0 = 1.3 × 1023 m−3 and Ne0 = 2.3 × 1023 m−3 for flat-top and Gaussian density profiles with
FWHM widths d = 200 µm, respectively.

The absorption coefficient is proportional to the imaginary part of the refractive index change, α = 2ωnI/c. Using
Eqs.(5) and (6) and the previous approximations it can be written as

α(t) ≈ νe(t)Ne(t)

cNcr
, (7)

where c is the speed of light. For α ≪ 1, the relative absorption change experienced by the probe is

A(t) =
E0 − E1

E0
=

∫

α(t, z)dz, (8)

where E0 and E1 are the input and output probe pulse energies, respectively. To extract the electron temperature
we need to evaluate the electron collision rate νe contained in Eq. (7). The collision rate can be written as the sum
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of the electron - ion and the electron - neutral collision rates νe = νei + νen [18]. The electron - ion collision rate in
weakly ionized plasmas is given by

νei(t) = cei ln Λ(t)
Ne(t)

T
3/2
e (t)

, (9)

where cei = e4/
(

6ǫ0
2
√

2π3mekB
3
)

, kB is the Boltzmann constant and ln Λ is the Coulomb logarithm [21]. The

Coulomb logarithm is weakly dependent on Ne and Te and is typically used as a constant on the order of 10. The
uncertainty of its value increases as 1/| lnΛ| [22]. We determined ln Λ from a fit to the experimental data (see next
section) and use here ln Λ ≈ 4.

The electron - neutral collision rate can be expressed as [18]

νen(t) = Nnσen(kB/me)
1/2T 1/2

e (t), (10)

where Nn ≈ 2.0×1025 m−3 is the density of neutral particles, which can be regarded as time independent in a weakly
ionized plasma, and σen ≈ 1 × 10−19 m2 is the collision cross section [18].

Using Eqs. (7) to (10), the measured absorption A, and the initial Ne, we can estimate the initial electron tem-
perature. Assuming a flat-top temperature profile we obtain Te0 ≈ 3900 K for Gaussian Ne0(r) while for Gaussian
Te0(r) and Ne0(r) profiles Te0(0) ≈ 5400 K. The uncertainty of the initial temperature range is about 8%. In the
next section we will apply a kinetic plasma model taking into account the spatial evolution of the electron density
and temperature profiles during relaxation to extract Te(t) from the measurements. The model will also allow us to
discuss the evolution of Te(r, t) and Ne(r, t) transverse profiles.

IV. MODELING AND DISCUSSION

Even though the ionization potential of O2 is considerably lower than that of N2 (12.1 eV versus 15.6 eV [21]), for
typical pulse intensities in filaments, there can be a non-negligible density of nitrogen ions [23, 24]. During our time
scale of interest, the plasma density changes due to the recombination of electrons with ions and the electron and
ambient gas temperature change due to elastic and inelastic collisions. The rate equation for the electron density can
be written as

d

dt
Ne(t) = −keiN

2
e (t). (11)

With the assumption that kei is constant a solution to Eq. (11) is Ne(t) = Ne0/(1 + keiNe0t). This expression
was previously used to deduce kei ≈ 1.2 × 10−13m3/s from time-resolved diffraction measurements [13]. For a more
accurate description of the recombination process the Te dependence of the recombination rate must be taken into
account, which causes kei to be a function of time. For a temperature range from 80 K to 11000 K a rate constant
of kei(Te) ≈ K0/

√

Te[K] m3/s was deduced from measurements of the electron recombination with both O+
2 and

N+
2 [25]. The coefficients K0(O

+
2 )≈ 3.3 × 10−12 and K0(N

+
2 )≈ 6.1 × 10−12 are similar but not identical. We will

consider in our model the electron temperature dependence of kei and use K0 as a fit parameter, which contains the
information on the average relative density of singly ionized nitrogen and oxygen molecules.

A constant temperature of Te = 1500 K was used in the expressions for kei for O+
2 and N+

2 to fit Ne(t) data from
diffraction experiments in [15]. This temperature can be considered as an average temperature within one ns after
excitation.

The relaxation of the electron temperature is controlled by elastic and inelastic collisions between electrons and
ionic and neutral molecules:

d

dt
Te(t) =

2me

mi,n
(νei + νen)(Ti,n − Te) + V (Te). (12)

Here mi,n (Ti,n) is the mass (temperature) of the ionized and neutral molecules, which are assumed to be equal, and
we also do not distinguish here between oxygen and nitrogen. The introduced errors are small. The first summand
describes the energy transfer due to elastic collisions according to the Landau-Spitzer model [21]. The second term
takes into account inelastic collisions exciting molecular vibrational degrees of freedom.

The energy transfer rate to vibrational degrees of freedom of O2 and N2 molecules can be written as

3kB

2
V (Te) = − (Te − Tb)

Te

√

kBTe

me
Nn

[0.79σN2
(Te)ǫN2

+ 0.21σO2
(Te)ǫO2

] , (13)
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FIG. 5. Normalized electron temperature Te(r = 0) as a function of delay. The solid and dashed line are from a fit of the model
to the experimental data and represent initially flat-top and Gaussian Te(r) distributions, respectively. The initial electron
distribution was Gaussian. The dotted line was calculated with the same parameters as the solid line but without inelastic
collisions.

where σx is the inelastic collisional cross section for collisions with nitrogen and oxygen molecules and ǫN2(O2) =
0.29 eV (0.20 eV) is the vibrational energy quantum of N2 (O2) [21]. The experimentally obtained inelastic collision
cross sections can be approximated analytically by

σN2(O2) = a2
0 exp

[

4
∑

k=0

bk ln

(

TekB

e

)k
]

, (14)

where a2
0 = 2.8 × 10−21 m2, b0 = 2.172, b1 = 1.799, b2 = −0.6725, b3 = 0.0954, b4 = −0.00565 for N2, and

b0 = 2.465, b1 = 0.825, b2 = −0.2325, b3 = 0.0194 and b4 = −0.00094 for O2 [26].
We assume that the temperature of ions and neutral molecules (background temperature) is equal with an initial

value of 300 K. This background temperature changes according to

d

dt
Tb(t) = −3kBNe

ρcp

dTe

dt

∣

∣

∣

∣

elastic

. (15)

During our time scale of interest, only elastic collisions lead to an increase in the molecules kinetic energy (tempera-
ture). The vibrational degrees of freedom excited through inelastic collisions exchange energy with translational de-
grees of freedom (VT relaxation) slowly and the corresponding time constants are much greater than a few ms [27, 28].

The rate equations (11), (12) and (15) are solved numerically. We take into account the radial (r) dependence of the
temperature and electron density and compute the diffraction and absorption. We assume that initially the electron
density Ne(r) is Gaussian and use the corresponding initial value of 2.3× 1023 m−3. The initial electron temperature
is controlled by the kinetic energy of the electrons after multi-photon ionization of O2 and N2. It should be noted
that inverse bremsstrahlung has only a minor effect on the electron energy for sub 100 fs pulses. In the limit where
multi-photon absorption dominates, the photon energy rather than the intensity profile I(r) controls the initial Te(r),
which is then best described by a flat-top profile. Although for our laser and beam parameters tunneling ionization
cannot be neglected we will assume this initial temperature profile with the previously estimated Te0 = 3900 K. To
evaluate the impact of this assumption we will compare the results to an initially Gaussian temperature profile later.

Free parameters are the Coulomb logarithm and K0, which are determined from a simultaneous best fit to the
diffraction and absorption measurements. For ln Λ = 4 and K0 = 2.1 × 10−12, the modeling results and the mea-
surements are shown in Figs. 2 and 3 showing good agreement overall. For comparison we also evaluated the case of
an initially Gaussian temperature profile Te(r) with a peak value of Te0 = 5400 K. The relaxation of Ne and Te at
the center of the plasma is depicted in Figs. 4 and 5. It is obvious that the decay curve Ne(t) is less sensitive to the
assumed initial radial distributions of the plasma parameters than Te(t).

The electron temperature averaged over 1 ns for an initially flat-top Te profile is in good agreement with the
1500 K used in [15] to define a temperature independent rate kei. It should also be mentioned that if we use separate
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FIG. 6. Calculated electron temperature and density profiles at different delay times for two sets of initial profiles (x = y = 0).
(a) flat-top Te0(r), Gaussian Ne0(r), (b) Gaussian Te0(r) and Ne0(r).

recombination equations for O+
2 and N+

2 with the published kei coefficients [25], the initial ion ratio becomes a free
parameter. With NO2+/NN2+ ≈ 3.3 we obtain a similarly good agreement with the experimental results. This ion
ratio is what one can expect for our experimental conditions using the ionization rates from [24].

The inelastic collisions exciting molecular vibrations play a major role in the relaxation of the electron temperature
as can be seen in Fig. 5. In plasmas produced in atomic gases, there are no vibrational degrees of freedom and
consequently the corresponding rate V (Te) = 0. This can explain the relatively high average electron temperature
observed in a fs pulse produced argon plasma of Te ≈ 5500 K [16]. Since the measurement was based on relative
emission line strengths from a Boltzmann plot the reported temperature was an average over about 10 ns (integration
time of camera).

Figure 6 shows the normalized radial distributions of Te and Ne at three different time delays for initially Gaussian
and flat-top Te(r) with Gaussian Ne(r) profiles. The electron temperature at the plasma center relaxes faster compared
to the outer regions. This is a result of the dependence of the elastic collision term in Eq. (12) on the electron density
through νei. The electron density flattens because of the bimolecular nature of the recombination process.

The start point of the simulations refers to the experimental data at a delay of 35 ps. If we extrapolate the initial
values to zero delay the electron temperature would be about 20% higher and the electron density about 50% times
larger than the values mentioned before.

Since the experiments were carried out with a 1-kHz pulse train the average ambient temperature of the volume
immediately surrounding the plasma is higher than room temperature (300 K). A simple heat diffusion model estimates
a temperature increase of a few ten degrees with a FWHM of the distribution of D ≈ 1 mm. Changing the ambient
temperature by 50 K does not affect the previously derived results noticeably. The aforementioned 0.3% diffraction
signal at negative delays is a result of this temperature increase and the heat deposition by the preceding single pulse
in a cylinder of diameter d.

The classical description of the dielectric constant by the Drude model using effective collision rates is an approxi-
mation. The electron - electron collision rate [26] at the center of the plasma is between 3.3× 1013 Hz and 5.5× 1013

Hz for delay times between 35 ps and 1200 ps. The sum of the rates for ion - ion and ion - neutral collisions [29] is
between 6 × 1011 Hz and 1.0 × 1013 Hz in the same delay range. The corresponding time scales to reach equilibrium
are therefore less than 10 ps. The model assumes electrons and ions with well defined energies rather than distribution
functions. The electron and ion densities therefore must be considered as averages.

V. SUMMARY

A time-resolved optical method and a kinetic plasma model were developed to determine the transient electron
density Ne and the temperature Te distribution in a fs pulse produced air plasma. The electron temperature decays
on a time scale of a few hundred ps. Initial electron temperatures of 3900 K were obtained for initially flat-top
temperature and Gaussian electron transverse density distributions with initial peak values of 2.3 × 1023 m−3. The
experimental results were modeled with plasma kinetic theory taking into account elastic and inelastic collisions
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between electrons, ions, and neutral molecules, including their vibrational degrees of freedom as well as the radial
dependence of electron temperature and density. The results indicate the importance of molecular vibrational degrees
of freedom in the cooling of the electron gas. While the initial values for Ne and Te depend on the assumed initial
transverse profiles the decay transients are rather independent.
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