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We show that rotating shallow water dynamics possesses an approximate (adiabatic-type) pos-
itive quadratic invariant, which exists not only at mid-latitudes (where its analogue in the quasi-
geostrophic equation has been previously investigated), but near the equator as well (where the
quasigeostrophic equation is inapplicable). Deriving the extra invariant, we find “small denomina-
tors” of two kinds: (1) due to the triad resonances (as in the case of the quasigeostrophic equation)
and (2) due to the equatorial limit, when the Rossby radius of deformation becomes infinite. We
show that the “small denominators” of both kinds can be canceled. The presence of the extra in-
variant can lead to the generation of zonal jets. We find that this tendency should be especially
pronounced near the equator. Similar invariant occurs in magnetically confined fusion plasmas and
can lead to the emergence of zonal flows.
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I. INTRODUCTION

To introduce the topic of the present paper, let us start with two different physical situations, which are known.
The first is the inverse cascade of energy in two-dimensional hydrodynamics [1, 2]. The inverse cascade is related

to the presence of an additional (compared to the 3D hydrodynamics) positive quadratic invariant — enstrophy.
The second situation [3] is the appearance of longer waves in sea-wave turbulence: The length of typical waves on

the sea surface is often much bigger than those generated directly by the wind and increases with time (a process
known as wave aging). The sea waves generated directly by wind produce—via nonlinear interaction—longer waves,
the latter produce even longer waves, and so on. This process is a manifestation of the inverse cascade [4]. As
in the first situation, the inverse cascade is related to the presence of another (in addition to the energy) positive
quadratic invariant, in this case the wave action. The later invariant holds because the gravity wave dispersion forbids
3-wave interactions, and so the main resonance interaction involves 4 waves and conserves the total wave action. The
conservation of the wave action is similar to the conservation of the total number of molecules in rarefied gas (when
the main interactions are binary collisions). However, unlike the number of molecules, the wave action is only an
approximate invariant, whose conservation fails in higher order interactions (e.g., 5-wave interactions are possible,
and they fail to conserve the wave action).

The present paper considers wave dynamics in rapidly rotating geophysical fluids. An integral part of this dynamics
is the emergence of zonal jets [5], see also the collection of papers [6]; the stripes on Jupiter make a famous example
[7]. Zonal jets are, as well, observed in the dynamics of magnetized plasmas (which is mathematically similar to
geophysical fluid dynamics); they appear to act as transport barriers in tokamaks [8]. Plasma regimes with zonal
jets become an integral part of modern controlled nuclear fusion installations, in particular, ITER (International
Thermonuclear Experimental Reactor).

It is interesting to see if the emergence of zonal jets can be related to the existence of an additional invariant (similar
to the two examples given above). This is the main motivation of the present paper.

It is believed that zonal jets emerge as a result of Rossby wave interactions, see [9, 10]. The nonlinear dynamics of
Rossby waves in the beta plane is often modeled by the quasigeostrophic equation (see e.g. [11])

(∆ψ − α2ψ)t + βψx + ψy∆ψx − ψx∆ψy = 0 (I.1)

for the stream function ψ(x, y, t) of the horizontal fluid velocity (u, v) = (ψy,−ψx). Here, α is the inverse Rossby
radius of deformation, and β is the beta parameter characterizing the variation of the Coriolis force. The subscripts
x, y, t denote partial derivatives, and ∆ is the two-dimensional Laplacian.

It has been shown that the quasigeostrophic equation (I.1) indeed possesses an approximate (adiabatic-type)
quadratic invariant, which requires the inverse cascade to transfer energy not just to large scales but specifically
towards zonal flow [12–16].

However, in several physical situations (including Jupiter) zonal jets are well pronounced near the equator, while
equation (I.1) is not applicable there. It is a major challenge to see if the approach to zonal jets based on the extra
invariant works near the equator as well.

To account for the equatorial region, we consider the rotating shallow water dynamics in the beta-plane (equatorial
or mid-latitudinal)

ut + u ux + v uy − f(y) v = −g Hx , (I.2a)

vt + u vx + v vy + f(y)u = −g Hy , (I.2b)

Ht + (H u)x + (H v)y = 0 , (I.2c)

e.g. [17, 18]. This system of equations describes the evolution of the horizontal fluid velocity (u, v) and the fluid
height H (flat bottom is assumed). The function f(y) is the Coriolis parameter, and g is the acceleration due to
gravity.

Considering perturbation expansions (see below) for the system (I.2), we find “small denominators” not only related
to the resonance triads [like in the case of (I.1)], but also related to the equatorial limit (f → 0). We show that “small
denominators” of both kinds can be canceled. The possibility of such cancelation is a remarkable property of the
rotating shallow water system. We are unaware of any other system with similar attributes, even remotely.

Once we pass from a single equation (I.1) with constant coefficients to a system (I.2) of three equations with
y-dependent coefficients, we also face two other problems:

1. There could be resonant interactions and energy transfer between the Rossby waves and the inertia-gravity
waves.

2. The translational symmetry is broken.



3

The first problem is resolved due to a general fact [19] observed in a variety of rotating fluid systems: The coupling
constant in the triad interaction between a slow mode and two fast modes vanishes in the equation for the slow mode
(in our case, the slow is the Rossby mode, and the fast is the inertia-gravity mode). The second problem makes
perturbation expansions significantly harder; in particular, the Rossby mode needs to be refined (Section IVA).

We show that in the limit of weak nonlinearity, the system (I.2) possesses an additional approximate (adiabatic-
type) invariant, which is described in Sec. II. Before its formal derivation in Sec. IV, we demonstrate how the presence
of this invariant makes the inverse cascade anisotropic and steers energy toward zonal flow (Sec. III A). Even more
specific features, observed in some experiments, are in agreement with the proposed picture:

• Near the equator, the emergence of zonal jets is more pronounced than it is at mid-latitudes (Sec. III B).

• In the opposite limit (when typical length of waves excited by forcing is much greater than the Rossby radius
of deformation), the extra invariant just says that the energy should transfer into the sector of wave vectors k

with polar angles > 60◦ (Sec. III C).

During the last half century, several ideas were proposed to explain the emergence of zonal jets through the dynamics
of weakly nonlinear Rossby waves, e.g., random wave closures [9], wave kinetic equation [20], modulational instability
[21], and almost resonant interactions [22]. Since these approaches consider the weakly nonlinear regime, we believe,
they should be intimately related to the presence of the extra invariant. For the reasons discussed above, it is crucial
to see that this invariant is present not only in the quasigeostrophic equation, but in the shallow water system as well.

To explain often powerful equatorial zonal jets, a deep approach was developed over the past 40 years; it derives the
formation of zonal jets from the instability of the equatorial mixed Rossby-gravity waves (see [23, 24] and references
therein). Since this approach is also based on small nonlinearity, the presence of the extra invariant remains relevant.

Some proposed scenarios are based on a direct, nonlocal transfer of energy from small scales to large scale zonal
flows. Our theory is applicable in both cases—when the cascade is local or nonlocal; however, the relation between the
invariant and zonal jets is more important when the cascade is local. Then the invariant provides crucial bookkeeping
of the energy transfer towards zonal jets. In this case it is the weak turbulent inverse cascade, not the particular form
of the initial instability, that controls the geometry of any emergent large-scale feature. Our theory then provides
a continuously operating dynamical mechanism specific to the emergence of zonal jets, as observed in numerical
simulations.

Concerning Earth’s equatorial oceans and atmospere, we mention the following issue that merits future investigation.
Very near the equator (within a couple of degrees), there is evidence [24] that a significant role is played by the
dynamical terms neglected in the “traditional approximation” (in which the horizontal component of Earth’s angular
velocity is ignored, producing the standard beta plane approximation; see [25]). Our theory ignores such terms, so
it is presently unknown if the extra invariant still exists under these conditions. The present work, at minimum,
extends the domain of validity of the extra invariant from mid-latitudes to immediate vicinity of the equator, where
the quasigeostrophic equation is already inapplicable, but the “traditional approximation” still remains valid.

We should also mention several mechanisms that connect zonal jets with strong nonlinearity, when nonlinear terms
(in dynamic equations) are similar in magnitude to linear terms (see, e.g., [26–28]). Note that situations where linear
terms are negligible compared to the nonlinear terms are unrelated to the formation of zonal jets because only the
linear terms are anisotropic (the phenomenon of spontaneous emergence of anisotropy is not relevant here because
the emerging jets are always observed to be parallel to the equator). As long as the linear terms are significant, even
if not dominant, the extra invariant should still play an important role.

II. EXTRA INVARIANT

It is well known that (I.2) conserves the following quantities:

⋄ The energy, see equation (IV.8) below.

⋄ The infinite set of potential vorticity integrals

∫

F

[
vx − uy + f(y)

H

]

H dxdy, (II.1)

where F is an arbitrary function of a single variable. These conservation laws are related to the advective
conservation of potential vorticity [17].
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In particular, for F ≡ 1 one obtains the total mass
∫
H dxdy; its conservation implies the existence of time-

independent space-averaged fluid height H̄ , such that

∫

(H − H̄) dxdy = 0. (II.2)

⋄ The x-momentum
∫

uH dxdy, (II.3)

which is related to translational symmetry in zonal direction.

We will see that the dynamics (I.2) adiabatically conserves three more quantities.
Before we describe them, let us eliminate some dimensional parameters by rewriting (I.2) in terms of the fractional

relative height

h(x, y, t) =
H − H̄

H̄
; (II.4)

and rescaling

ct→ t, (u/c, v/c) → (u, v), f(y)/c→ f(y), where c =

√

gH̄. (II.5)

Then the shallow water dynamics (I.2) takes the form

ut + uux + vuy − f(y)v = −hx, (II.6a)

vt + uvx + vvy + f(y)u = −hy, (II.6b)

ht + ux + vy + (hu)x + (hv)y = 0, (II.6c)

where u, v, h are dimensionless, while x, y, t and 1/f have dimension of length.
Consider the linearized perturbational potential vorticity (see [29])

Q = vx − uy − f(y)h , (II.7)

which, according to (II.6), obeys the equation of motion

Qt + (uQ)x + (vQ)y = −β v (1 + h), where β = f ′(y). (II.8)

Since our goal is to describe the energy transfer in Fourier space, we consider the Fourier transform Qk of the field Q:

Q(x, y, t) =

∫

Qk(t) ei(px+qy) dpdq [k = (p, q), k2 = p2 + q2]. (II.9)

We will show that the shallow water dynamics (II.6) adiabatically conserves three quantities of the form

I =
1

2

∫

Xk Qk Q−k dp dq. (II.10)

The first is the energy of the Rossby waves (the inertia-gravity component is excluded); it has

Xenergy
k

=
1

f2 + k2
. (II.11a)

The second is the enstrophy of the Rossby component; it has

Xenstrophy
k

= 1. (II.11b)

In addition to these two, there is an extra invariant with

Xextra
k

=
1

f5p

[

arctan
f(q + p

√
3)

k2
− arctan

f(q − p
√

3)

k2
− 2

√
3fp

f2 + k2

]

. (II.11c)
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This expression is nonsingular as f → 0

Xextra
k

≃ 8
√

3 p2 p
2 + 5q2

5k10
− 8

√
3 p2 5p4 + 42p2q2 + 21q4

7k14
f2 + O(f4). (II.12)

The notion of adiabatic conservation here is similar to that in the theory of dynamical systems [30]: The adiabatic
invariants are conserved approximately over long time. However, here adiabatic conservation is due not to the slowness
of parameter change in time, but to the slowness of spatial change and to the smallness of the wave amplitudes. This
adiabatic conservation is due to the presence of two small parameters (see Section IVB): First is the strength of
nonlinearity, compared to the beta effect [see (IV.10)], and second is the degree of spatial inhomogeneity, i.e., the
slowness of the dependence of the Coriolis force on the latitudinal coordinate y, compared to the length scale L of
field variation and the Rossby radius of deformation [see (IV.11)].

In the present paper, we derive adiabatic conservation of the above integrals in the lowest possible non-trivial—
leading—orders. We aim here only to establish the fact of adiabatic conservation at minimal accuracy (although the
actual conservation accuracy might be higher, or the conservation time interval might be longer). Our derivation is
formal asymptotic, but we take special care that no secular terms appear.

In the present paper we consider the simplest possible case, making two simplifications:

1. We use the beta-plane approximation (disregarding complications of spherical geometry).

2. We assume the fields (u, v, h) vanish at infinity, i.e., at the periphery of the beta plane. The same assumption is
made for the quasigeostrophic equation (I.1) when considering its invariants. Without this assumption, we need
to account for the boundary terms. These can be dealt with, but their account leads to heavy mathematical
calculations, which will not be presented here.

The central result of our derivation—which allows us to establish the extra invariant near the equator—is the
possibility to cancel “small denominators” at f → 0; see equations (IV.23), (IV.24).

We derive the extra invariant in Sec. IV, but first we demonstrate the connection between the invariant and zonal
jets.

III. THE EMERGENCE OF ZONAL JETS

A. Why the extra invariant implies the emergence of zonal jets

The approximate conservation of the energy and enstrophy, contained in the Rossby component (see Sec. II) implies
the inverse cascade of Rossby wave energy. At the same time (as we will see now), the presence of the extra invariant
ensures the anisotropy of the inverse cascade: The energy is transported not just towards the origin, but specifically
to the region of the k = (p, q)-plane around the q-axis (|p| ≪ |q|), which corresponds to zonal jets.

Indeed, the extra invariant can be written in the form

I =

∫

φk εk dp dq , (III.1)

where εk is the Rossby wave energy spectrum, and φk is the ratio of the extra invariant spectral density to the energy
spectral density

φk =
f2 + k2

f5 p

[

arctan
f(q + p

√
3)

k2
− arctan

f(q − p
√

3)

k2
− 2

√
3 fp

f2 + k2

]

, (III.2)

see (II.11c) and (II.11a). Figure 1 shows a contour plot of the values of the ratio φk (on a logarithmic scale) vs. k.
We pose the following question: Is it possible for the energy from the region A in Fig. 1 be transferred (via the inverse
cascade) into the region B? The value of the ratio φ in the region B is about 7×103 times greater than its value in the
region A. So, if the transfer A → B did occur, the value I of the extra invariant (III.1) would significantly increase.
The only way for the inverse cascade to transfer the energy towards the origin would be to transport the energy (on
average) along the level lines of the function φk. Thus, the dynamics must display anisotropic “Bose condensation”:
Spatial anisotropy, which is only weakly broken in small scale dynamics, becomes ever more strongly broken on large
scales.
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FIG. 1. (Color online) Contour plot of log10(φk); the ratio φk measures how much extra invariant is carried per unit energy by
an excitation with wave vector k = (p, q); see (III.1)–(III.2). The plot spans the range 0.1 ≤ p ≤ 10, 0 ≤ q ≤ 10, while f = 1.
The values of the ratio φk at the centers of boxes A and B differ by roughly a factor of 7 000. Therefore, the only way for the
energy to transfer towards the origin (via the inverse cascade—be it local or nonlocal) is for it to ‘squeeze’ around the q-axis.

B. Why zonal jets should be more clearly observed near the equator

The difference between the values of φ in the regions A and B increases as |f | decreases (f ≈ 0 near the equator).
Figure 2 shows the values of the ratio φk when f = 0.03. The value of φ in the center of region B is now about 3×104

times greater than its value in region A. Therefore, close to equator, when f ≈ 0, the inverse cascade is forced to
transfer energy even tighter towards the q-axis.

The more pronounced formation of zonal jets near the equator can be seen quantitatively from Fig. 3, which shows
the dependence (on a log-log scale) of the ratio φ vs. the wave number k at fixed polar angles θ (due to symmetries,
we need consider polar angles only in the range 0◦ ≤ θ ≤ 90◦). The curves shown in Fig. 3 are steeper for large k/f
than for small k/f : For large k/f they vary as k−4, while for small k/f they vary as k−1 if θ ≤ 60◦ and as k0 if
θ > 60◦. Therefore, during the inverse cascade, the ratio φ increases more significantly with decreasing k if f ≈ 0
(near the equator).

For example, if the energy originated in the region k/f > 20, then the inverse cascade must transfer this energy
(on average) into the sector 89.9◦ < θ < 90◦. [Indeed, f4φ at (k/f > 20 and all θ) is less than f4φ at (θ = 89.9◦ and
k/f → 0).] Such ‘tight squeezing’ of energy around the q-axis hardly can be accounted for by the relative decrease of
the nonlinearity as f → 0 (which might be expected in some situations).



7

FIG. 2. (Color online) Same as Fig. 1, but close to the equator, i.e., for small f (for this particular figure, f = 0.03). Comparison
of Fig. 1 and Fig. 2 demonstrates that the energy transfer towards zonal jets should be more pronounced near the equator than
at mid-latitudes. The values of the ratio φk at the centers of boxes A and B now differ by roughly a factor of 30 000.

C. Long-wavelength limit — polar angle 60◦

Now let us consider the opposite limit where k/f is small. According to Fig. 3, the inverse cascade can now transfer
energy anywhere into the sector

60◦ < θ < 90◦. (III.3)

This is exactly the sector that was found [31] on the basis of satellite altimeter observations of the spectra of very
long mid-latitude Rossby waves (with periods of several years). The sector (III.3) is clearly visible in the contour plot
of log10(φk) for small k/f—see Fig. 4; it shows the values of the ratio φk when f = 30. The magnitude of φk drops
sharply when the polar angle θ increases beyond 60◦; it is clear that, following any level curve beginning at larger k,
one may approach the origin only through the sector (III.3).

We see that if the energy is generated at large scales (much greater than the Rossby radius of deformation) then the
balance argument, based on the extra invariant, does not require the inverse cascade to accumulate energy in zonal
flows. This conclusion agrees with the investigation [32], which reported “suppression of the Rhines effect” for large
f .

To conclude this Section, we note that the existence of the extra invariant and the balance argument (described
in Secs. III A, III B, III C) holds for a wide class of wave systems with Rossby dispersion law. When the nonlinearity
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FIG. 3. (Color online) The quantity f4φ is a function of k/f while the polar angle θ is held fixed. The curves correspond
to the ten rays with θ = 0◦, 15◦, 30◦, 45◦, 60◦, 61◦, 76◦, 89◦, 89.9◦, 89.99◦. Curves with θ ≤ 60◦ (including θ = 60◦) are almost
indistinguishable and marked by one label θ < 60◦. If θ > 60◦, the curves become horizontal when k ≪ f .

is taken into account, then for some special forcing, the energy can still concentrate in zonal flows, even with large
f , see [33]. In that paper it was also found that, in the short wave case (or near the equator, Sec. III B), specially
arranged forcing can accelerate the formation of zonal jets.

The presented balance argument for the emergence of zonal jets has the appeal that it is based on a (previously
unnoticed) conservation law. However, this argument crucially relies on the assumption of weak nonlinearity. Whether
the nonlinearity is weak depends both on the forcing strength and on the location of sources and sinks in Fourier
space. Physical examples often show that the turbulence is weak in the large-scale part of the inertial range, in spite
of the fact that the energy spectrum becomes infinite when k → 0; e.g., consider the sea wave turbulence [3]. In
the case of geostrophic turbulence, the ratio of the magnitude of nonlinear terms to the magnitude of linear terms in
the quasigeostrophic equation is the Rhines number ǫ = A/(βL2). [For simplicity, we consider here the short-wave
limit, when the Rossby radius of deformation is effectively infinite; more refined estimates will be given in Sec. IVB.]
During the inverse cascade the length scale L increases, while the velocity scale A stays roughly constant (determined
by the energy), and so, ǫ→ 0.

IV. DERIVATION OF THE ADIABATIC INVARIANTS

In this Section, we demonstrate approximate conservation of the quadratic invariants (II.10) with the kernels (II.11).
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FIG. 4. (Color on line) Contour plot of log10(φk) for large f (for this particular figure, f = 30). When k ≪ f , the extra
invariant forces energy to accumulate in the sector 60◦ < θ < 90◦ (cf. Fig. 1). The dashed ray marks polar angle 60◦.

A. Refining the Rossby mode

Dropping the nonlinear terms in (II.6) leads to the linearized system

ut = −fv − hx, (IV.1a)

vt = fu− hy, (IV.1b)

ht = −ux − vy, (IV.1c)

while the linearized perturbational potential vorticity (II.7) obeys the equation

Qt = −β v. (IV.2)

Because of the y-dependence of coefficients in (IV.1), we need to refine the Rossby mode. Let us add to Q a
correction R (to be determined below) that is of higher order with respect to the parameter β, to obtain a new field

s = Q + R (IV.3)

such that in the linear approximation (IV.1) the derivative st will be determined by s alone (not by u, v, h taken
separately or in any other combination, besides s). Calculations show that we need to construct R such that

(f2 − ∆)R = β(fu+ hy). (IV.4)
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Indeed, if R is determined by (IV.4) then

(f2 − ∆)st = (f2 − ∆)(Qt + Rt) = −(f2 − ∆)(βv) + β(fu+ hy)t, (IV.5)

and, according to the dynamics (IV.1),

(f2 − ∆)st = βsx + 2β′vy + β′′v. (IV.6)

Here the right hand side is βsx + O(β2), so that the non-s terms are indeed pushed to higher order. Neglecting the
higher order terms, we see that the s-mode has the Rossby wave dispersion

Ωk = − βp

f2 + k2
. (IV.7)

B. Small parameters

The energy of the system (II.6) is

E =
1

2
H̄c2

∫

[(u2 + v2)(1 + h) + h2] dx dy. (IV.8)

In the weakly nonlinear limit, the integrand of the energy (IV.8) reduces to u2 + v2 + h2, and we assume u, v, h to
have the same magnitude A.

As mentioned above, we exploit two small parameters : First, the field magnitude A should be “small”, compared to
the beta-effect [see (IV.10)]. Second, the Coriolis parameter f(y) must be a “slow” function of y, so that β(y) ≡ f ′(y)
is “small” [see (IV.11)]. We first define the two non-dimensional small parameters when the field variations are
characterized by a single length scale L, being the same in x and y directions.

The magnitude of the linearized potential vorticity is given by

Q ∝ A

l
, where

1

l
=

1

L
+ f. (IV.9)

To measure the degree of nonlinearity we consider the ratio ǫ of the magnitude of the nonlinear convective terms in
(II.8) to the magnitude of the linear term:

ǫ =
A

βlL
. (IV.10)

Near the equator (where f ≪ L−1), the nonlinearity degree becomes the Rhines number: ǫ = A/βL2.
Small inhomogeneity means that f changes little over the length scale L. The change is ∆f ≈ βL. Away from the

equator, ∆f should be compared to f ; near the equator it should be compared to L−1. Thus, to quantify the degree
of spatial inhomogeneity we use the parameter

b = βlL, and so, A = ǫb. (IV.11)

In more general situations the length scales in x and y directions can be different (which is especially relevant when
considering zonal jets). Moreover, the dynamics can be characterized by a wide range of length scales, and they can
change in time (they can easily change by an order of magnitude during the inverse cascade). To account for different
situations, we will just keep track of powers of A and β (A→ 0, β → 0). To maintain the condition that the field be
small in comparison to the beta-effect, we will assume the existence of a small parameter ǫ, such that A ∝ ǫβ. [In
general, ǫ and b will have a more complex dependence on physical scales than (IV.10) and (IV.11).]

When there is a single length scale L, then the R-correction in (IV.3) is O(AL−1b) and is proportional to β.
However, in a general situation, with many length scales, we can only guarantee that R ∝

√
β. Indeed, for states

almost constant in the zonal direction (∂/∂x = 0) and near the equator (f = βy) equation (IV.4) becomes

β2y2R− ∂2R
∂y2

= β(βyu +
∂h

∂y
), (IV.12)

which is reduced by rescaling ỹ =
√
βy to the form

ỹ2R− ∂2R
∂ỹ2

=
√

β(ỹu+
∂h

∂ỹ
), (IV.13)

exhibiting explicitly the
√
β scale of R.

Since the difference between fields Q and s is small (proportional to
√
β), we replace Q in (II.10) by s:

I ≈ I⋆ =
1

2

∫

Xk sk s−k dp dq. (IV.14)
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C. Supplementing the quadratic extra invariant with cubic terms

Our central claim is that the increment ∆I⋆ ≡ I⋆(t) − I⋆(0) remains small over long times t. However, this does

not necessarily mean that İ⋆ is small: I⋆(t) can oscillate in time, similar to the behavior of adiabatic invariants in
the theory of dynamical systems. So, we use the approach [34] and supplement the quadratic integral (IV.14) with a
cubic part

Isuppl = I⋆ + Icubic; (IV.15)

then require İsuppl to vanish to leading order. The general form of the cubic correction is

Icubic =
1

6

∫
[
Y uuu

123 u1u2u3 + Y vvv
123 v1v2v3 + Y hhh

123 h1h2h3

]
d123

+
1

2

∫
[
Y uuv

123 u1u2v3 + Y uuh
123 u1u2h3 + Y vvu

123 v1v2u3 + Y vvh
123 v1v2h3

+ Y hhu
123 h1h2u3 + Y hhv

123 h1h2v3
]
d123 +

∫

Y uvh
123 u1v2h3 d123 (IV.16)

with 10 kernels Y uuu, Y vvv , . . .. Here and throughout the rest of this paper a subscript j stands for the wave vector
kj = (pj , qj) (j = 1, 2, 3); e.g. u1 = uk1

, likewise, Y123 = Y (k1,k2,k3) for any kernel Y , and δ123 = δ(k1 + k2 + k3),
d123 = dk1 dk2 dk3. In addition, a subscript −j will denote −kj , in particular, Y−123 = Y (−k1,k2,k3).

The form of the shallow water system allows us to consider the following more simple form of the cubic correction

Icubic =
1

2

∫

s1 s2 [M123 u3 + N123 v3 + T123 h3] d123 +
1

6

∫

Y123 s1s2s3 d123 (IV.17)

with only 4 kernels M,N, T, and Y instead of the ten kernels in (IV.16). The general form (IV.16) and the simplified
form (IV.17) lead to the same final result. A much longer calculation demonstrates that the kernels in (IV.16) must
be related in such a way that the terms may be collected in the form (IV.17).

When calculating İsuppl, we will have contributions of different nonlinearity orders

İsuppl = İ⋆ due to the linear terms in the equations (IV.18a)

+ İ⋆ due to the quadratic terms in the equations (IV.18b)

+ İcubic due to the linear terms in the equations (IV.18c)

+ İcubic due to the quadratic terms in the equations (IV.18d)

We will see that the first contribution (IV.18a) vanishes automatically. Our goal is to show that it is possible to find
the cubic correction Icubic—with non-singular (uniformly bounded) kernels—such that the next two contributions

(IV.18b) and (IV.18c) exactly cancel each other, implying that, indeed, İsuppl is determined by only higher order
terms (IV.18d). Formally, one can always achieve such cancellation for any wave system, but the corresponding
kernels will generally be singular. The possibility to escape these singularities takes place only for very few systems
[34, 35]. Significantly, our results demonstrate that the rotating shallow water system is among them.

D. The time derivative İsuppl

We can always assume the obvious symmetries:

Xk = X−k, M123 = M213, N123 = N213, T123 = T213, Y123 = Y213 = Y321. (IV.19)

According to the rotating shallow water dynamics (II.6), (II.8), along with the definition (IV.3), we have to leading
orders

İsuppl=

∫

X1 s−1

[

−iΩ1 s1 +

∫

(−ip1u3 − iq1v3) s2 δ−123 d23

]

d1

+
1

2

∫

s1 s2 [M123(fv3 − ip3h3) + N123(−fu3 − iq3h3)

+ T123(−ip3u3 − iq3v3)] d123

+
1

2

∫

Y123 s1 s2 (−iΩ3 s3) d123 (IV.20)
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[in accordance with our notations (introduced in Sec. IVC), δ−123 = δ(−k1 + k2 + k3)]. The equation (IV.20)
explicitly displays the contributions summarized in (IV.18abc). We will determine the kernels X,M,N, T, Y from the
requirement that the right hand side of this expression vanish, and that they be nonsingular.

First, the integral
∫
X1 Ω1 s−1s1 d1 vanishes automatically since Xk is even, and Ωk is odd.

Using (II.7) and (IV.3), we substitute

u3 =
ip3v3 − fh3 − s3

iq3
(IV.21)

into (IV.20) and collect terms into three groups: those containing (1) ssv, (2) ssh, and (3) sss:

İsuppl =
1

2

∫

d123 s1 s2

×
{
v3
q3

[
fq3M123 − fp3N123 − k2

3T123 + i(p3p1X1 + p3p2X2 + q3q1X1 + q3q2X2)δ123
]

+
h3

q3

[
ip3q3M123p3q3 + i(f2 + q23)N123 − fp3T123 + f(p1X1 + p2X2)δ123

]

+
s3
q3

[ifN123 − p3T123 + (p1X1 + p2X2)δ123]

}

− i

6

∫

Y123 s1 s2 s3 (Ω1 + Ω2 + Ω3) d123 (IV.22)

E. Canceling “small denominators” which are due to the equatorial limit (f ≪ k)

Equating to zero the coefficients of v3 and h3 produces a system of two linear algebraic equations, which we solve
for the kernels M and N :

M123 =
iq3T123

f
− (IV.23a)

iq3 [(p1p3 + q1q3)X1 + (p2p3 + q2q3)X2] + if2(q1X1 + q2X2)

f(f2 + k2
3)

δ123,

N123 = − ip3T123

f
+ (IV.23b)

ip3 [(p1p3 + q1q3)X1 + (p2p3 + q2q3)X2] + if2(p1X1 + p2X2)

f(f2 + k2
3)

δ123

These expressions have an apparent singularity when f → 0, which would invalidate our perturbational expansion
(e.g., making the cubic correction larger than the main quadratic part). However, it is possible to choose the kernel T
in such a way as to eliminate the singularities in M and N . Both expressions (IV.23) become non-singular as f → 0
if we take

T123 =
p3(p1X1 + p2X2) + q3(q1X1 + q2X2)

f2 + k2
3

δ123. (IV.24a)

This cancels all terms proportional to 1/f , and produces

M123 = −if(q1X1 + q2X2)

f2 + k2
3

δ123, (IV.24b)

N123 = i
f(p1X1 + p2X2)

f2 + k2
3

δ123. (IV.24c)

The denominators in (IV.24) still appear to be singular when f → 0, k3 → 0 simultaneously. However, due to the
presence of the delta functions δ123 ≡ δ(k1 + k2 + k3), the condition k3 → 0 implies k1 + k2 → 0, and so, the
expressions p1X1 + p2X2 and q1X1 + q2X2 in the numerators (IV.24) are linear in p3, q3 when k3 → 0. Therefore, the
numerators in (IV.24) are quadratic in f, p3, q3, and the expressions (IV.24) are bounded.
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Substituting (IV.24) into (IV.22), we find

İsuppl =
1

2

∫ [
p3q1 − p1q3
f2 + k2

3

X1 +
p3q2 − p2q3
f2 + k2

3

X2

]

s1 s2 s3 δ123 d123

− i

6

∫

Y123 s1 s2 s3 (Ω1 + Ω2 + Ω3) d123 (IV.25)

F. Canceling the triad resonance “small denominators”

Note the obvious identity
∣
∣
∣
∣

p1 p2

q1 q2

∣
∣
∣
∣
=

∣
∣
∣
∣

p2 p3

q2 q3

∣
∣
∣
∣
=

∣
∣
∣
∣

p3 p1

q3 q1

∣
∣
∣
∣

when k1 + k2 + k3 = 0 (IV.26)

(to see, e.g., the first equality, substitute p1 = −p2 − p3, q1 = −q2 − q3 from the last equation). Because of (IV.26),
equation (IV.25) reduces to

İsuppl =
1

2

∫
p3q1 − p1q3
f2 + k2

3

(X1 −X2) s1 s2 s3 δ123 d123

− i

6

∫

Y123 s1 s2 s3 (Ω1 + Ω2 + Ω3) d123. (IV.27)

Symmetrizing the first term on the right hand side (over all permutations of the indices 1,2,3), and using again the
identity (IV.26), we see that (IV.27) vanishes if

Y123 =
p1q2 − p2q1

i(Ω1 + Ω2 + Ω3)
δ123

[
X2 −X1

f2 + k2
3

+
X3 −X2

f2 + k2
1

+
X1 −X3

f2 + k2
2

]

. (IV.28)

It is apparent that this expression is singular at the points (k1,k2,k3) satisfying the resonance relations

k1 + k2 + k3 = 0, (IV.29a)

Ωk1
+ Ωk2

+ Ωk3
= 0, (IV.29b)

unless the expression in square brackets vanishes at these points. We will see now that the latter is indeed the case.
On the resonance manifold (IV.29), the bracketed expression in (IV.28) may be put in the form

[. . .] =
p1Ω2 − p2Ω1

β p1p2p3
(p1X1 + p2X2 + p3X3) . (IV.30)

To obtain this, the dispersion relation (IV.7) must be used along with the identities
∣
∣
∣
∣

p1 p2

Ω1 Ω2

∣
∣
∣
∣
=

∣
∣
∣
∣

p2 p3

Ω2 Ω3

∣
∣
∣
∣
=

∣
∣
∣
∣

p3 p1

Ω3 Ω1

∣
∣
∣
∣

when

{
p1 + p2 + p3 = 0

Ω1 + Ω2 + Ω3 = 0,
(IV.31)

which are similar to (IV.26). Thus, to obtain a non-singular form for Y123, we have to require that the function pXk

be conserved in the triad resonance interactions, i.e., that the equation

p1X1 + p2X2 + p3X3 = 0 (IV.32)

must hold in all points (k1,k2,k3) of the resonance manifold (IV.29).

G. Kernel X

The requirement (IV.32) is satisfied for the following five functions:

pXk = Ωk, (IV.33a)

pXk = p, (IV.33b)

pXk = q, (IV.33c)

pXk = ξk
def
=

1

2
ln
[

f2(q + p
√

3)2 + k4
]

− 1

2
ln
[

f2(q − p
√

3)2 + k4
]

(IV.33d)

pXk = ηk
def
= arctan

[

f(q + p
√

3)/k2
]

− arctan
[

f(q − p
√

3)/k2
]

. (IV.33e)
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For the functions ξk and ηk see [13]; their physical meaning remains unclear, let alone their possible relation to some
continuous symmetries.

For the function (IV.33a), the integral I is the energy of the Rossby component.
The function (IV.33b) corresponds to the enstrophy. More precisely, in this case the integral I is the zonal (East-

West) momentum, which is a linear combination of the energy and enstrophy.
The function (IV.33c) corresponds to the North-South momentum [36]. However, this choice fails to give a physically

meaningful quantity in real (coordinate) space because the corresponding function Xk is singular (when p→ 0). This
singularity means that respective invariant in real space

I =
1

2

∫

X(r1, r2)s(r1, t)s(r2, t)dr1dr2 (IV.34)

has kernel X(r1, r2) which does not vanish at large separation r1 − r2; see [37] for a detailed discussion.
The function (IV.33d) fails to produce an invariant either. This is because ξk is even in k, and so, Xk is odd,

contradicting the symmetry (IV.19).
Unlike ξk, the function ηk is odd, and the corresponding kernel Xk determines an extra invariant for rotating

shallow water dynamics. The previously described kernel (II.11c) is a linear combination of the functions (IV.33a)
and (IV.33e).

The proof of the fact that the functions ξk and ηk are conserved in triad resonance interactions has recently been
significantly simplified. The new proof is more straightforward and can be accomplished with the aid of symbolic
algebra software. Indeed,

ξk + iηk = lnZk where Zk =
if(q + p

√
3) + k2

if(q − p
√

3) + k2
, (IV.35)

(ln denotes the principal branch of the complex logarithm, with argument between −π and π), and the required
conservation equation

(ξ1 + iη1) + (ξ2 + iη2) + (ξ3 + iη3) = 0 (IV.36)

implies

Z1Z2 Z3 = 1. (IV.37)

Now, using (IV.29a), substitute p3 = −p1 − p2, q3 = −q1 − q2 into (IV.29b) and (IV.37). These equations may then
be reduced to two polynomial equations of degree 5 in p1, q1, p2, q2. It is easy to check (e.g., with Mathematica

software) that these two polynomials are identical up to a constant factor. It follows immediately that the resonance
equations (IV.29) imply (IV.37), and hence that

lnZ1 + lnZ2 + lnZ3 = 2πmi, where m = 0,±1,±2, . . . . (IV.38)

Continuity considerations require m = 0 [13], and the conservation (IV.36) then follows.
Thus, there are three invariants:

• the energy of the Rossby component [corresponding to (IV.33a)],

• the enstrophy [corresponding to (IV.33b)],

• the extra invariant [corresponding to (IV.33e)].

H. Dropping cubic terms

The cubic terms Icubic have served their purpose in the proof, and can now be dropped, similar to the argument
[38] for the quasigeostrophic equation. To see this, first, note that the β2-terms in (IV.6) can be neglected over a time
interval of length at most of order β−ν with ν < 2. We also need to consider time intervals containing many wave
periods, and so ν > 1. For specificity, we choose ν = 3/2.

Considering (IV.20), we have neglected terms ∝ A3β1/2 ∝ A2ǫβ3/2 (such terms come from neglecting R-correction
in the nonlinear terms of the shallow water equations). Therefore, over a time t ∝ β−3/2, the error can accumulate at
most up to a total error ∝ A2ǫ. The M,N, and T -corrections in (IV.17) have the order A3 ∝ A2ǫβ; the Y -correction
in (IV.17) has the order A3/β ∝ A2ǫ [the kernel Y is proportional to 1/β, while the kernels M,N, T are O(1), β → 0].
So, all cubic corrections are within the total conservation error ∝ A2ǫ and can be safely dropped. As alluded to
earlier, these corrections were needed in the derivation only to control oscillatory terms; their amplitude is now seen
to be small, but their time derivative is large (has lower order).
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V. REMARKS

A. Unique invariant

The existence of an extra invariant motivates a natural question: Do there exist other invariants in the shallow water
system? The answer appears to be “No”, although rigorous investigation of this question has not been attempted.
To elaborate, if such an invariant did exist, then the resonance triad interaction (IV.29) would seem to have another
conserved quantity, besides (IV.33). The latter, however, is known to be untrue [39]. This was established by the
connection [40] between invariants of wave interactions and Web geometry [41]. It has not been ruled out, however,
that the shallow water system (I.2) has several invariants, which collapse into a single invariant for the quasigeostrophic
equation (I.1); though this seems unlikely.

The connection to the Web geometry also shows that the dispersion laws that admit extra invariants are extremely
rare. We are aware of only one other physical system (besides Rossby waves) that possesses extra invariants. This is
the generalization of the Korteweg-de Vries (KdV) equation for two spatial dimensions

(ψt + ψψx + ψxxx)x = ψyy; (V.1)

it has dispersion law

Ω(p, q) = −p3 − q2

p
. (V.2)

Equation (V.1) is integrable via the inverse scattering method and has infinitely many extra invariants [35]. The system
(V.1) is called the Kadomtsev-Petviashvili equation of the first kind (KP1); the Kadomtsev-Petviashvili equation of
the second kind (KP2) has a minus sign in front of the term on the right of (V.1); because of this, triad resonances
do not exist at all for KP2.

Unlike to the KP1 case, the Rossby wave triad resonance admits only one extra invariant; and moreover, it is
impossible to extend this invariant to the next nonlinearity order [38]. So, the extra invariant of the shallow water
dynamics (I.2) is an attribute of weak nonlinearity.

The triad resonances that admit finite number of extra invariants are even more rare than the ones with infinitely
many invariants (see [39]): The former constitute a several parameter family among all functions depending on two
variables; and moreover, most of the members of this family are not even elementary functions and hardly can be
dispersion laws of physical systems.

Unlike the potential vorticity integrals (II.1) [with the exception of constant and linear F ], the extra invariant is
conserved in the Galerkin approximation with a finite number of Fuorier modes. The invariant can be important for
the dynamics of wave clusters, formed by the triad resonances of wave vectors on a lattice, [42].

B. The impact of the extra invariant on statistical equilibrium

The existence of the extra invariant may provide barriers to statistical equilibration. The equilibrium theory for
the quasigeostrophic ([43] and references therein) and shallow water systems [44] were derived by enforcing only the
exact conservation laws (energy, momentum, and the potential vorticity hierarchy). Since the latter fully define the
equilibrium state (under the ergodic hypothesis), the adiabatic conservation laws will generally be violated. Given that
true equilibration is an infinite time property, the presence of an adiabatic invariant does not lead to any mathematical
contradiction here. However, there are practical issues since the extra invariant could greatly increase the equilibration
time scale. This issue needs to be investigated.

We should also note a parallel between the existence of the extra invariant, determined only by the Rossby com-
ponent, and the equilibrium theory. In the latter it is found that although the inertia-gravity waves do remove some
of the initial energy to small scale surface ripples, they do not inhibit the inverse cascade of the remaining energy to
form large-scale vortex equilibria.

C. Using perturbational potential vorticity instead of its linearization

Since the extra conservation holds only in the weakly nonlinear limit, to the same accuracy we are free to write the
invariants in terms of the perturbational potential vorticity

Q̃ =
vx − uy + f(y)

H
− f(y)

H̄
(V.3)
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instead of the linearized perturbational potential vorticity Q, equation (II.7). We have Q̃ ≈ H̄Q (with the error due
to nonlinear terms), and instead of (II.10),

I =
1

2H̄2

∫

Xk Q̃k Q̃−k dp dq, (V.4)

where Q̃k is the Fourier transform of the field Q̃.

D. Can rotating shallow water dynamics be approximated by a single equation?

There is a question whether the shallow water system (I.2) can be approximated near the equator by a single
equation. Certainly, in the rigid lid approximation (H = const) the system (I.2) is reduced to the equation of 2D
hydrodynamics with beta-effect. However, the shallow water dynamics contain three independent variables u, v,H ,
and accordingly the system (I.2) contains 3 time derivatives. We allow significant deviations of H from its average
value H̄ .

We have attempted to approximate the equatorial shallow water dynamics by a single equation

ȧ1 = Ω1a1 +

∫

W−123 a2 a3 δ−123 d23 (V.5)

for the Fourier transform ak(t) of the stream function or some other variable (the notation is defined in Sec. IVC).
However, we found that such an equation would have insufficient accuracy to establish the extra conservation. More
specifically, the formula for the kernel W would lack one more cancellation in equations similar to (IV.24) [numerator
in W , instead of being quadratic, would be linear in f, p3, q3], and so, the kernel W would be singular.

E. Possible fast dependence on the y-coordinate

The extra conservation holds if the coefficients in the shallow water system (II.6) additionally contain fast, but small
amplitude, dependence on the y-coordinate. Such inhomogeneity may be considered at lowest order as a resonant triad
interaction between two Rossby waves, with dispersion law (IV.7), and one inhomogeneity wave, with zero dispersion
law:

p1 = p2 + p3, (V.6a)

q1 = q2 + q3, (V.6b)

Ω(p1, q1) = Ω(p2, q2) + 0; (V.6c)

here k1 = (p1, q1) and k2 = (p2, q2) are the Rossby wave vectors, and k3 = (p3, q3) is the inhomogeneity wave vector.
If translation symmetry is still maintained in the x-coordinate, one has p3 ≡ 0. For this case, one can readily see

that an arbitrary function ϕ(p, q) that is even in q satisfies

ϕ(p1, q1) = ϕ(p2, q2) + 0 (V.6d)

at each point of the resonance manifold (V.6abc). Indeed, (V.6a), with p3 ≡ 0, and (V.6c) imply p1 = p2 and
|q1| = |q2|. In particular, the function (II.11c) is even in q, and the conservation (V.6d) holds for ϕ ≡ η. Thus, the
function (II.11c) is conserved in triad resonant interactions of Rossby waves with the inhomogeneity waves.

Actually, the function (II.11c) is conserved in resonant interactions of any order n (n ≥ 3), which involve 2 Rossby
waves and n− 2 inhomogeneity waves:

p1 = p2 + 0 + 0 + . . .+ 0
︸ ︷︷ ︸

n−2

, (V.7a)

q1 = q2 + q3 + . . .+ qn, (V.7b)

Ω(p1, q1) = Ω(p2, q2) + 0 + 0 + . . .+ 0
︸ ︷︷ ︸

n−2

; (V.7c)

Indeed (V.7a) and (V.7c) imply p1 = p2 and |q1| = |q2|, and therefore,

ϕ(p1, q1) = ϕ(p2, q2) + 0 + 0 + . . .+ 0
︸ ︷︷ ︸

n−2

(V.7d)

for any function ϕ(p, q) which is even in q.
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VI. CONCLUSION

The Rossby waves have been known [12, 13] to possess a rare property: Their triad resonance admits an extra
conserved quantity:

k1 + k2 + k3 = 0,
Ω(k1) + Ω(k2) + Ω(k3) = 0

}

⇒ η(k1) + η(k2) + η(k3) = 0 (VI.1)

where

k = (p, q) (k2 = p2 + q2), Ω(k) =
βp

f2 + k2
, (VI.2)

η(k) = arctan

(

f
q + p

√
3

k2

)

− arctan

(

f
q − p

√
3

k2

)

. (VI.3)

Despite of the implication (VI.1), the extra invariant I is actually independent of the energy and momentum (en-
strophy) because the integrals (II.10) or (III.1) contain field variables Qk(t) or εk(t) respectively. [Recall that
Xk = η(k)/p, φk = η(k)/Ω(k).]

In the present paper, we have established two key results:

• The Rossby wave extra invariant can be extended to the shallow water dynamics in spite of the presence of
inertia-gravity waves and in spite of the explicit inhomogeneity (the y-dependence of the Coriolis parameter f).

• The shallow water dynamics possesses an extra invariant in the equatorial limit (when f → 0, but the derivative
f ′ stays away from zero). This limit also leads to small denominators, but different from those related to the
triad resonance. We have shown that it is possible to cancel these small denominators.

We have also found that for weakly nonlinear shallow water dynamics, the presence of the extra invariant constrains
the inverse cascade energy transfer to be from small scale eddies to large scale zonal flow. The results are also in
agreement with some more specific experimental features: more pronounced zonal jets near the equator, when f → 0,
and suppression of zonal jets and the 60◦ polar angle in the energy spectrum when f → ∞ (see Sec. III). We have
seen that the formation of zonal jets is a basic phenomenon that can be related to the set of invariants of the rotating
shallow water dynamics.

For future work, it would be crucial to see whether the theoretical predictions agree with experimental observations
quantitatively, and whether the effects of the extra invariant can be clearly resolved from other mechanisms in the
plethora of zonal jets phenomena. In particular, we believe it important to develop our results for the dynamics of
magnetized plasmas; it would be very interesting to examine the effects of the extra invariant on the formation of
internal transport barriers in fusion plasmas.
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