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Abstract

We consider evolution of sessile droplets of a nonvolatile perfectly wetting liquid on differentially

radially heated solid substrates. The heating induces thermocapillary Marangoni forces which

affect the contact line dynamics. Our experiments involving a particular heating pattern reveal

that the Marangoni effect suppresses the spreading of a drop, typical for perfectly wetting liquids.

The result is a rather slow receding motion, and a distinctive thinning of the liquid layer in the

region close to the contact line. Our theoretical model, based on the lubrication approximation

and incorporating the Marangoni effect, recovers the main features observed in the experiments

and in addition predicts novel features which are still to be observed.

PACS numbers: 47.20.-k,68.15.+e,47.55.dm
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I. INTRODUCTION

Thermally driven flows of thin liquid layers have attracted an ever increasing amount

of attention in recent years, due to their applications in micro- and nano-devices [1, 2].

Free-surface flows are particularly interesting as they allow for rapidly configurable devices,

which, with minimal or no substrate modification, can lead to a significant increase in the

device throughput [3]. Various applications clearly indicate the need for a more detailed

understanding of the dynamics of these thermally driven flows, particularly in the vicinity

of the (triple) contact line and in connection to its mobility [4–6].

Numerous theoretical studies of drops subject to thermal gradients have appeared in the

literature. The wetting behavior of drops on a vertical surface subject to a temperature

gradient was studied theoretically by Ehrhard and Davis [7], who found that the application

of the temperature gradient either enhanced or suppressed the drop motion, depending on

its direction. In their model, such behavior was attributed to thermocapillary flows within

the drop, induced by solid heating. The modeling approach from [7] was subsequently used

in synergy with the lubrication approximation in [8], where manipulation of drops using

differential heating in the solid was studied, and in [9–11], where stability of climbing films

was examined. A similar approach was also used in [12], where the focus was on the role of

the slip coefficient. The influence of a linear temperature profile on the drop motion and the

connection to the phenomena of superspreading was studied theoretically in [13]. In [14, 15],

a theoretical model was derived to study the stability of thin liquid layers subject to out-of-

the-plane temperature gradients where a nonlinear thermocapillary effect may be relevant.

In [16], the breakup of thin liquid films into arrays of drops and their subsequent motion

on slightly inclined uniformly heated solid substrates were studied theoretically; Newton’s

law of cooling was employed to take into account heat transfer from the film surface to

the surrounding gas A theoretical model was developed in [17] to study the influence of

drop size on the motion of nano-droplets on chemically structured substrates. Reviews of

various models used in studying thin films and drops in general were given in [6, 18, 19]. In

particular, the importance of examining contact line motion for perfectly wetting liquids,

including situations when the driving is by thermocapillary effects, was emphasized in [6].

Experimental studies have focused on fingering instabilities in thin films climbing a solid

wall or an incline subject to differential heating [1, 20], liquid drops migrating in vertical tem-
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perature gradients [21], stability of undercompressive shocks for draining thin films driven

by a surface tension gradient against gravity [22], merging and condensation of drops sub-

ject to radial temperature gradients [23], and superspreading of drops on hydrophobic solid

surfaces due to the Marangoni effect induced by the presence of surfactants [24]. In [25–27],

experimental studies of falling films exposed to localized heating and bounded by vertical

solid walls were carried out; accompanying theoretical model was formulated in [27, 28]

and it explained the experimental results based on a competition between gravity and ther-

mocapillary Marangoni stresses. In recent years, experiments have centered on using both

chemical modification of the substrate surface and nonuniform heating for thermophoretic

manipulation of droplets of partially wetting liquids [29].

Our present study focuses on the evolution of drops of perfectly wetting nonvolatile liquid

under the influence of the thermocapillary Marangoni effect induced by differential heating of

the solid substrate. We concentrate on a particular setup where perfectly wetting drops are

subject to a radial temperature gradient. We will see that direct comparison of experiments

and theory, as implemented in this paper, provides an effective approach for understanding

the main features of the results, including perhaps unexpected drop shapes. The first part of

the paper presents our experimental results, which show how the thermocapillary Marangoni

effect influences the front mobility as well as the evolution of the drop thickness close to the

contact line. Our experimental setup allows us to explore in detail this thickness, and its

experimental and theoretical analysis is one of the main focal points of the present work.

Next, we develop a theoretical model, based on the lubrication approximation, and involving

all relevant physical mechanisms. This approach yields a single governing equation for the

evolution of the drop thickness, and allows for the specification of a desired temperature

profile. We compare the model predictions and the experimental data for the part of the

drop for which experimental data are available. Here, we concentrate on the qualitative

comparison since simulated drops are smaller than the experimental ones for computational

reasons. Then, we discuss the model predictions in the regime where we do not have available

experimental data. We will see that the final drop shape shows strong dependence on the

imposed temperature profiles. In particular, one of the gradients considered here is predicted

to lead to the occurrence of an interesting feature – a pronounced ridge in the transition

region between the main body of the drop and the thin film close to the contact line.

We conclude with a discussion regarding the connection between this drop profile and the
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FIG. 1: (Color online) Sketch of experimental apparatus.

Marangoni effect.

II. EXPERIMENTS

The experimental apparatus that we use is identical to the one discussed in detail in [30];

here, we only outline the key points. The basic apparatus consists of a pre-wetted sili-

con substrate placed on top of and in a good thermal contact with a cylindrical stainless

steel base, see Fig. 1. The thickness of the substrate is 150µm. It is disc-shaped, measur-

ing 101.6mm in diameter, and its surface is oxidized and highly polished. The complete

apparatus rests on an optical table. The radial temperature gradient is accomplished by

pumping cooled water from the recirculating cooler to the center of the substrate, while its

periphery is heated via a metal foil heater attached to the outer copper ring, as indicated

in Fig. 1. The temperature of the substrate is continuously monitored using radially em-

bedded thermistors with an accuracy of ±0.1K. The main feature of the apparatus is that

it allows for the generation of controlled radial temperature profiles which may be modified

by tuning the heating/cooling sources and/or varying the initial drop size. The typical time

scale on which the temperature of the substrate equilibrates is ∼ O(103)s. While various

different temperature profiles could be achieved, monotonically increasing temperature in

the outward radial direction is a common feature of all profiles due to the positioning of the

cooling pipe and heater in our experimental apparatus. Due to competing effects of heating
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and cooling however, the temperature in the center may be lower or higher compared to

room temperature. We carry out experiments using drops of perfectly wetting nonvolatile

100cSt polydimethylsiloxane (PDMS). Due to the small vapor pressure of PDMS, evapora-

tive cooling at the free surface is not relevant. Furthermore, the heat transfer at the gas

liquid/interface turns out to be small, as can be verified by estimating the Biot number (see

also [9, 11]). In particular, Bi = αthd0/k ∼ O(10−2)� 1, where αth ∼ O(10)W/(m2 K) [10]

is the interfacial heat transfer coefficient, d0 ∼ O(10−4)m is typical drop thickness at the

center, and k ∼ O(10−1)W/(mK) is the liquid thermal conductivity. Hence, the temperature

of the free surface is for all practical purposes very close to the one prescribed by the heat-

ing apparatus in the substrate. The drops of prescribed volume are placed precisely at the

center of the substrate. This is achieved using a specially machined device that guides the

deposition from a micro-pipette. The radial precision of the deposition device is ≈ 0.1mm.

Particular drop sizes that we focus on are 50, 110, 150, 190, 400 and 750mm3. The drop

and the substrate are partially shielded from the ambient air by an acrylic sidewall, and

the drop remains axisymmetric throughout its evolution. The experiments are repeated to

insure reproducibility, and the substrate is thoroughly cleaned between experimental runs.

The imaging is carried out by illuminating the surface of the deposited drop from above

using nearly monochromatic sodium vapor light with average wavelength λ = 589nm. One

portion of the light beam is reflected by the drop’s free surface, the other by the highly

polished substrate surface wetted by the drop. This generates an interference pattern where

each fringe corresponds to a contour of a particular liquid thickness. The liquid thickness

profile is reconstructed from the interference pattern by counting the fringes and recording

their radial position. The counting is initiated from the non-wetted substrate slightly beyond

the contact line position (where liquid thickness is taken to be zero), proceeding radially

inward; each additional fringe corresponds to a λ/(2n) increase in liquid thickness, where

n = 1.4 is the refractive index for PDMS; the measurement of the radial position of each

fringe relies on pixel-counting. Therefore, the accuracy of this technique is prescribed solely

by the pixel size: the error in radial measurements is ±50µm. We note that temperature

measurements do not rely on pixel counting and hence do not suffer from this source of error.

For the liquid/solid combination we use here, the described technique allows for capturing

liquid thickness in the range [0.21, 10]µm. This interferometric technique does not work for

thicker layers, because it is no longer possible to distinguish fringes.
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The experiments proceed as follows. A PDMS drop is deposited at the center of the

substrate, initially at the ambient temperature (T = Troom = 25◦C.) The temperature-

controlling apparatus is switched on as the spreading drop achieves 10mm in diameter. The

target temperature profile is cold at the center of the solid and hot at the periphery (since

the temperature in the center is set by the recirculating cooler, it is in general not equal to

Troom). As the drop spreads, the slowly increasing temperature gradient at the drop’s free

surface induces thermocapillary Marangoni stresses directed from the contact line toward

the center of the drop. However, since PDMS is completely wetting, the drop spreading

continues despite the imposed (and slowly equilibrating) temperature gradient for another

∼ O(103)s; during this time, the gradient causes ever increasing deviation from Tanner’s

law [31]. Eventually, the oppositely directed Marangoni and capillary forces balance, halt-

ing the spreading, as the temperature profile finally reaches equilibrium. In the discussion

below, we ignore the first ≈ 1000s, the period which is marked by a time-dependent temper-

ature profile and drop spreading. We focus solely on the details of the subsequent evolution

involving slowly receding motion due to the influence of the steady-state temperature pro-

file. The receding motion occurs on a much longer time scale, ∼ O(105)s, than the initial

spreading stage, and the contact line moves very slowly, ∼ 0.1mm/hour. A typical evolu-

tion that we observe during the receding stage is shown in Fig. 2, which results from the

temperature profile shown below in Fig. 4b). We note that the liquid thermal diffusivity

is κ ∼ O(10−7)m2/s; using a length scale of the typical drop radius L ∼ O(10−2)m, and a

velocity scale as prescribed by the receding motion of the contact line, U ∼ O(10−8)m/s,

the resulting thermal Peclet number is small: Peth = UL/κ ∼ O(10−3) � 1. Even during

spreading stage, where the initial U ∼ O(10−6)m/s, Peth ∼ O(10−1). Therefore, convection

of heat in the liquid may safely be neglected [21].

An interesting feature is observed at the onset of the receding stage. Namely, the bulk

of the drop tends to migrate toward the center of the solid substrate, due to the radially

inward Marangoni stress along the free surface. This occurs at a rate which far exceeds

the slow receding motion of the contact line itself, causing ‘stretching’ of the thin layer of

the liquid in the immediate vicinity of the contact line, see sketch in Fig. 2d). The slow

motion of the contact line is likely caused by the wetting nature of PDMS, which effectively

resists the inward Marangoni force. The dynamics we observe here is different from that in

the receding meniscus problem, occurring when a solid plate is withdrawn from a bath [32],
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FIG. 2: Evolution of the contact line region for a 150mm3 PDMS drop on a heated Si substrate: a)

10000s, b) 15000s, and c) 54000s after equilibration of the substrate temperature (the corresponding

temperature profile is shown in Fig. 4b)). The field of view is 25 x 25mm; maximum drop radius is

19.3mm. The schematic in c) illustrates the typical cross-section of the region close to the contact

line.

since there, in contrast, a partially wetting liquid is used and the effect of gravity is more

important. The typical thickness near the center of the drop is estimated to be ∼ O(10−4)m,

while the typical thickness of the thin layer close to the contact line, hmax, is several orders

of magnitude smaller. This thin layer of liquid leads to the rings of interference fringes in

Figs. 2a-c). Hence, we are able to monitor the evolution of its thickness. As the evolution

proceeds, the density of interference fringes decreases (see, i.e. Fig. 2b) compared to 2c)),

indicating that the thickness of the thin liquid layer decreases with time. This is confirmed

by Fig. 3, which shows the time evolution of the thin layer thickness for 150 mm3 drop.

This thin layer connects at its inner edge with the main body of the drop. This connection

occurs over a relatively short region with a strong change in slope; over a radial distance of

only a few millimeters, the liquid thickness changes from O(µm) to almost O(mm). Figure 3

also indicates that the rate of thinning decreases as the experiment proceeds. Since with

the interference technique described above we can only probe the thin liquid layer close
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FIG. 3: (Color online) Experimental data: thickness evolution of the contact line region for a

150mm3 PDMS drop; Rmax = 19.3mm, hmax = 3.3µm and tscale = 3.7s. The imposed temperature

gradient is given in Fig. 4b). Error bars characterize experimental error in radial measurements.

The thinning is monotonous in time.

to the contact line, this transition region remains unresolved, but it will be discussed in

the context of our theoretical model later in the paper. We also carry out experiments

using different drop volumes, and find qualitatively similar dynamics (up to the level of

experimental accuracy noted above) close to the contact line for all drop sizes: within the

considered range of volumes, the drop size appears only to affect the time-scale on which

the described dynamics occurs. In what follows, we will present the results for two drop

volumes, 150 and 750 mm3, as representative examples.

Next, we examine the relation between the details of the imposed temperature profile

and the thinning of the liquid layer close to the contact line. We introduce the following

scales: the radial distance is scaled with Rmax ∼ O(10−2)m, the drop radius at the onset of

the receding motion (this instant in time is from here on denoted by t = 0); the thickness of

the liquid is scaled with hmax ∼ O(10−6)m. Here, hmax is defined as the maximum measured

thickness of the thin liquid layer inside the experimental window of observation, r/Rmax in

the interval [0.81, 1]. The time is scaled by Rmax
2/ν, where ν = 10−4m2/s is the kinematic

viscosity of PDMS (tscale ∼ O(s)). Finally, the difference between the temperature at any

particular radial position and the temperature at the center of the drop, Tcenter, is scaled

against Troom (all in ◦C). Typical values for Tcenter/Troom are within the range [0.70, 1.42].
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FIG. 4: (Color online) Experimental data for PDMS drops: influence of imposed tempera-

ture gradient on the evolution of the film thickness in the contact line region. The tem-

perature profiles in a) and b) result in the thickness evolution in c) and d) respectively.

Here, (V,Rmax, hmax, tscale, Tcenter) = (750mm3, 28.5mm, 2.2µm, 8.1s, 17.5◦C) in a) and c), and

(150mm3, 19.3mm, 3.3µm, 3.7s, 42.4◦C) in b) and d). Note that the scales Rmax, hmax and tscale

are different, as explained in the text. Error bars characterize experimental error in temperature,

a) and b), and radial measurements, c) and d).

We note that since the film thins, hmax always occurs in the first available measurement

after t = 0. These scales are employed in Fig. 3 and all figures henceforth; they allow

for direct comparison between the data for different drop sizes, as well as for subsequent

comparison between the experiments and the predictions of the theoretical model derived

in the following section.

Figure 4 shows the imposed temperature gradient and its influence on the evolution of

the thin liquid film close to the contact line. The temperature profile in Fig. 4b) leads to
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the results already shown in Figs. 2 and 3. It maintains most of the drop’s free surface at a

uniform temperature with a strong temperature gradient restricted to the contact line region.

Figure 4a) shows an alternative temperature profile characterized by an approximately linear

increase of the temperature. Here, the temperature gradient in the contact line region is

an order of magnitude smaller than the one corresponding to the profile in Fig. 4b): 0.04

versus 0.4◦C/mm. The corresponding evolution of liquid layers for these two temperature

profiles is shown in Figs. 4c) and 4d) (to facilitate the comparison, Fig. 4d) shows the

early time profiles already presented in Fig. 3). We observe that for smaller temperature

gradient, thinning is less pronounced. This finding supports our hypothesis regarding the

connection between the Marangoni effect and the thinning of the liquid in the contact line

region, which we discuss in more detail in the following section.

III. THEORETICAL MODEL

We proceed by developing a theoretical model including all the relevant physical mecha-

nisms. The predictions of the model will be compared to the experimental data presented

in Fig. 4.

The foundations of the model are laid through the following assumptions: the aspect

ratio of the drop is small, so that the lubrication approximation is appropriate; the solid

substrate is heated non-uniformly, with a gradient in the radial direction, and this gradient

is constant in time; the thermocapillary Marangoni effect is included via consideration of a

temperature-dependent surface tension. While the formulation of this model is similar to

the one used for studying drop evaporation [33, 34], here, evaporative mass loss is neglected,

due to non-volatility of PDMS for the present experimental conditions. Hence, evaporative

cooling is also neglected, and the temperature profile at the liquid-gas interface is identical

to the one in the substrate. In addition, we focus only on the dynamics subsequent to

the temperature equilibration in the substrate, i.e., the initial transient behavior is ignored.

Gravity is maintained in the formulation for completeness, although its influence is weak on

the scales considered.

The basic set-up that we consider involves an axisymmetric drop in simplified 2D polar

geometry. The origin of the reference frame is located at the center of the drop (situated on

the solid surface), the r-axis is measured radially from the center, and the z-axis normal to
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the solid. Our model is based on the Navier-Stokes equations for a viscous incompressible

liquid, accompanied by the continuity equation, and the appropriate boundary conditions:

specification of temperature, and no slip and no penetration at the liquid-solid interface,

z = 0; and the kinematic condition, as well as the balance of normal and shear stress at

the liquid-gas interface z = h(r, t), where h denotes the liquid thickness, evolving in time,

t. The time when the temperature in the solid achieves equilibrium is denoted by t = 0.

The temperature of the liquid, T = T (r), is prescribed by the substrate heater, and it is

kept explicitly in this formulation to allow for an easy switch between various temperature

profiles.

The following scales are used to nondimensionalize the equations and boundary condi-

tions. We use these scales (different from those used in the previous section) for the purpose

of formulating the model in the form resembling those typically found in the literature (see,

e.g. [35]); for convenience, all the results will be expressed in the scales used to describe

the experimental results. The length scale is given by d0, the typical drop thickness at the

center (r = 0); the time-scale is d0
2/ν; the velocity scale is ν/d0; the scale for the liquid

pressure is given by (ρν2)/d0
2, where ρ is liquid density; finally, the difference between the

liquid temperature, T , and the room temperature, Troom, is scaled by ∆T = Tmax − Troom,

where Tmax is the maximum temperature achieved by the heater (a slightly different tem-

perature scale is used below when comparing the model predictions and the experiments).

Appropriate values of parameters that we use below are: d0 = 7.5 · 10−5m, ν = 10−4m2/s,

ρ = 966kg/m3, Troom = 298K and Tmax = 335K. After scaling and applying the lubrication

approximation in a manner similar to [35], the following nondimensional governing equation

for the evolution of thickness h̄(r̄, t̄) of a radial drop results [34] (in the present work, all

nondimensional quantities are barred)

h̄t̄ +
1

r̄
S

[
r̄h̄3

(
hr̄r̄r̄ +

1

r̄
h̄r̄r̄ −

1

r̄2
h̄r̄

)]
r̄

−

1

r̄
G
[
r̄h̄3h̄r̄

]
r̄
− 1

r̄
M
[
r̄h̄2T̄r̄

]
r̄

= 0, (1)

where subscripts denote derivatives. Here, the last three terms are due to surface tension,

gravity, and Marangoni effect, respectively. The Marangoni term involves the liquid tem-

perature, T̄ (r̄), which is to be prescribed (see below). We note that in the formulation given

by Eq. (1), both h̄ and r̄ are expressed in terms of d0. Therefore, the validity of the lubrica-

tion approximation requires that all non-dimensional slopes are small. The nondimensional
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coefficients are defined as follows

S =
σ0d0

3ρν2
, G =

d3
0g

3ν2
, M =

γ∆Td0

2ρν2
,

corresponding to nondimensional surface tension, gravity coefficient, and modified

Marangoni number respectively. A linear dependence of surface tension on the temper-

ature is assumed: σ(T ) = σ0 − γ(T − Troom), where σ(Troom) = σ0 = 2.1 · 10−2N/m and

γ = −dσ/dT = 5.2 ·10−5N/(mK), see e.g., [36]; g is the gravitational acceleration. Resulting

values of nondimensional coefficients are S = 5.4 · 10−2, G = 1.4 · 10−4 and M = 7.5 · 10−3.

The temperature profiles, T̄ (r̄), are based on the experimental ones. One profile (A) that

we consider is a linear function of r̄, and it mimics the linear profile from the experiments,

Figure 4a): T̄ (r̄) = T̄ (0) +mr̄, where T̄ (0) and slope m are prescribed below, is substituted

into Eq. (1). For the temperature profile B, we require that most of the drop lies in a

region where the temperature field is essentially constant (within the experimental accuracy),

with substantial temperature gradient occurring only in the contact line region, as in the

experimental profile in Figure 4b). Here, we recall that in the steady-state case, T̄ (r̄)

satisfies Laplace’s equation on a disk with a fixed temperature at the perimeter – a particular

solution to this Dirichlet problem is T̄ (r̄) = C1 ln r̄ + C2 for r̄ > 0 (C1, C2 are constants).

Furthermore, we require that the temperature is C2 continuous throughout the domain in

order to avoid any possible numerical issues, and that it reaches a prescribed value at r̄ = 0.

One appropriate form is given by

T̄ (r̄) =

 α + exp (ln β + δ ln r̄) r̄ < Rc/d0

θ + χ ln r̄ r̄ ≥ Rc/d0

, (2)

with the five coefficients (α, β, δ, θ, χ) determined by the five conditions specified above; their

values are listed in the next section. Here, Rc denotes the radial distance where the transition

between essentially constant temperature for r < Rc/d0 and strong temperature gradients

takes place. Next, we carry out numerical simulations of Eq. (1) using the temperature

profiles A and B, and compare the results with the experimental data.

IV. NUMERICAL RESULTS VS. EXPERIMENTAL DATA

The main goal of our simulations is to show qualitative agreement of the results with

the experimental data in the regime where experimental data are available (close to the
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contact line), and to obtain clear predictions in the regime where experimental data are not

available. To this end, Eq. (1) is solved numerically using a finite-difference-based code,

similar to the one used in [34]. Here, we only outline the main points of our approach;

the details are given in [37]. Equation (1) is a parabolic 4th order one. As a result, it

is a stiff PDE which suggests the use of implicit schemes due to stability concerns. We

employ Crank-Nicholson scheme for time discretization, with adaptive time-stepping. For

space discretization, a compact stencil central-difference scheme is used with the grid size

∆r = 0.006 in all simulations. This numerical approach is 2nd order convergent in both

time and space. The boundary conditions ensure conservation of mass. The nonlinearity of

Eq. (1) is treated using Newton’s method, leading finally to a a penta-diagonal linear system

to be solved within each Newton’s iteration. The difficulty of simulating contact line motion

is overcome via addition of a thin equilibrium layer of thickness dp, which is assumed to wet

the numerical domain with the drop positioned on top of it. See, e.g., the Appendix A of [38]

for rather detailed description of this approach and its relation to disjoining pressure model.

In the present work, due to complete wetting of PDMS on Si, this approach effectively

leads to the presence of equilibrium film, as mentioned above. In our simulations, to ensure

convergence, we use ∆r < dp in all simulations. Smallness of ∆r requires, however, a large

number of grid points. This large number can be reduced by using nonuniform computational

grids, but we do not attempt this in the present work. Therefore, in order to carry out well-

resolved and accurate simulations while using reasonable computational resources, we limit

our simulations to 5mm3 drops, smaller than in experiments. While these smaller volumes

prevent us from carrying out quantitative comparison between numerical and experimental

results, we expect that the main features of the results will be captured. For a drop size of

5mm3 , it is appropriate to use d0 = 7.5 ·10−5m. All simulations use dp = 5 ·10−7m, since for

the dp’s of this order, we do not see any influence of their precise value on the resulting drop

evolution. The smooth initial condition is developed from a spherical cap profile, evolved

using a version of our code with T = Troom (i.e. spreading over a non-heated solid) until

the drop radius reaches a value corresponding to the experimentally measured Rmax. All

simulations preserve initial fluid mass.

We carry out simulations using the temperature profiles A (linear) and B (given by

Eq. (2)). In order to allow for the comparison between the computational results of the mod-

els A and B, and also with the experimental data, we choose temperature-related parameters
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FIG. 5: (Color online) a) Temperature profile A. Evolution of the drop thickness: b) whole drop,

c) thin film region, d) contact line detail. Here, hmax = 4.2µm; the other scales are given in the

text for this and all consecutive figures. Thickness profiles in b), c) and d) are given at every 50

time units.

such that the temperature difference T (Rmax) − T (0) resulting from the two temperature

profiles is identical. Figures 5a) and 6a) show the profiles A and B, respectively. For profile

A, T̄ (0) = 0.1105 and m = 1.517 · 10−3; for profile B, α = T̄ (0), ln β = −169.1, δ = 32.54,

θ = −2.103 and χ = 0.4397. The scales we use for presenting the results of numerical simula-

tions are the ones defined in the experimental section. We use Rmax = 15.7mm, tscale = 2.5s,

and Tcenter = 24.09◦C for all the results given in this section. Note that hmax depends on

the applied temperature profile. Its value is taken at the first output time, t = 50.

First, we concentrate on temperature profile A. Figure 5c) shows the corresponding evo-

lution of the film thickness in the region close to the contact line (0.81 ≤ r/Rmax ≤ 1, as in

the experiments). While the contact line is mobile, this motion is very slow; Fig. 5d) shows

the values of the speed ≈ 0.5mm/hr, the same order of magnitude as in the experiments.

The thinning shown in Fig. 5c) and d) is a consequence of the Marangoni force which is

directed inward, from the contact line toward the center of the drop; this behavior is consis-
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FIG. 6: (Color online) a) Temperature profile B. Evolution of the drop thickness: b) whole drop,

c) thin film region, d) contact line detail. Here, hmax = 3.7µm. Thickness profiles in b), c) and d)

are given at every 50 time units.

tent with the experimental data from Fig. 4c) resulting from the similar linear temperature

profile shown in Fig. 4a). The linear temperature profile induces inward Marangoni force

everywhere along the drop surface, driving the liquid consistently toward the center of the

drop. Liquid accumulates in the region close to r = 0, leading to a marked increase in film

thickness there, as shown in Fig. 5b). As pointed out before, experimental data are not yet

available on the scale of the whole drop and therefore at this point the profile as shown in

Fig. 5b) is a prediction of expected outcome.

Figure 6 shows the results obtained using the temperature profile B. We note that the

contact line recedes faster compared to Fig. 5. This is not surprising due to increased

temperature gradient close to the contact line. Consistently, we find that the thinning of

the liquid layer for profile B is more pronounced compared to the profile A, viz. Fig. 6c) and

5c). Our theoretical model is therefore successful in capturing qualitatively the behavior

observed in the experiments and shown in Fig. 4. The thinning shown in Fig. 6c) and d)

is also in agreement with the experimental data in Figs. 2 and 3 for similar temperature
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FIG. 7: (Color online) Long-time evolution resulting from temperature profile B, Fig. 6a): the

position of the maximum thickness of the ridge, Rridge, compared to Rc, the transition point in

the temperature gradient.

gradients. In particular, it indicates that the rate of thinning decreases in time, qualitatively

matching the experimental results in Fig. 3.

Figure 6b) shows the thickness evolution of the whole drop and reveals the formation

of a ridge slightly inward from the region monitored in Fig. 6c). The peak of this ridge

slowly moves inward, although this motion slows down as the evolution progresses. Figure 7

suggests that the ridge reaches a steady position, corresponding closely to the transition

point in the temperature gradient, Rc, and confirming that ridge formation is a consequence

of Marangoni forces. Additional simulations (not shown here for brevity) support this con-

clusion.

The experimental images in Figs. 2a-c) support the possibility of ridge formation. They

show an accumulation of interference fringes close to the transition between the thin liquid

layer in the contact line region and the main body of the drop. Hence, a substantial increase

in liquid thickness may be occurring in this transition region. The effective range of our

experimental technique does not allow for precise measurements there. We leave it to future

experiments to verify directly this prediction of our theoretical model for the thickness

characteristic of this region.
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V. CONCLUSIONS

Thermally driven free-surface flows of liquid have many applications of practical signifi-

cance. We have studied flows involving drops of nonvolatile perfectly wetting liquid subjected

to radial temperature gradients. In our experiments, we witness the opposing action of the

thermocapillary Marangoni effect and capillary spreading, and focus on the receding phase

where the balance has already swung in favor of the former effect. We record an interesting

feature which develops during this phase – while the bulk of the drop mass recedes toward

the center, the contact line recedes at a much slower rate, leaving a stretched layer of liq-

uid between the main body of the drop and the contact line. We find that this layer of

liquid thins as evolution of the drop proceeds and that the thinning is more pronounced

when the imposed temperature gradient in the contact line region is larger. This trend is

reproduced by our theoretical model, based on long-wave approximation, which includes

Marangoni forces. Our model also indicates a strong dependence of the drop shape on the

imposed temperature gradient, and, for a particular class of temperature profiles, it predicts

formation of a ridge between the thin liquid layer and the main body of the drop. We expect

that this prediction will be verified by future experiments.
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