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The bacterial cell wall is a network of sugar strands crosslinked by peptides that serves as the pri-
mary structure for bearing osmotic stress. Despite its importance in cellular survival, the robustness
of the cell wall to network defects has been relatively unexplored. Treatment of the Gram-negative
bacterium Escherichia coli with the antibiotic vancomycin, which disrupts the crosslinking of new
material during growth, leads to the development of pronounced bulges and eventually of cell lysis.
Here, we model the mechanics of bulging of the cytoplasmic membrane through pores in the cell
wall. We find that the membrane undergoes a transition between a nearly flat state and a spherical
bulge at a critical pore radius of ∼ 20nm. This critical pore size is large compared to the typical dis-
tance between neighboring peptides and glycan strands, and hence pore size acts as a constraint on
network integrity. We also discuss the general implications of our model to membrane deformations
in eukaryotic blebbing and vesiculation in red blood cells.

I. INTRODUCTION

In most bacteria the peptidoglycan cell wall, a compos-
ite of long sugar strands (glycans) crosslinked by stretch-
able peptides, is the primary stress-bearing and shape-
maintaining structure [1]. In E. coli, the osmotic-pressure
differential across the cell membrane ranges from ∼ 0.5
to 3 atm depending on the osmolality of growth [2], and
the cell wall plays an essential role in maintaining the in-
tegrity of the cell. Importantly, the cell wall is a growing
structure and bonds must be broken to permit growth
and division, potentially leading to defects in the pep-
tidoglycan network. Despite the potential vulnerability
of the cell, a quantitative understanding of the sensitiv-
ity of the cell to such defects is still lacking. Such an
understanding would be particularly valuable given that
many antibiotics target the growing cell wall. In this
Letter, we analyze the mechanical deformations of the
membrane resulting from pores in the cell wall.

In a recent paper, Huang et al. [3] investigated the
effect of the antibiotic vancomycin on a vancomycin-
sensitive strain of the Gram-negative bacterium E.

coli [4]. In the presence of vancomycin, cells often de-
veloped a pronounced bulge (inset to Fig. 1), which grew
with time and led eventually to cell lysis. Such bulge for-
mation is a typical response to perturbations of the pepti-
doglycan synthesis pathway [5], and vancomycin disrupts
the formation of new peptide crosslinks [6]. We hypothe-
size that the accumulation of crosslink defects in a small
region creates a pore in the cell wall. Above a critical
pore size, our model predicts that the osmotic pressure
differential drives bulging of the plasma membrane out
through the pore. Bulging is irreversible, hence once the
membrane bulges out, the cell has no mechanism for re-
pair and ultimately loses its viability. Our model and
analysis is also relevant for a broad spectrum of cellular
phenomena, including blebbing in eukaryotic cells [7, 8],

vesiculation in red blood cells [9, 11–13], and budding in
multicomponent membranes [14].

II. MODEL AND RESULTS

To study the observed bulge formation in Gram-
negative bacteria, we model the energetics of the plasma
membrane using the functional

E = Ebend + Esurf + Epress

=
κ

2

[
∫

dA (2C̄ − C0)
2

]

+ σA − PV. (1)

The surface integral in the first term corresponds to the
Helfrich bending energy [15], where C̄ is the local mean
curvature of the membrane, C0 is its spontaneous curva-
ture, and κ is the bending modulus. In the second term,
A is the area of the bulge and σ is the surface tension.
In the third term, P is the osmotic pressure differential
across the membrane and V is the volume contained in
the bulge. We consider the lowest energy conformation of
a membrane constrained by a flat external cell wall with
a circular pore of radius r. For small r, bulging is disfa-
vored due to the cost of bending, while for large r turgor
pressure favors the formation of a membrane bulge, which
we model as an axisymmetric truncated sphere of radius
R [16] as shown in Fig. 1. For brevity, we ignore the ad-
ditional resistance to bulging produced by the bending
energy of the neck, which depends on the details of the
morphology of the neck region.

In order to estimate the critical pore radius for large
bulge formation, we calculate the spherical portion de-
fined by the bulge angle θ in Fig. 1. When the surface
is essentially flat and the membrane does not protrude
out of the pore, θ ≈ 0, while for a large protrusion where
the bulge tends towards a complete sphere, θ ≈ π. R,
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r, and θ are not independent, but rather satisfy the rela-
tion sin θ = r/R. The solid angle subtended by the bulge
surface is given by 2π(1 − cos θ).

In its unbulged state, the plasma membrane typically
has excess area relative to the cell surface, including ex-
cess area contained in membrane fluctuations. The sur-
face tension of a thermally fluctuating membrane is given
by [17]

σ ≈
π2κ

a0

exp

(

−
8πκ

kBT

(

A − Ap

Ap

))

, (2)

where a0 ≈ 0.7 nm2 is the area per lipid, A is the total
membrane area, and Ap is the projected area. Based on
the observation that osmotic shock causes a noticeable
elongation of E. coli cells, a lower-bound estimate esti-
mate of (A − Ap)/Ap ≈ 0.05 yields an overall factor of
∼ 10−11 due to the exponent in Eq. 2, suggesting that
unbulged membranes may have very low surface tension.
Moreover, in the analysis below, we will demonstrate that
there is typically an energy barrier to large bulge forma-
tion that occurs for small bulges, thus the membrane can
be stabilized against bulging simply by its resistance to
bending, without the stabilizing effect of surface tension.
Therefore, we initially set the surface tension to zero.

R

r

θ

FIG. 1. (Color online) Schematic of a spherical mem-
brane bulge with radius R protruding from a circular
pore in the cell wall with radius r. The angle θ defines
the portion of the sphere that has been pushed through
the pore. Inset: a vancomycin-treated E. coli cell in
late stages after bulge formation (left, arrow indicates
bulge), and a cell wall shell after lysis (right).

The surface area of the bulge is

A(θ) =

∫ θ

0

∫ 2π

0

R2sin θ′dθ′dφ = 2πR2(1 − cosθ), (3)

and the volume of the bulge is

V (θ) =
1

3
πR3

(

2 − 3 cos θ + cos3 θ
)

. (4)

Neglecting the bending energy of the neck, where the
surface of the bulge connects with the flat membrane,
the energy of the bulge for σ = 0 and C0 = 0 is

E = 4πκ(1 − cos θ) −
πP

3

( r

sin θ

)3

(2 − 3 cos θ + cos3 θ).

(5)

To determine the general dependence of the membrane
energy on pore radius, we define the dimensionless pore
radius r̃ = r/lp, where lp = (κ/P )1/3 is the length scale
associated with the transition between the unbulged and
bulged states. The dimensionless rescaled membrane en-
ergy is then

Ẽ =
E

πκ
= 4(1−cos θ)−

1

3

(

r̃

sin θ

)3
(

2 − 3cos θ + cos3θ
)

,

(6)
Notice that Ẽ depends only on the dimensionless pore
radius r̃ and on the extent of bulging represented by θ.

In Fig. 2, we plot Ẽ versus θ for several values of r̃.
We find a critical value of r̃ given by r̃c ≈ 2, such that
if r̃ < r̃c, there is a local minimum energy state at a
small (nonzero) value of θ corresponding to an almost
flat membrane, separated by an energy barrier from the
bulged shapes represented by large values of θ. As r̃ ap-
proaches r̃c, the energy barrier shrinks, and disappears
for r̃ > r̃c. Thus, for r̃ > r̃c there is no metastable
state corresponding to an almost flat membrane and no
energy barrier to prevent a membrane bulge from grow-
ing. In this sense, r̃c represents the rescaled critical pore
radius. We note that even for r̃ < r̃c, given sufficient
time, there is a finite probability of the membrane cross-
ing the energy barrier and bulging out due to thermal
fluctuations. However, for a realistic bending modulus
κ = 20kBT at room temperature, the barrier becomes
large (∼ 100kBT for r̃ = 1.7), making such a process
highly unlikely within a cell’s lifetime.Thus r̃c provides a
reasonable estimate of the minimum pore size for spon-
taneous membrane bulging. Using an estimated turgor
pressure P = 1 atm, we find lp = (κ/P )1/3 ≈ 9 nm, and
a critical pore radius of rc = r̃c × lp ≈ 18 nm. This size
is larger than the typical pore size of a highly crosslinked
cell wall [19], and corresponds to a distance of ∼ 10 gly-
can strands measured along the long axis of the cell.

To better understand the results in Fig. 2, we note that
for small θ, Ebend ∼ θ2 while Epress ∼ −θ. For r̃ < r̃c, the
local minimum at small θ is given by the balance between
these two contributions. More precisely, expanding to
order θ3 for small θ, Ẽ ≈ 2θ2 − r̃3/4

(

θ + θ3/6
)

. For
small r̃, one can ignore the θ3 term to determine the
minimum in Ẽ at θ ≈ r̃3/16. Since the position of this
minimum grows as r̃3, as r̃ → r̃c the θ3 term becomes
important and overcomes the positive curvature at the
minimum. Also note that as θ → π, i.e. when the bulge
approaches a complete sphere, the energy is negative and
diverges as −(4/3)[r̃/(π − θ)]3.

To determine the value of r̃c analytically, we note that
for r̃ > r̃c the slope of the curve for E versus θ is negative
for all 0 < θ < π. Thus, when r̃ equals the critical value
r̃c, the maximum value of the slope ∂Ẽ/∂θ equals zero.
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FIG. 2. (Color online) Energy (in units of πκ) as a
function of the bulge angle θ for several values of the
dimensionless pore radius r̃ = r/lp. The minimum
value of r̃ that allows bulges to form spontaneously is
r̃ ≈ 2. Schematics indicate the membrane conforma-
tion at low and high values of θ.

The slope is given by

∂Ẽ

∂θ
= 4 sin θ −

r̃3

(1 + cosθ)
2
, (7)

and the condition ∂Ẽ/∂θ ≤ 0 yields r̃3 ≥ 4 sin θ(1 +
cos θ)2. Therefore, at the critical pore radius, r̃3

c equals
the maximum value of the right-hand side, whose ex-
trema are given by the condition

(1 + cos θ)
2
(3cos θ − 2) = 0. (8)

One trivial solution, θ=π, is a saddle-point corresponding
to a complete bulge. The other solution, cos θ = 2/3,
is a maximum and determines the critical pore radius
r̃c ≈ 2.02, which agrees well with our previous estimate.

We next investigate the effect of membrane surface ten-
sion, represented by the energy contribution

Esurf = σA(θ) = 2πσr2(1 − cosθ)/ sin2 θ.

Note that at small θ, this term is proportional to σθ2,
aside from a constant energy. Thus for positive σ (corre-
sponding to an energy cost for drawing out membrane),
the scaling of Ẽ ∝ θ2 remains the same for small θ. The
basic form for the E versus θ curves is similar, though
the additional energy cost due to Esurf increases the crit-
ical pore radius. By defining the dimensionless surface
tension σ̃ = σ/(κP 2)1/3, the rescaled bulge energy can

be written as

Ẽ = 4(1 − cos θ) −
1

3

(

r̃

sin θ

)3
(

2 − 3 cos θ + cos3 θ
)

+
σ̃r̃2

cos2(θ/2)
. (9)

For r̃ ≥ r̃c, the condition ∂Ẽ/∂θ ≤ 0 can expressed in the
form 0 ≤ r̃3 + ar̃2 + br̃ + c with a = −2σ̃sinθ, b = 0, and
c = −4sinθ (1 + cosθ)

2
. Treating r̃3+ar̃2+br̃+c = 0 as a

cubic equation in r̃, its discriminant, ∆ = 18abc−4a3c+
a2b2 − 4b3 − 27c2, can be shown to be negative definite
in the range 0 < θ < π for σ ≥ 0. Negative ∆ implies
one real and two complex conjugate roots, hence the in-
equality can be written as 0 ≤ (r̃ − r̃1)

[

r̃2 + αr̃ + β
]

,
where r̃1 corresponds to the real root, and r̃1, α, and β
are functions of θ. Since the other two roots are complex,
f(r̃) = r̃2 + αr̃ + β cannot cross the x-axis (correspond-
ing to f = 0), and thus we find f > 0 for all real r̃ and
for 0 < θ < π. The sign of −∂Ẽ/∂θ is thus the same as
the sign of r̃ − r̃1; for r̃ < r̃c, r̃ − r̃1 changes signs as a
function of θ while for r̃ > r̃c, r̃ − r̃1 is greater than zero
for all θ (0 < θ < π) (see Fig. 2). At r̃ = r̃c, the mini-
mum value of (r̃c − r̃1) is zero, implying that the critical
radius can be obtained by maximizing r̃1 as a function
of θ. In Fig. 3, we plot r̃c as a function of σ̃. Notice
that the dependence of r̃c on σ̃ is weak at small values of
σ̃. For a typical lipid bilayer membrane with a rupture
tension of 10−2 N/m [18] and κ = 20kBT and a turgor
pressure of P = 1 atm, σ̃ ≈ 10 at rupture. Therefore,
given that we previous an unbulged bacterial membrane
to be at low surface tension relative to rupture, inclu-
sion of surface tension does not dramatically alter our
previous estimate of the critical pore radius.

If the spontaneous curvature of the membrane is
nonzero, the bending energy of the bulge becomes [20],

Ebend(θ) = 4πκ(1 − RC0)(1 − cos θ). (10)

Rewriting R as r/ sin θ and introducing a dimensionless
spontaneous curvature C̃0 = C0lp, we obtain the rescaled

energy Ẽ. By calculating the slope ∂Ẽ/∂θ, and proceed-
ing as above, we obtain r̃c as function of C̃0, as shown
in the inset of Fig. 3. The reduction of r̃c at nonzero
C̃0 becomes significant only when C̃0 > 1, i.e., when
the spontaneous radius of curvature 1/C0 is smaller than
lp ≈ 9 nm. Although this is smaller than the radius of
curvature of typical bacterial phospholipids, the plasma
membrane is a multicomponent membrane, such that ag-
gregation of components with high intrinsic curvature in
the pore region could drive membrane bulging by reduc-
ing the critical pore radius.
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FIG. 3. Rescaled critical radius r̃c as a function of the
rescaled surface tension σ̃. Inset: r̃c as a function of
the rescaled spontaneous curvature C̃0 at σ̃ = 0.

III. CONCLUSIONS AND DISCUSSION

To conclude, we estimate that for an osmotic pressure
differential of one atmosphere, there is a critical peptido-
glycan pore radius of ∼ 20 nm above which the membrane
will spontaneously bulge through the pore. The critical
pore radius scales as P−1/3 so that at higher pressure the
critical pore radius decreases. Since the critical radius
is large compared to the distance between neighboring
peptide and glycan strands in the peptidoglycan network
(typically 2-4 nm), a critical pore in the cell wall would
correspond to several adjacent broken or missing glycan
chains. At the same time, the critical pore radius is small
compared to the cell’s radius of ∼0.5 microns.

In most animal cells, the cortex – a network of actin,
myosin, and associated proteins – lies under the plasma
membrane and determines the shape of the cell. The
cortex enables the cell to resist externally applied stresses
and to perform mechanical work. In many physiological
conditions, transient, localized detachment of the cortex
from the plasma membrane causes the formation of a
bleb (a bulge in the plasma membrane), driven by local
contractions of the actin cortex that push the cytosol
outwards and generate a pressure difference across the
membrane [7, 8]. A bleb will typically grow to a size of
∼ 2 µm over a time scale of 30 seconds, and then retract
over the subsequent two minutes. Our analysis can be
directly carried over to model bleb generation. In the
absence of surface tension, a typical pressure difference of
around 100 Pa [7] would correspond to a critical radius of
200 nm, which is close to the mesh size of the actin cortex
[7]. This indicates that surface tension of the plasma
membrane in animal cells may play an important role in
preventing bleb formation, by increasing the critical pore
radius as shown in Fig. 3.

The related phenomenon of budding and vesicle for-
mation provides an important means for protein sorting
and trafficking. In intracellular trafficking, protein com-
ponents of secretory vesicles, lysosomes, and the plasma
membrane are sorted and directed to specific destinations
via vesiculation of the Golgi complex [10]. In red blood

cells, the plasma membrane is anchored at discrete lo-
cations to an underlying two-dimensional spectrin-actin
network known as the membrane skeleton.Vesiculation
has also been observed in red blood cells when cells
are treated with amphipathic agents, under change of
pH [11], during blood storage [13], or in diseased cells
with defects in the membrane skeleton. During vesicle
formation, the network does not fragment but instead re-
tracts into the body of the cell [13]. Vesiculation can also
be induced in healthy red blood cells during externally in-
duced shape changes. While a red blood cell has the equi-
librium shape of a biconcave disc, a variety of chemical
agents can cause the cell to deform in a systematic man-
ner to form invaginated shapes known as ”stomatocytes”
and spiculated shapes known as ”echinocytes” [11, 12].
Increased concentration of echinocytic agents results in
vesiculation and shedding of plasma membrane. In this
case, budding and vesiculation are driven by spontaneous
curvature rather than by pressure difference, but our gen-
eral model of the energetics of a constrained membrane
remains applicable.

In this Letter, we have demonstrated that a simple
model for membrane energetics predicts a critical pore ra-
dius beyond which spontaneous bulging will occur, which
is in reasonable agreement with the distribution of pores
in a peptidoglycan network. Our model predicts that the
critical pore radius will increase with increasing surface
tension and decrease with increasing spontaneous cur-
vature or turgor pressure, suggesting that bulging may
depend on the lipid composition of the membrane and
the metabolic state of the cell. The biological systems
we have studied also mimic experimental devices to mea-
sure the mechanical properties of thin films by pressur-
izing the film over a pore in a etched silicon substrate
[21]. Our results elucidate the minimum length scales at
which bulging or budding can occur for the broad spec-
trum of biomembranes that are typically found coupled
to an elastic matrix such as the cytoskeleton or cell wall,
and provide a mechanistic explanation for the trajectory
of a bacterial cell treated with cell-wall-acting antibiotics.
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