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Extensive systems have no long scale correlations and behave as a sum of their parts. Various techniques
are introduced to determine a characteristic length scale of interaction beyond which spatiotemporal chaos is
extensive in reaction-diffusion networks. Information about network size, boundary condition or abnormalities
in network topology gets scrambled in spatiotemporal chaos, and the attenuation of information provides such
characteristic length scales. Space-time information flow associated with the recovery of spatiotemporal chaos
from finite perturbations, a concept somewhat opposite to the paradigm of Lyapunov exponents, defines another
characteristic length scale. High-precision computational studies of asymptotic spatiotemporal chaos in the
complex Ginzburg-Landau system and transient spatiotemporal chaos in the Gray-Scott network show that these
different length scales are comparable and thus suitable to define a length scale of interaction. Preliminary
studies demonstrate the relevance of these length scales for stable chaos.

PACS numbers: 05.45.Jn, 05.45Xt

I. INTRODUCTION

Spatiotemporal chaos (STC) is a generic pattern in ex-
tended non-equilibrium systems exhibiting a rapid decay
of spatial and temporal correlations [1]. Asymptotic STC
is reported for example in fluid experiments [2], chemi-
cal reaction-diffusion systems [3], and in cardiac fibrilla-
tion [4]. In transient STC the spatiotemporal dynamics spon-
taneously collapses into a regular behavior [5]; manifesta-
tions include turbulence in shear flow [6], models for semi-
conductor charge transport [7], or chemical reaction-diffusion
models [8, 9].

STC is characterized by sensitivity to initial conditions;
infinitesimal perturbations grow on average exponentially in
time to yield a positive Lyapunov exponent. Lorenz famously
described the possibility that the flap of a butterfly’s wings in
Brazil may set off a tornado in Texas [10]. Although pertur-
bations certainly have a course-altering impact on the evolu-
tion of the entire system, they will leave no observable mark
on the system’s long term space-time behavior; information
about these perturbations quickly becomes lost. I.e., although
the flap of a butterfly’s wings in Brazil may set off a tornado
in Texas, the citizens of Texas have no way of knowing of the
existence of the butterfly from solely observing the weather. It
would be absurd for the citizens of Brazil and Texas to attempt
to communicate through butterflies and tornados.

Even though every part of an STC system has the abil-
ity to change the evolution of the entire system, there ex-
ists an effective decoupling between distant parts; this can be
quantified with correlation length scales [1, 11], time-delayed
mutual information between distant points [12, 13], or trans-
fer entropy [14]. This decoupling directly relates to Ruelle’s
claim [15] that extended chaotic systems without long-range
interactions are uncorrelated at large length scales and there-
fore should behave as a sum of their parts. Then STC is exten-
sive, and the attractor dimension grows in direct proportion to
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the volume of the system [1, 16]. If this linear relation is ful-
filled for small changes of system size, STC is said to be mi-
croextensive [17]. Lyapunov dimension, sum of positive Lya-
punov exponents, and the logarithm of the average lifetime in
the case of transient STC have been reported to be extensive
in large systems [7–9, 11, 17–24]. STC in small extended sys-
tems can exhibit significant deviations from microextensivity
in Lyapunov dimension [25].

This paper introduces and explores various techniques to
determine a characteristic length scale beyond which STC is
extensive in reaction-diffusion networks. For systems much
larger than this characteristic length scale the local dynam-
ics is independent of the system size and microextensivity
is expected. We also find that irregularities in the network
topology (boundary condition, network shortcut) do not in-
fluence the system characteristics much beyond this length
scale. Several candidates for this length scale will be pre-
sented, and length scale of interaction should be understood
to mean an order-of-magnitude value that could refer to any
one of these. Section II introduces the two models, the com-
plex Ginzburg-Landau (cGL) reaction-diffusion network with
asymptotic STC and the Gray-Scott reaction-diffusion net-
work with transient STC. Section III provides candidates for
the length scale of interaction based on time-averaged sys-
tem variables. The information flow in reaction-diffusion net-
works is discussed in Sect. IV via transfer entropy. In Sect. V
space-time information flow is probed with finite bump per-
turbations and measured with particular space-time averages.
Section VI discusses the relevance of these length scales of
interaction for stable chaos in a coupled map lattice. A dis-
cussion of the results is presented in Sect. VII.

II. REACTION DIFFUSION NETWORKS EXHIBITING
SPATIOTEMPORAL CHAOS

The network consists of N diffusively coupled, identical,
continuous-time dynamical elements,

dxn

dt
= F(xn) + DH

N∑
j=1

∆n jx j. (1)
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FIG. 1. Spatiotemporal chaos of the variable a in the (a) complex
Ginzburg-Landau (cGL) ring network and in the (b) transient phase
of the Gray-Scott (GS) ring network. The cGL system is plotted for
300 time units, N = 500 nodes, and for the parameters c1 = 3.5,
c3 = 0.95, and D = 4. The GS system is plotted for 300 time units,
N = 500 nodes, and for the parameters µ = 33.7, Φ = 2.8, and
D = 16. A 4th order Runge-Kutta integration method was used; large
values of a are color coded in white.

At each network node n (n = 1, 2, . . .N) the local dynamics
is given by F(xn) with xn a d-dimensional state vector and
F : Rd → Rd a function. The diffusive coupling term depends
on the global coupling parameter D, and on the d × d matrix
H, which controls the relative diffusion and mixing of the d
components of xn. ∆ is a discrete N × N symmetric Laplacian
matrix required to meet the condition

∑N
j=1 ∆i j = 0. The net-

work topology and boundary conditions are defined by ∆ [20].
Equation (1) is approximately invariant under the varia-

tion of N and D with N/
√

D fixed. If N goes to infinity
with N/

√
D held constant, the system approaches a contin-

uous form. On the other hand if N (and hence D) is made
too small, discretization effects will become significant and
eventually the system will no longer support chaos. D con-
trols the characteristic length scale; it is chosen large enough
for the networks to be good approximations for the continuum
system [20].

We consider two dynamical systems, the complex
Ginzburg-Landau (cGL) system [1, 26] and the Gray-Scott
(GS) system [27]. The dynamical state of each of these sys-
tems consists of two real variables per node (d = 2); thus,
spatiotemporal chaos is induced by the diffusive coupling of
the non-chaotic dynamical elements.

The complex Ginzburg-Landau system describes a wide
range of physical phenomena including aspects of supercon-
ductivity, superfluidity, Bose-Einstein condensation, and liq-
uid crystals [26]. It represents a normal form for a transition
between a stationary homogeneous state to an oscillatory state

close to a Hopf bifurcation [1]. In the cGL system the two-
dimensional real system state xn [Eq. (1)] is usually described
by a single complex variable zn; the equations are

d
dt

zn = zn − (1 − ic3)|zn|
2zn + D(1 + ic1)

N∑
j=1

∆n jzn. (2)

The multiplicative factor 1+ic1 corresponds to the 2×2 matrix
H in Eq. (1) for the real states. For consistency with the GS
system we define the two real variables, an := <(zn) and bn :=
=(zn).

For parameters above the Benjamin-Feir instability line,
c1c3 = 1, plane wave solutions are linearly unstable; phase
turbulence as well as defect chaos [Fig. 1(a)] exists. Very
recently, transient spatiotemporal chaos was reported for pa-
rameters below that instability line [18]. We have used the
parameters D = 4, c1 = 3.5 and c3 ∈ {0.85, 0.95, 1.2} to match
the cases studied by Fishman and Egolf [25]. In this range of
parameters the system exhibits defect chaos: spacetime dislo-
cations where a constant phase line stops appear irregularly.
The equal-time two-point correlation length of a decreases
by a factor of about 20 across the range of parameters from
c3 = 0.85 to c3 = 1.2 [25]. The uncoupled systems exhibit an
unstable focus at the origin (an = bn = 0), surrounded by a
stable limit cycle of radius 1.

The Gray-Scott system [27] represents an open autocat-
alytic reaction A + 2B → 3B and B → C. The equations
are

d
dt

an = 1 − an − µanb2
n + D

∑N
j=1 ∆n jan (3)

d
dt

bn = µanb2
n − φbn + D

∑N
j=1 ∆n jbn.

where an and bn are the dimensionless species concentrations
of A and B at node n, and φ and µ are bifurcation parameters.
We use the well studied parameters D = 16, µ = 33.7 and
Φ = 2.8.

In the GS system spatiotemporal chaos is transient [9] with
the transient lifetime increasing exponentially with the net-
work size N. Figure 1(b) shows a typical spatiotemporal pat-
tern during the transient phase. Within the parameter regime
of transient spatiotemporal chaos, the uncoupled system is
characterized by a stable node, a saddle and an unstable focus.
Spatiotemporal chaos in the coupled system is Šilnikov-like;
a typical trajectory at a network node spirals away from the
unstable focus toward the stable node, to be reinjected into
the neighborhood of the unstable focus by the propagating
reaction-diffusion front [28].

A spatiotemporally chaotic system is extensive if it has no
long-range correlations and behaves as a sum of its parts. The
Lyapunov dimension DL grows then linearly with the size N
of the network [1, 15, 16]. If this linearity is exactly fulfilled,
even for arbitrarily small changes in size, then spatiotemporal
chaos is called microextensive [17]. As system parts only in-
teract weakly, a natural chaotic length scale ξδ was defined by
Cross and Hohenberg [1] that describes the size (number of
nodes) of a single degree of freedom,

ξδ = lim
N→∞

N
DL

. (4)
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Earlier studies reported that spatiotemporal chaos in the
cGL system is extensive in Lyapunov dimension for large
system sizes [11]. For small system sizes significant devia-
tions from microextensivity exist in form of oscillations of the
Lyapunov dimension with system size [25]. These oscilla-
tions were attributed to the existence of building blocks with
the length scale of the oscillations determining the number
of nodes of a building block. The magnitude of the devia-
tions from microextensivity decrease exponentially with sys-
tem size. Transient spatiotemporal chaos in the GS network
is extensive; the Lyapunov dimension, the sum of positive
Lyapunov exponents, as well as the logarithm of the average
transient lifetime increase linearly with the network size [20].
Whether transient STC is microextensive for small network
sizes is currently not known because of the short transient life-
times for small networks. We find that ξδ varies between 6 and
10 nodes for the cGL network, and ξδ = 16 nodes for the GS
network (Table I) [29].

III. MEASURING LENGTH SCALE OF INTERACTION
WITH NODE AVERAGES

Perhaps the simplest measure of the characteristics of a lo-
cal region of a spatiotemporal system is the time averaged
value of a variable X at node n [30], given by

〈Xn〉 = lim
T→∞

T−1
∫ T

0
Xndt. (5)

The convergence of the computational estimate for 〈Xn〉 is
slow and very large T are required to achieve the desired pre-
cision [31]. A parallel code is applied that computes the aver-
age over several different initial conditions and smaller T .

The local averages define a global spatiotemporal average,

X̄ = N−1
N∑

n=1

〈Xn〉 . (6)

For a chaotic system governed by equations with translational
spatial symmetry (e.g., the GS ring network during the tran-
sient phase, or the cGL ring network) it should typically [32]
be the case that X̄ = 〈Xn〉. For a large enough ring network X̄
can be interpreted as representing the characteristics of the
natural system behavior without the influence of boundary
conditions or other non-homogeneous elements. For an in-
finitely large ring network a global average X̄0 is defined as

X̄0 = lim
N→∞

X̄. (7)

This value is used as a baseline against which deviations from
ordinary behavior can be defined. For the purposes of this
paper a good estimate for X̄0 was achieved with N = 1000.

In a ring network (having translational node symmetry) the
average characteristics of dynamical variables X̄ depends on
the size of the network, but converges quickly to the limiting
value X̄0. Figure 2 reveals that the deviations of spacetime
averages between small and large ring networks, |X̄ − X̄0|, de-
crease exponentially with the network size N for both systems
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FIG. 2. Deviation of spacetime averages [X̄, Eq. (6)] from those
of a large (N = 1000) ring network [X̄0, Eq. (7)] as a function of
network size N: (a) ln |r̄ − r̄0| for the cGL ring network (c1 = 3.5, c3 ∈

{0.85, 0.95, 1.2}) with r = |z| the distance to the unstable focus; (b)
ln |ā − ā0| for the GS ring network (µ = 33.7, Φ = 2.8); (c) ln |X̄ − X̄0|

for the same GS ring network as in (b) and different variables X (X =

a2, X = (da/dn)2, and X = r with r the distance to the unstable
focus). The envelopes of the curves in (a) and (b) are fitted with a
subjectively chosen linear function. The linear fit from (b) is copied
into (c) to guide the eye. The deviations of spacetime averages in
Fig. (a) do not match the deviations from extensivity of the Lyapunov
dimension in [25].

(cGL, GS) and for a wide variety of variables X. In all cases
the corresponding linear trend in ln |X̄ − X̄0| is obfuscated by
fluctuations which are particularly significant for small N and
which are due to the complicated dependence of the dynamics
on N. In this paper we focus on the envelope of the graphs,
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ignoring any transients for small N. The determination of
the envelope is limited by the noise floor of the computation
[Figs. 2(a-c)] as N increases. For example in Fig. 2(b), noise
of magnitude e−10 dominates the measured value of |ā− ā0| for
N > 250. The noise floor decreases slowly ( 1/

√
T ), which

requires exponentially increasing simulation times for extend-
ing the envelope to larger N.

The spacetime characteristics X̄ for small ring networks is
clearly different from the limiting characteristics X̄0 for larger
network sizes despite the translational node symmetry inher-
ent in ring networks. This reflects that a ring network be-
low a certain network size does not behave as the sum of
weakly interacting small ring networks, and deviations from
microextensivity are apparent. The inverse of the envelope
slope defines a length scale of interaction beyond which an
STC system can be considered to be just a sum of its con-
stituent parts. For the cGL system this length scale of inter-
action is decreasing with increasing parameter c3 [Table I].
In general, envelope slope as well as length scale of inter-
action appear to be the same regardless of the variable X
being measured, although the particulars of the fluctuations
are slightly different. This is demonstrated in Figs. 2(b) and
(c) for the GS ring network and four typical variables X,
X ∈ {a, a2, (da/dn)2, r} [34]; their length scale of interaction
is 30 nodes [Table I].

The rapid convergence of X̄ → X̄0 for large N suggests the
conjecture that observations from a local region do not deter-
mine the size of a large STC ring network. This claim can be
justified in terms of information transfer. The ring size is de-
termined by observation of information that originates at the
local region, travels around the ring, and finally reaches the
local region again. For a ring network much larger than the
length scale of interaction very little information will remain
after a round trip, and the local region contains very little in-
formation about the ring size. Consequently, measures such as
〈Xn〉 (which, by symmetry, is typically equal to X̄ for chaotic
systems with periodic boundary conditions) must be constant
over the range of sufficiently large system sizes.

In a regular network with broken translational node sym-
metry due to no-flux boundary conditions the local averages
〈Xn〉 near the boundaries do not match the spacetime average
for a large ring network X̄0 [32]. Nodes that are sufficiently far
away from the boundary on the other hand do not have access
to information about the boundary and 〈Xn〉 → X̄0 as the dis-
tance from the boundary increases. The deviations |〈Xn〉 − X̄0|

decrease exponentially with the distance from the boundary
for both systems (cGL, GS) and for a wide variety of vari-
ables X [Figs. 3(a-c)]. The sharp dips in ln|〈Xn〉 − X̄0| are due
to zero-crossings of 〈Xn〉 − X̄0 and occur at different nodes for
different variables [35]. The comments about noise floor and
fluctuations made in reference to Fig. 2 apply here as well.

The influence of a boundary condition rapidly diminishes
as a function of distance from the boundary, since information
about the presence of a boundary gets scrambled before it can
be communicated with distant nodes. The inverse of the enve-
lope slope defines a length scale of interaction below which an
STC system depends on the boundary condition and reveals
deviations from microextensivity. For the cGL system this
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FIG. 3. Deviation of time averages [〈Xn〉, Eq. (5)] from the spacetime
average of a large ring network [X̄0, Eq. (7)] for varying nodes n near
a no-flux boundary (N = 1000): (a) ln |〈rn〉 − r̄0| for the cGL ring net-
work (c1 = 3.5, c3 ∈ {0.85, 0.95, 1.2}) with r = |z| the distance to the
unstable focus; (b) ln |〈an〉 − ā0| for the GS ring network (µ = 33.7,
Φ = 2.8); (c) ln

(
sX |〈Xn〉 − X̄0|

)
[35] for the same GS ring network

as in (b) and different variables X (X = a2, X = da/dn, and X = r
with r the distance to the unstable focus). sX is a scale factor cho-
sen to align all three traces vertically. The top trace corresponds to
ln

[
maxX

(
sX |〈Xn〉 − X̄0|

)]
; it is raised above the other traces for clar-

ity. Envelopes of curves in (a) and (c) are fitted with a subjectively
chosen linear function. The slope of the linear fit in (c) is shown in
(b) for reference.

length scale decreases with increasing parameter c3 [Table I].
It is the same regardless of the variable X being measured (to
within observational limits) as shown in Figs. 3(b) and (c) for
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FIG. 4. Shortcut-induced deviations from microextensivity E
[Eq. (9)] that are based on time averages 〈X〉 for varying shortcut
lengths k2 − k1 in a ring network (N = 1000) with a single short-
cut between node k1 = 1 and k2, for (a) the cGL system (c1 = 3.5,
c3 = 0.95) and for (b) the GS system (µ = 33.7, Φ = 2.8). In each of
the figures a subjectively chosen linear fit is determined and plotted
twice (with the same slope) as a visual reference.

the case of a GS ring network and four typical variables X,
X ∈ {a, a2, da/dn, r} [34]; the length scale of interaction is 34
nodes [Table I].

Nonlocal coupling (shortcut) between two network nodes
also breaks the translational node symmetry within a ring net-
work and affects the local dynamics. Local averages 〈Xn〉 near
the two shortcut nodes differ from the spacetime average for
a large ring network X̄0. Unlike in the case of the no-flux
boundary, the nodes that are connected by the shortcut can
be chosen. Consequently, varying the length of the shortcut
within the ring network allows to measure the degree of inter-
action between the local disturbances surrounding each of the
shortcut nodes.

To study the deviations of local dynamical characteristics
in the presence of a single shortcut, we consider the reference
case of a large ring network with a long shortcut between two
nodes k1and k2 (N = 2000, and k2 − k1 = 1000); these nodes
are separated by a distance much greater than the length scale
of interaction. In this reference network, Xs

n :=
〈
Xk1+n

〉
de-

notes the average value of X for a node that is |n| nodes away
from the shortcut linkage k1. Then the estimate Xe

n for the
local average 〈Xn〉 at node n for a large ring network with a

single shortcut of arbitrary length is given by

Xe
n − X̄0 = (Xs

|n−k1 |
− X̄0) + (Xs

|n−k2 |
− X̄0); (8)

it depends on data XS
i of the reference ring network with a

long shortcut. This estimate is trivially fulfilled if the local
characteristics is measured at a node n clearly away from both
linkages ki, i.e. |ki − n| much larger than the length scale of
interaction, since then Xs

i ≈ X̄0 in Eq. (8). If the local charac-
teristic is measured at a location n that is within the interaction
length scale of at least one of the linkages, then at least one of
the differences Xs

|n−ki |
− X̄0 in Eq. (8) is nonzero, and the esti-

mate represents a linear superposition of local characteristics.
Eq. (8) is used to determine shortcut-induced deviations from
linearly additive behavior (E) expressed as the RMS error be-
tween the estimate Xe

n and the true local average 〈Xn〉 at node
n,

E =

√√√
N−1

N∑
n=1

(Xe
n − 〈Xn〉)2. (9)

The logarithmic variation of the RMS error E with the short-
cut length k2−k1 is plotted in Fig. 4 for the cGL system (a) and
the GS system (b) using different variables X. Only a few vari-
ables X were available for the cGL system, because the U(1)
symmetry of the dynamical equation leads to

〈
Ap

n

〉
=

〈
Bp

n

〉
for

even powers p and
〈
Ap

n

〉
=

〈
Bp

n

〉
= 0 for odd powers. In all

cases E approaches zero for large shortcut lengths. This is
expected since the local regions around the two linkages do
not interact for long shortcuts, the linear superposition in the
estimate is valid, and the ring network behaves as a sum of its
parts in the presence of a long shortcut. This is similar to the
case of no-flux boundary conditions in Fig. 3 where the de-
viations from extensivity also vanish for increasing distance
from the boundary condition. For smaller shortcuts however,
E does not vanish, which indicates that the two local regions
centered at the linkages do interact to cause deviations from
microextensivity. In both systems there is an exponential de-
cay of E with increasing shortcut length. The length scale
of the decay is independent of the variable X within observa-
tional accuracy [Fig. 4, Table I].

The measure E was designed to quantify shortcut-induced
deviations from microextensivity. E determines the degree to
which the local regions near the linkages of the shortcut inter-
act dynamically with each other in a nonlinear way. It deter-
mines how far apart the nonhomogeneous nodes (linkages) of
a network need to be in order for the network to be extensive;
a nonzero E represents the degree to which the network is not
simply a linear sum of its parts.

In this section we have quantified the length scale of inter-
action with long-time averages of various variables X. The
variables however fluctuate in time, as does the nature of the
local dynamics; long-time averages span over many tempo-
rally local artifacts. For example, STC in the GS system
exhibits an irregular distribution of local extinctions where
neighboring trajectories approach the stable steady state of the
uncoupled system (a = 1 and b = 0). These local extinctions
are quickly erased by an excitation wave that travels inwards
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FIG. 5. Logarithm of same-time mutual information Mmn vs. node
separation |n − m| for (a) the variable a of the cGL ring network
(c1 = 3.5) and for (b) the variable a of the GS ring network (µ = 33.7,
Φ = 2.8). For variable r the deviations from the linear trend were
more pronounced. Each curve was approximated with a least-squares
linear fit for the largest range of node separations |n − m| with an
approximately linear relation. The probabilities were computed from
histograms with 5 bins for each variable, so 25 bins for the joint
probability p(Xm, Xn).

from both sides [white triangular structures in Fig. 1(b)]. Such
an excitation wave carries the information (without loss) that
the local extinction is not a global extinction [36], since an ex-
citation wave cannot be present in the case of a global extinc-
tion. Local extinctions occur with a frequency that diminishes
exponentially with their width, so the range of information
transfer by excitation waves due to local extinctions is limited;
small extinctions don’t have long range and large extinctions
are very rare and not statistically significant.

IV. MEASURING INFORMATION TRANSFER VELOCITY

Although the characterization of a length scale of interac-
tion via node averages (Sect. III) does not involve information
theoretic concepts, the detectability of a boundary condition
by a node that is some distance from the boundary necessar-
ily involves transmission of information. In this section we
examine the flow of information through a reaction-diffusion
network.

The mutual information quantifies the amount of informa-

tion about an observable shared between two nodes, or more
specifically the amount of information that can be learned
about the variable X at node m through observation of vari-
able X at node n. The mutual information Mmn between nodes
m and n as observed through variable X is defined as

Mmn =
∑

Xm,Xn

p(Xm, Xn) ln
p(Xm, Xn)

p(Xm)p(Xn)
. (10)

p(Xm) and p(Xn) are the marginal probabilities and p(Xm, Xn)
is the joint probability associated with the pair of measure-
ments Xm and Xn of observable X at nodes m and n. The prob-
abilities were computed from histograms with 100 bins for
each variable, so 1002 bins for the joint probability p(Xm, Xn).
In this case the noise floor, which is a function of simulation
time and number of histogram bins, is too large and limits the
range of |n − m| with usable values of Mmn. A reduction to 5
bins per variable sufficiently decreases the noise floor (Figs 5).

For the cGL as well as the GS system the logarithm of
the mutual information ln Mmn decays rather linearly with
node separation |n − m|, until it flattens due to the noise floor
[Figs. 5(a) and (b)]. The length scales associated with the
least-squares linear fit are listed in Table I. It is clear that the
length scales (inverse slopes) associated with ln Mmn vs. |n−m|
(Fig. 5) are not equal to those associated with node averages,
ln |X̄ − X̄0| vs. N (Fig. 2) or |〈Rn〉 − R̄0| vs. n (Fig. 3), but they
are equal to each other within an order of magnitude. The
length scales associated with mutual information show much
greater variation across the various parameter values of c3 in
the cGL system than do the length scales associated with the
other measures (Table I).

Mutual information is similar to the temporal node averages
from Sect. III in that both describe the ability of the network to
communicate across distances. There are however important
differences between temporal node averages and mutual infor-
mation. Mutual information is measured by comparing two
nodes to each other and node averages involve measurement
of individual nodes. Mutual information can therefore be ap-
plied to a homogeneous network with fixed size, when tempo-
ral node averages would be constant across the nodes and thus
obscure the information flow within the system. Node aver-
ages on the other hand measure the characteristics of individ-
ual parts of a system to identify unusual node characteristics
(such as near a no-flux boundary).

Mutual information defines a length scale over which a sys-
tem becomes decorrelated; a temporal consideration must be
added to characterize information flow. One option is to intro-
duce a delay in the measurement of one of the nodes, so that a
measurement Xm(t) is compared with Xn(t+∆t) for some delay
time ∆t. For a given pair (m, n), the delayed mutual informa-
tion should reach a first local maximum at some delay ∆t. If
∆t is proportional to the node separation |n − m| for a range
of |n − m| values, their ratio defines an information velocity,
v = |n − m|/∆t. Time delayed mutual information, however,
does not distinguish between information traveling from one
node to the other versus information reaching the two nodes
from a source external to them. For spatiotemporal chaos in
the cGL and GS system delayed mutual information did not
qualify to define a (constant) information velocity.
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cGL: c3 = 0.85 cGL: c3 = 0.95 cGL: c3 = 1.2 GS
Decay of |X̄ − X̄0| Fig. 2 67 28 24 30
Decay of |〈Xn〉 − X̄0| Fig. 3 21 19 11 34
Decay of E Fig. 4 - 18 - 40
Decay of Mmn Fig. 5 25.1 6.19 3.40 7.72
Decay of |DL − N/ξδ| n/a 31.2 [37] 32.5 [37] n/a
Chaotic length scale ξδ Eq. (4) 10.7 [37] 8.7 [37] 6.7 [37] 16.3 [20]
Lyapunov dimension density limN→∞ Σ+/N - - - 0.001126 [20]
Information transfer velocity v Eq. (13) - 4.2 - 3.3

TABLE I. Length scales of the exponential decay (in units of number of nodes) for various measures applied to the complex Ginzburg-Landau
(cGL) network (D = 4, c1 = 3.5) and to the Gray-Scott (GS) network (D = 16, µ = 33.7, φ = 2.8). The chaotic length scale ξδ [nodes] is
added for comparison. The Lyapunov dimension density [nats/(node · time)] and information transfer velocity [nodes/time] are used in Sect. V.
Cells marked “-” were not computed; no significant deviation from microextensivity in DL exists for cells marked “n/a.” |DL − N/ξδ| refers to
deviation from extensivity of Lyapunov dimension.

Schreiber has proposed to study information flow via trans-
fer entropy [14]. The transfer entropy T∆n∆t describes the
amount of information that is revealed about node n + ∆n at
time t + ∆t by measurement of a node n at time t and at earlier
times t − 1, t − 2, . . ., but that is not available from measure-
ments of node n + ∆n at times previous to t + ∆t (t + ∆t − 1,
t + ∆t − 2,. . . ). Due to memory constraints, we only used a
single sample at node n (i.e. only the sample at time t) and a
single historical sample at node n+∆n (i.e. the subject sample
at time t + ∆t and the historical sample at time t + ∆t − u for
a constant value u). In this case, the equation for Schreiber’s
transfer entropy reduces to

T∆n∆t =
∑

A,B,C

p(A, B,C) ln
p(B|A,C)

p(B|C)
, (11)

with

A = Xn(t),
B = Xn+∆n(t + ∆t), and
C = Xn+∆n(t + ∆t − u). (12)

∆n is the spacing between the two nodes, ∆t is the transfer
time delay, and u is the historical time delay for node n + ∆n.
p(B|C) is the conditional probability of measurement B con-
ditioned on measurement C and p(B|A,C) is the conditional
probability of measurement B conditioned on measurements
A and B.

Transfer entropy measures the flow of information through
a system, and as such requires an entropy source. Any system
with a positive Lyapunov exponent spontaneously creates en-
tropy; however, we introduce an additional source of entropy
at node n by adding a unidirectional shortcut between node n
and another node m that is far away from n (|n−m| = N/2) so
that entropy produced in a remote part of the system gets fed
into node n. Specifically, an extra diffusion path δin(δ jm − δ jn)
is added to the Laplacian term ∆i j in Eq. (1). This additional
source of entropy greatly enhances the effectiveness of the al-
gorithm to determine information velocities.

For the observable X in Eq. (12) we have used the angle
of the trajectory in phase space in relation to the unstable fo-
cus, as measured from the â direction. This observable has

a clearly defined range (−π to π) and is uniformly distributed
in the case of the cGL system and rather evenly distributed in
the case of the GS system; these characteristics lead to effi-
cient usage of histogram bins. The probabilities in Eq. (11)
were computed from histograms for X with 30 bins; the joint
probabilities p(A, B,C) are accumulated into 303 bins. The
historical time delay u was chosen somewhat arbitrarily as
u = 8 for the cGL system and u = 2.4 for the GS system;
these values are large enough to allow evolution of the sys-
tem (so that B and C will often be in different histogram bins)
but small enough that measurement C still has predictive rel-
evance regarding measurement B.

For a range of ∆n the transfer entropy T∆n∆t was calculated
as a function of the transfer time delay ∆t; the graphs exhibit
a peak for a positive value of ∆t with the maximum value de-
creasing with increasing distance ∆n to node n (Fig. 6). The
spatial progression of the maximum (increasing ∆n) depends
in good approximation linearly on its transfer delay time for
the two cases tested, which justifies the definition of an infor-
mation transfer velocity,

v = ∆n/∆t. (13)

Due to complications caused by the extraneous oscillations of
T∆n∆t, the value of v was chosen subjectively, v = 4.2 for the
cGL system and v = 3.3 for the GS system. Figure 6 shows the
variation of the transfer entropy with the time delay ∆t for the
cGL system and the GS system, corrected by the information
velocity term to align the graphs for different ∆n. The peaks
align with some relatively small deviations, which confirms
the existence of an information transfer velocity according to
∆t = ∆n/v. For the GS system there is an anomalous shift in
the peak towards larger values of ∆t at around ∆n = 70.

In the absence of the additional entropy source in the form
of a unidirectional shortcut, the peaks of T∆n∆t are less well
defined, although the correction with the information transfer
velocity still yields an approximate alignment of the graphs.
Using delayed mutual information rather than T∆n∆t we get
similar results. In the presence of the unidirectional shortcut,
the transfer entropy propagates with an approximately con-
stant velocity for nodes within some distance ∆n from node n
in both systems. Without the shortcut we find an approximate
alignment for small ∆n of less well defined peaks for the cGL
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FIG. 6. (Color online) Logarithm of transfer entropy T∆n∆t vs. time
delay ∆t for a variety of node spacings ∆n (∆n = 0, 5, 10, 15, etc.
from top to bottom) for (a) the cGL ring network (c1 = 3.5, c3 =

0.95) and for (b) the GS ring network (µ = 33.7, Φ = 2.8). Each
curve is shifted in ∆t using the estimated information transfer veloc-
ity v (v = 4.2 for cGL system, and v = 3.3 for GS system) to allow
the peaks to align. The break in the graphs at ∆n = 0, ∆t = u occurs
because T∆n∆t = 0 at that point [Eqs. (11-12)]. The location m of
the additional entropy source is at |n − m| = N/2 with N = 1000 the
network size.

ring network, and no alignment for the GS ring network. For
both information measures we find that the addition of an ad-
ditional entropy source clearly helps to determine the velocity
of the particular information flow.

The presence of an abnormal node (boundaries or short-
cuts) is a piece of information, and it takes time for this infor-
mation to travel to a remote area. The spatial localization of
unusual node characteristics due to boundary conditions and
abnormal network topology (e.g. shortcuts) as described in
Sect. III can be interpreted as information being attenuated as
it travels away from the abnormal nodes to neighboring nodes.
The limited spatial reach of this information is conjectured to
be related to the amount of time required for information to
travel from one region to another. Information transfer ve-
locity could then transform any of the length scales L defined
in this paper into characteristic time scales T for information
attenuation (T = L/v).

V. MEASURING SPACE-TIME INFORMATION FLOW
WITH FINITE PERTURBATIONS

The spatially limited influence of boundary conditions de-
fines various length scales of interaction (Sect. III). Finite dy-
namical perturbations give insight into the spatiotemporal in-
formation flow. Spatiotemporal chaos is exposed to a spatially
localized and temporally periodic perturbation. The perturba-
tion is added in Eq. (1), yielding

dxn

dt
= F(xn) + DH

N∑
j=1

∆n jx j + p(t)q(n), (14)

where p is localized in time and periodic with period P, and
q is localized in space. In the interest of numerical stability, p
and q were chosen to be bump functions,

p(t) = f (2[(t mod P)/wt] − 1) (15)
q(n) = q0 f ([n − n0]/wn) , (16)

with

f (α) =

{
exp

(
1 − 1

1−α2

)
if |α| < 1

0 otherwise.
(17)

wt refers to the duration of the perturbation; it needs to be long
enough to have a measurable effect on the system’s informa-
tion flow. P is the period between successive perturbations;
it needs to be large enough for the system to reach its natural
state before the next perturbation, wt << P. The perturba-
tion of radius wn is centered at the node n0 = N/2; it must
be wide enough such that the perturbation is not immediately
dampened by diffusion. wn = 10, wt = 1, P = 50 for the
cGL system, and P = 300 for the GS system were chosen in
this paper. q0 determines the direction and amplitude of the
perturbation; we used q0 = (5, 0) for the cGL system, and
q0 = (2, 0) for the GS system.

The consequences of the periodic perturbations for the local
characteristics of the dynamical variable X at a time τ after the
onset of each perturbative event are quantified via averages
〈Xnτ〉,

〈Xnτ〉 = lim
K→∞

1
K

K∑
k=1

Xn(t = kP + τ), (18)

where n and τ (0 ≤ τ < P) represent the spatial and temporal
indices.

Figure 7 shows the spatiotemporal deviations of 〈Xnτ〉 from
the large-ring baseline average X̄0 for the cGL ring network
and the GS ring network. The spatially and temporally lo-
calized perturbations clearly affect the dynamical characteris-
tics in the space-time neighborhood of the perturbation. The
pseudorandom structure filling the background of the plots
presents the noise floor, which decreases logarithmically as
a function of simulation time. The dotted lines in Fig. 7 have
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FIG. 7. Spatiotemporal deviations in the average nodal characteris-
tics for perturbed [Eq. (14)] and unperturbed [Eq. (1)] network dy-
namics at node n and at a time τ after the onset of the perturbation. (a)
ln|〈rnτ〉 − r̄0| for the cGL ring network (c1 = 3.5, c3 = 0.95, N = 500,
P = 50, q0 = (5, 0), and K = 7.2 × 106), and (b) ln|〈anτ〉 − ā0| for the
GS ring network (µ = 33.7, Φ = 2.8, N = 500, P = 300, q0 = (2, 0),
and K = 6.0 × 105). The other parameters for the spatiotemporally
localized finite perturbation are n0 = N/2, wn = 10, and wt = 1.
The dotted lines have slope equal to the information transfer velocity
[Eq. (13)] and are plotted for comparison.

a slope equal to the information transfer velocity [Eq. (13)];
these lines closely match the perturbation wavefront. On the
one hand this is to be expected since the perturbation can be
considered as a piece of information that travels through the
system. On the other hand, the connection between informa-
tion transfer velocity and the perturbation wavefronts in Fig. 7
is not trivial. Information transfer velocity is defined in terms
of information theoretic quantities [Eq. (11)] and based on a
passive measurement of the dynamical system, whereas the
perturbation front is defined by a nodal average [Eq. (18)] and
measured by actively perturbing the dynamical system.

Information on injected signals (Fig. 7) as well as informa-
tion on boundary conditions (Fig. 3) cannot travel across great
distances through a medium (network) of STC in the case of
the cGL network and the GS network. A sender could en-
code a message into the perturbation term p(t)q(n) of Eq. (14)
to be sent through the reaction-diffusion network. Due to the
scrambling of information a receiver sufficiently far from the
sender could not observe any effect even after integrating over
millions of transmissions [K = 7.2 × 106 in Fig. 7(a)]. In
analogy a boundary condition (shortcut) can be considered to
be a sender of the message “presence of a boundary condition
(shortcut),” and a far away receiver is not able to detect this
signal.
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FIG. 8. (a) The data from Fig. 7, collapsed along the temporal (τ)
axis. (b) The data from Fig. 7, collapsed along the spatial (n) axis.
Note that the time axis is scaled differently for the cGL and GS traces.

The temporal or spatial reach of the finite size perturba-
tion follows from the deviation |〈Xnτ〉 − X̄0| by summation
over either the n or the τ parameter. The nodal deviations∫
τ
|〈Xnτ〉 − X̄0| in Fig. 8(a) show a clear decrease with distance

to the perturbation. Whether this decay is exponential with the
distance |n − n0| to the perturbation is not clear; longer simu-
lations are necessary to reduce the noise floor, although low-
ering the noise floor requires exponentially longer simulation
times. The current simulation times exceeded 108 time units.
In case there is an exponential decay the decay coefficient
would provide another candidate for the length scale of in-
teraction. The temporal reach

∑
n|〈Xnτ〉− X̄0| of the spatiotem-

poral perturbations across the entire network decays with the
time distance (τ) to the onset of a perturbation [Fig. 8(b)]. It
is again not clear whether this decay is exponential; it appears
that there is a transition from a fast decay rate for small τ to
a slower decay rate for larger τ. The decay rate provides a
measure of how fast the system recovers from finite size per-
turbations.

The attenuation of deviations
∑

n|〈Xnτ〉 − X̄0| over time τ
can be explained in terms of the Kolmogorov-Sinai entropy,
but the attenuation rate is clearly underestimated. Chaotic
systems have positive Lyapunov exponents and so they spon-
taneously create information; the stretching process magni-
fies pieces of information that were previously unobservable.
The average rate of information production is given by the
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Kolmogorov-Sinai entropy, which is bounded from above by
the sum of positive Lyapunov exponents, Σ+ [39]. Because a
system has a maximum capacity of information that depends
on the resolution and the accuracy of the measurement, as in-
formation is created other information must be destroyed [40].
Therefore, the Kolmogorov-Sinai entropy (approximated by
Σ+) provides an estimate for the rate of information loss. We
compare the Kolmogorov-Sinai entropy with the attenuation
rate of

∑
n|〈Xnτ〉 − X̄0| with τ in Fig. 8(b). For the GS ring net-

work the Kolmogorov-Sinai entropy density (approximated
by the slope of Σ+ vs. N in [20]) is 0.001126 nats/(node·time).
The perturbation spreads out to an area less than 300 nodes
(Fig. 8(b)), which yields an entropy less than 0.34 nats/time
in this region. The inverse gives a characteristic time for in-
formation loss greater than 3.0. In contrast, the decay constant
for

∑
n|〈anτ〉 − ā0| in Fig. 8(b) is somewhere in the range of 12

to 56 depending on which part of the graph is considered. This
shows that our calculation clearly underestimates the time of
recovery from a finite perturbation.

For the ring network in Fig. 7 the message sent by the lo-
calized perturbation is fully attenuated before it can complete
the loop around the ring. In this case the ring network is large
enough so that the information propagating in both directions
around the ring network is completely scrambled before the
propagation fronts meet; a local portion of the network is then
unable to communicate with itself across the ring, i.e. the
network is unable to ”detect” its own size, and microexten-
sivity should be guaranteed. In contrast, if the ring network
is smaller (e.g. N = 100 or 200) there would be interference
between the right moving and left moving information fronts;
the size of the ring is detectable, and deviations from microex-
tensivity are expected. We further argue that even if informa-
tion is spontaneously generated from only within a system,
like for example the local extinct regions in the GS system,
the spatial extent of their influence is still governed by the re-
sults in this chapter (Fig. 7). Consequently, the size of a ring
network is only detectable for small systems even in the ab-
sence of external perturbations.

VI. LENGTH SCALE OF INTERACTION IN A SYSTEM
WITH STABLE CHAOS

We present preliminary results to show that the various
length scales of interaction introduced in the previous chap-
ters also apply to the phenomenon of stable chaos [41, 42],
an irregular spatiotemporal dynamics with negative Lyapunov
exponent. Stable chaos is additionally characterized by dis-
ordered spatial structures (finite correlation dimension), ex-
ponentially decaying temporal and spatial correlations, and a
finite lifetime that increases exponentially with the size of the
system, a property shared by the Gray-Scott system and other
transient spatiotemporally chaotic systems. Stable chaos is
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FIG. 9. (Color online) Length scales of interaction for stable chaos
in the coupled map lattice [Eq. (19) with a = 0.07, b = 2.7, c = 0.1,
and ε = 2/3]. (a) Deviation of time averages [〈xn〉, Eq. (5)] from the
spacetime average of a large ring network [x̄0, Eq. (7)] for varying
nodes n near a no-flux boundary (N = 1000), in analogy to Fig. 3.
(b) Logarithm of transfer entropy T∆n∆t vs. time delay ∆t for a variety
of node spacings ∆n (∆n = 0, 1, 2, 3, etc. from top to bottom), in
analogy to Fig. 6. Each curve is shifted in ∆t using the estimated
information transfer velocity v (v = 0.75 nodes/timestep) to allow
the peaks to align. (c) Spatiotemporal deviations in the average nodal
characteristics for perturbed [Eq. (14)] and unperturbed [Eq. (19)]
network dynamics at node n and at a time τ after the onset of the
perturbation, ln|〈xnτ〉 − x̄0|, (with parameters N = 200, P = 100, n0 =

N/2, q0 = 1, K = 1.3 × 108, wn = 3, and wt = 2 [43]), in analogy to
Fig. 7. The dotted lines have slope equal to the information transfer
velocity v [Eq. (13)], and the double dotted lines have slope equal to
the disturbance propagation velocity vd in Eq. (20).
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often studied in the following coupled map lattice (CML),

xn(t + 1) =
ε

2
f (xi−1(t)) + (1 − ε) f (xi(t)) +

ε

2
f (xi+1(t)),

f (x) =

{
bx if 0 < x < 1/b
a + c(x − 1/b) if 1/b ≤ x < 1, (19)

where time t is discrete and n refers to the node number. We
use the same parameters as in [41], i.e. a = 0.07, b = 2.7,
c = 0.1, and ε = 2/3, for which the system reaches an asymp-
totically periodic state after a transient time.

We show that the techniques set forth in this paper apply
equally well to determining length scales of interaction in this
stable chaotic CML. Figure 9(a) shows an exponential de-
crease of the deviation of time averages 〈xn〉 near a no-flux
boundary condition as compared to the spacetime average of a
large ring network x̄0, using the technique outlined in Sect. III.
The linear fit gives a short characteristic length scale of 2.5
nodes. Figure 9(b) shows the transfer entropy T∆n∆t for this
CML, using the technique outlined in Sect. IV. It is not clear
a priori that this measure provides a useful result in the case
of stable chaos; the negative Lyapunov exponent relates to a
zero Kolmogorov-Sinai entropy, and therefore a vanishing lo-
cal information production rate. Nevertheless the sequence of
transfer entropies in Fig. 9(b) defines an information transfer
velocity [Eq. 13], similar to the chaotic and transient chaotic
system in Fig. 6. The information transfer velocity is approx-
imately 0.75 nodes/timestep.

An alternate measure of velocity was defined in [41] via
the propagation of disturbances. A localized perturbation is
applied to one of a pair of identical systems, and the radius
of the region (range of nodes) d(t) for which the two systems
differ by more than a small tolerance is measured. The distur-
bance propagation velocity vd is then defined as

vd = lim
t→∞

〈d(t)〉
t

, (20)

where 〈·〉 represents an average over several simulations. We
compute vd = 0.557±0.004 nodes/timestep for a tolerance of
10−3 and an average over 100 simulations.

Figure 9(c) shows the average spatiotemporal response to a
localized perturbation using the technique of Sect. V. The in-
formation transfer velocity (v = 0.75 nodes/timestep, single-
dotted line) provides a good match for the propagation wave
front for small times τ, and the disturbance propagation veloc-
ity (vd = 0.557 nodes/timestep, double-dotted line) fits well
for later times τ.

As demonstrated in Figs. 9(a)-9(c) stable chaos in this CML
behaves similar to the asymptotic and the transient spatiotem-
porally chaotic systems; information is attenuated as it travels
through the system and remote parts become essentially in-
dependent of each other. The negative Lyapunov exponent in
stable chaos provides an interesting perspective to the discus-
sion in Sect. V; the Kolmogorov-Sinai entropy is zero and yet
information is attenuated. In this case there must be more go-
ing on than new information pushing out old information [40].
The negative Lyapunov exponent results in quenching tiny
perturbations, and thus in removing information, but the anal-
ysis for large perturbations is more complicated.

FIG. 10. A transformation that turns two ring networks each having
N nodes into one network with 2N nodes, without changing the local
network structure or the total number of nodes.

VII. DISCUSSION

In this paper we have put forth a variety of characteristic
length scales of interaction in reaction-diffusion networks, ap-
plying them to spatiotemporal chaos (STC) in the complex
Ginzburg Landau (cGL) network, to transient spatiotemporal
chaos in the Gray-Scott (GS) network, and to stable chaos in
a coupled map lattice. Each of these length scales relates to
the localization of observable phenomena. Beyond the length
scale associated with space time averages |X̄ − X̄0| for variable
X (Fig. 2) the specific size of a ring network begins to become
insignificant. Effects of boundary conditions become insignif-
icant for nodes that are far from the boundary in comparison
to the length scale associated with nodal average |〈Xn〉 − X̄0|

(Fig. 3). Interactions between regions with special network
topologies (e.g. diffusion shortcuts between distant nodes) be-
come insignificant if the regions are separated by a distance
that is large in comparison to the length scale associated with
E (Fig. 4). These length scales are listed in Table I together
with the chaotic length scale ξδ [1] [Eq. (4)] and the length
scale based on mutual information (Fig. 5). They are in gen-
eral not proportional to each other, except that ξδ is close to
twice the length scale associated with |〈Xn〉 − X̄0|. Further
studies would reveal whether this is significant or just a coin-
cidence.

These various length scales of interaction are of practical
importance for Ruelle’s concept of extensivity [15]. Suppose
two identical ring networks each contain N nodes and each
have Lyapunov dimension DL, so that the composite system
(the set product of both rings) has Lyapunov dimension 2DL.
Suppose that the two rings are joined together to create a sin-
gle ring network with 2N nodes (Fig. 10). If the Lyapunov di-
mension for the transformed ring network (2N nodes) is 2DL,
the system is extensive [1, 16]. Sect. III demonstrates that
such a transformation has no impact on node averages 〈Xn〉

for a wide range of variables X if the ring networks are large
enough. Although there is no formal connection between Lya-
punov dimension and nodal average 〈Xn〉, it seems reasonable
that any change in the support and natural measure of a chaotic
attractor that changes its dimension DL would also impact
〈Xn〉 for some variable X. Similarly, the length of a shortcut
should have no impact on Lyapunov dimension as long as the
shortcut is much longer than the length scale associated with
E (Fig. 4).

The independence of local dynamics on system size (as
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measured in Sect. III) for large enough systems should guar-
antee microextensivity for large systems. According to Ruelle
extensive systems have no long scale correlations and behave
as a sum of their parts [15]. This implies that the Lyapunov di-
mension density could be calculated through the observation
of local regions of an STC system. Although such a method is
not yet known, it can be assumed that any change of Lyapunov
dimension density (for certain network sizes) would necessar-
ily require some observable change in local dynamics. Or in
other words, if the total network size has no observable ef-
fects on the local dynamics for large systems, the Lyapunov
dimension density should be constant as well. This hypoth-
esis is supported by the results of Fishman and Egolf [25]
who showed that the cGL system exhibits significant devia-
tions from microextensivity in Lyapunov dimension for small
system sizes: the magnitude of these deviations decreases ex-
ponentially with the size of the system [25]. We have calcu-
lated the length scale associated with the exponential decay
of these deviations from extensivity; they are printed in Ta-
ble I [37]. The length scales are about 30 nodes for the two
cGL networks where deviations were found.

Recently Karimi and Paul have reported deviations from
microextensivity in the Lorenz-96 model [44] that do not di-
minish with system size. The Lorenz-96 model differs from
the cGL and GS models in that the coupling between adja-
cent nodes is nonlinear and not Laplacian. In addition the
spatiotemporal patterns appear to be approximately spatially
periodic even in the chaotic regime, in contrast to the (appar-
ent) lack of large scale structures in the cGL and GS patterns.
This may indicate that in the Lorenz-96 model the deviations
from microextensivity persist for truly large sizes. In this case
the techniques outlined in this paper may reveal large scram-
bling length scales such that a boundary condition (Sect. III)
or a finite perturbation (Sect. V) could be observable far from
its source. The effect of boundary conditions on defect chaos
in the two-dimensional cGL system was studied by Eguiluz et
al [45]. This might be another case with possibly long inter-
action length scales as topological defects are conserved and
can only be created at the boundary; this is to be explored in
further studies.

Oscillatory deviations from extensivity that diminish with
network size have also been reported in the Wacker-Schöll
system for the logarithm of the average lifetime of tran-
sient spatiotemporal chaos [20]. In this system spatiotempo-
ral chaos typically collapses into a spatiotemporally periodic
state, with certain spatial periods accessible to certain system
sizes (system sizes that are close to a multiple of the spatial pe-
riod) [20]. The resulting deviations from extensivity and their
decrease with network size [20] are expected to have little in
common with the deviations reported in [25] and in this paper;
this paper concerns measurements made on the chaotic saddle
(GS system) or on the chaotic attractor (cGL system) whereas
transient lifetime becomes manifest only when a system exits
from a chaotic saddle.

Spacetime averages X̄ for a small ring network differ
significantly from the limiting case X̄0 for large networks
(Fig. 2). Thus any type of measurement on small networks
can be considered an anomaly. This is relevant for deter-

mining e.g. the average lifetime of transient spatiotemporal
chaos, which typically increases exponentially with network
size [5, 8, 9, 18, 20] in the range of network sizes that are
currently computationally accessible (even with supercomput-
ing power). For the GS-ring network we can barely reach the
range for which network sizes do not matter anymore [20],
where X̄ approaches its limit X̄0 (N ≈ 200 in Fig. 2). There-
fore it is currently not clear whether this exponential depen-
dence reported widely in the literature will still hold for large
enough networks, or if so what value the slope of log-lifetime
vs. N will take as N → ∞.

In Sect. V space-time information flow was probed with
finite perturbations and measured with space-time averages
〈Xnτ〉 [Eq. (18)]. This concept is somewhat opposite to the
paradigm of Lyapunov exponents. For STC an infinitesimal
perturbation will on average grow exponentially over time
whereas finite perturbations measured through 〈Xnτ〉 − X̄0 de-
crease (somewhat) exponentially over time. On the one hand
chaotic systems are sensitive to small changes in initial condi-
tions, on the other hand initial conditions become qualitatively
irrelevant over time as the finite differences eventually get lost
in the dynamics of the system. The timescale associated with
the decay of finite perturbations tells how quickly a system
recovers from a large perturbation rather than how quickly a
system diverges due to a small perturbation. Another impor-
tant difference between finite and infinitesimal perturbations
is that finite perturbations are fully expected to behave non-
linearly; i.e. the profile 〈Xnτ〉 − X̄0 should be nonlinear with
regards to the perturbation p(t)q(n). For example, interference
in the space-time information flow arises from a perturbation
q(n) that describes two bump functions separated by a small
spatial distance.

The techniques presented in this paper have been explored
for reaction-diffusion networks and coupled map lattices, but
they are applicable to a wide variety of systems such as ex-
tended systems without Laplacian diffusion (e.g. Lorenz-96
model) or fluids. For example, the information flow from the
local scale to the mean field scale could be measured with
finite perturbations (Sect. V), complementary to the reverse
information flow studied in a globally coupled network [46].
With some modifications our techniques would also be appli-
cable to delay differential equations. They could be extended
to include higher order statistical moments besides the nodal
average (〈Xn〉). To some extent this was done in Figs. 2,3 and 4
for the variable a in the cGL network, since 〈an〉 = 0 due to the
U(1) symmetry of the dynamical equation but

〈
a2

n

〉
, 0. Even

better would be the use of histograms to compute the proba-
bility distribution of a variable X at each node. The absolute
difference (e.g. |〈Xn〉 − X̄0|) could then be replaced by a sta-
tistical distance between probability distributions. There is at
least one advantage to this approach. Averages 〈Xn〉 are one-
dimensional scalar quantities, and when compared against an-
other scalar the error (e.g. |〈Xn〉 − X̄0|) can cross zero, which
yields large dips in Fig. 3. Probability distributions should not
have this problem since they are not scalar quantities; in addi-
tion they should be sensitive to a wider variety of changes in
system behavior than simple averages.
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