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A link between dimer-scale processes and microtubule (MT) dynamics at macro-scale is studied by comparing
simulations obtained using computational dimer-scale model with its mean field approximation. The novelty of
the mean field model (MFM) is in its explicit representation of inter-protofilament cracks, as well as in the direct
incorporation of the dimer-level kinetics. Due to inclusion of both longitudinal and lateral dimer interactions,
the MFM is two-dimensional, in contrast to previous theoretical models of MTs. It is the first analytical model
that predicts and quantifies crucial features of MT dynamics such as (i) existence of a minimal soluble tubulin
concentration needed for the polymerization (with tubulin values represented as a function of model parameters),
(ii) existence of steady-state growth and shortening phases (given with their respective velocities), and (iii)
existence of an unstable pause state near zero velocity. In addition, the size of the GTP cap of a growing MT is
estimated. Theoretical predictions are shown to be in good agreement with the numerical simulations.

PACS numbers: 87.16.Ka, 82.35.-x, 05.40.-a

I. INTRODUCTION

Microtubules (MTs) are polymers that are found in all eukaryotes. They play crucial role in cell division, participate in cell
movements by regulating cell polarity, and serve as tracks for molecular motors. MTs in cells typically display rapid fluctuations
in length in order to explore cellular space and find targets of attachment. This behavior is known as dynamic instability
[1, 2], and it is characterized by frequent transitions from growth to shortening, termed catastrophes, and from shortening to
growth, termed rescues. The observation that MTs assembled from purified tubulin display dynamic instability indicates that
this behavior is intrinsic to MTs.

Structurally, MTs are hollow cylinders, or tubes, typically formed by 13 protofilaments aligned along the tube axis. Each
protofilament is a linear chain of alpha-beta tubulin heterodimers, all facing in the same direction and conferring polarity to the
MT: the plus end has the beta monomers exposed. The subunits in the protofilaments are arranged in a B lattice except at the
seam, where there is a helical shift of three monomers between the first and last protofilaments, resulting in an A lattice. In a B
lattice, alpha monomers laterally bind alpha monomers and beta bind beta, while in an A lattice, alpha monomers bind laterally
to beta. Structural studies suggest that the longitudinal bonds between the heterodimers are significantly stronger than the lateral
contacts [3, 4].

MTs evolve by exchange of heterodimers between solution and the MT ends. Typically, the plus end is exposed and evolves,
while the minus end is nondynamic because it is attached to a nucleation site. The heterodimers in solution bind the nucleotide
GTP, which hydrolyzes to GDP after polymerization, incurring conformational changes. Importantly, there is a delay in hydrol-
ysis, leading to a formation of a GTP cap, which has a stabilizing effect on the growing MT tube. The rest of the MT, however,
consists of GDP-bound tubulin that depolymerizes as soon as the cap is lost [5, 6]. (Note that GDP cannot be exchanged for
GTP until a subunit depolymerizes). Dynamic instability is thus thought to be the consequence of frequent formation and loss
of the GTP cap.

After Hill and Chen [7] proposed an effective two-state model of MT dynamic instability in 1984, mainly two approaches have
been used to study MTs. One approach postulates macroscopic rates of dynamic instability (see [7]). The second approach is to
construct a dimer-scale numerical model of a single MT (see [8]). There are also some theoretical and numerical approaches [8–
14] that consider linear, “one-protofilament” MTs and model the stabilizing cap. Finally, there are models of MTs that explicitly
incorporate energetics [15–18]. However, except for [17], whose modeling of MT dynamics is also numerical, these models do
not address MT growth and/or shortening but instead focus on stability of the MT tube.

In this paper, a direct link is established between the dimer-scale processes and the MT dynamics at macro-scale. Namely,
our theoretical mean field model (MFM) directly incorporates parameters from the Monte-Carlo dimer-scale model to yield a
macroscopic description.
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Figure 1: (Color online) Examples of length history plots for parameter sets 3m (left) and S8 (right) with [Tu]= 14µM and 10µM, respectively.
Each simulation is 107 steps long. Note that the scales are different. See Section II B for details.

The most important distinguishing feature of our approach, in comparison with previous dimer-scale models [4, 19–22], is
its explicit treatment of lateral bonds. Specifically, chains of bonds between two neighboring protofilaments grow and shorten
(due to the formation and breakage of bonds between individual subunits) just as the protofilaments themselves can grow and
shorten. This allows for the formation of frayed ends and curled protofilaments observed experimentally (the so called "ram’s
horns" [23, 24]). This feature is important because these curled, laterally unbonded protofilaments have significant influence on
microscopic processes at MT tips, particularly rescue.

VanBuren et al. [4] developed a stochastic kinetic model elucidating MT assembly dynamics. They recognized the importance
of modeling ram’s horns and to address this question among others, later developed a mechanochemical model [17, 25] based
on elastic energy considerations between neighboring dimers. In our model, the impact of mechanical influences, such as
the energetic barriers to forming lateral bonds between curling protofilaments, is incorporated into the kinetic rate constants
governing the different dimer-scale events, in the spirit of [4]. The main advantage of using the kinetic approach, instead of the
mechanochemical one, is that it is orders of magnitude faster. This allows one to simulate experimentally relevant time spans
(tens of minutes), which results in observing in simulations both catastrophes and rescues and generating experiment-like "life
history" plots which are needed for analysis of dynamic instability parameters (see Figure 1).

Kolomeisky and colleagues [26, 27] have developed a growth model of rigid multiprotofilament biopolymers, such as actin
and MTs. Their theoretical approach reduces the problem to a “one-layer” model [26], in which only two possible events can
happen in any given configuration of MT tip: polymerization on the shortest or depolymerization on the longest protofilament.
(Numerical simulations [27] do not have this restriction.) This simplification yields analytic expressions for MT growth velocity
and dispersion. However, the authors study only the polymer growth, and their model allows neither interprotofilament cracks,
nor GTP hydrolysis. Brun et al. [28] focused on studying the occurrence and characteristics of a catastrophe. Hence, their work
does not consider dynamic instability, and it also does not allow cracks. In this paper, we study both growth and shortening,
model cracks and allow hydrolysis.

In Section II, a dimer-scale numerical stochastic model of an MT and numerical study of dynamic instability are described.
Then, in Section III, a mean-field theoretical approach is introduced and applied to the problem. Finally, results obtained using
these two approaches are compared with each other.

II. DESCRIPTION OF COMPUTATIONAL MONTE CARLO MODEL AND SIMULATIONS

A. Overview of the model

We treat the MT as a lattice domain bent on itself forming a tube with a seam. Tube walls are the protofilaments, extending
along the tube axis, and the seam is due to the 1.5 dimers shift between the first and the last protofilaments. Normally the MT has
13 protofilaments, but this can vary. The MT subunits (tubulin heterodimers) have two states, one prone to polymerization and
the other prone to disassembly. These states are denoted as GTP-Tu and GDP-Tu, but they could represent other conformational
states. Finally, the model dynamics is based on five events: protofilament growth, protofilament shortening, inter-protofilament
bond growth (bonding), inter-protofilament bond shortening (breakage), and the transition of GTP-Tu to GDP-Tu, i.e. GTPase
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Figure 2: (Color online) Schematic representation of processes (possible events) in the microtubule model. Red homogeneous and bright
checkered rectangles are GTP-Tu and GDP-Tu dimers, respectively. Dark checkered rectangle is any dimer.

activity (hydrolysis) - cf. Figure 2. We assume that subunits add as individual dimers, but laterally unbonded sections of
protofilament can break at any position, leaving open the possibility that multiple subunits detach simultaneously. The GTPase
is modeled as a simple first-order event that occurs only on internal subunits, consistent with structural evidence that alpha
monomers act as GAPs (GTPase activating proteins) for beta monomers [29]. These events occur at the level of individual dimers
and are governed by kinetic rate constants that are set by the user. (Additional details are given in Appendix A.) Simulations
presented in this paper use two different sets of reference parameters, denoted as “3m” and “S8”, chosen to be consistent with
the existing range of estimates of inter-dimer bond energies and to give rise to transition frequencies that are in agreement with
those observed in experiments. (See their description and comparison to other papers in Appendix B.)

B. Recapitulation of dynamic instability

We performed Monte Carlo simulations with two parameter sets described in Appendix B. For each set, we used different
concentrations of free GTP-Tu [Tu] and then calculated dynamic instability (DI) parameters: growth velocity (vg), shortening
velocity (vs), catastrophe frequency ( fc) and rescue frequency ( fr), based on the generated length history plots. Typical length
history plots are shown in Figure 1. The final results are plotted in Figures 3 and 4. The velocities are given in dimer lengths/aut
(arbitrary units of time) and the frequencies in inverse aut. If one aut is set to 1 second and the dimer length is set at the
experimentally measured value of 8nm, these values are consistent with the range of values obtained in in vitro observations
[30–32]. We used a thresholding algorithm to define the phase transitions (catastrophes and rescues), based on a length history
of the average protofilament length. A phase transition was accepted if the average length changed by more than h dimers
in the direction opposite the current phase (e.g., if during current growth phase there was a drop in average length by more
than h dimers compared to any preceeding average length within the current growth phase). As a technical note, our algorithm
underestimates vs and fr when the length fluctuations are small. The error in the ratio vs/ fr is much smaller, and we used this
ratio to correct the value of fr by keeping vs constant. Inspection of length history plots (not shown) shows that, indeed, vs is
independent of [Tu]. See more details in Appendix D.

Additionally, we monitored the number of GTP-Tu dimers in the MT during growth, the laterally bonded GTP cap length, and
the crack depths (i.e.,the lengths of laterally unbonded regions between protofilaments) during growth and shortening. These
results are summarized in Table I for [Tu]= 14 and 10µM for sets 3m and S8, respectively. There are two ways to estimate
the crack depth in the simulations. First, we can simply measure the average crack depth (d) between all pairs of adjacent
protofilaments. For each pair, d would equal the length of the unbonded part of the shortest of the two protofilaments. Second,
we can calculate ∆, which is defined as the mean protofilament length minus mean bond length. When all protofilaments are of
the same length, these two estimates coincide.

Finally, we measured the single-step decreases/drops in MT length during growth phase. The MT length was defined as
the length of the longest protofilament. We find that MT shortens by 3.2± 2.5 and 1.4± 0.7 dimers per MT length drop for
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Figure 3: (Color online) Dependence of DI parameters of set 3m on [Tu]. Black x’s and blue circles are for the phase transition thresholds of
10 and 20 dimers in length, respectively. (When [Tu] is low and MTs are short, higher thresholds fail to resolve individual short growth phases,
significantly underestimating all the DI parameters. See Appendix D.) They are based on single runs of 107 steps. Red diamonds are averages
of five runs with a threshold of 100 dimers. aut - arbitrary units of time.

Figure 4: (Color online) Dependence of DI parameters of set S8 on [Tu]. Symbols are as in Figure 3. Red diamonds are averages of five runs
with a threshold of 50 dimers. The apparent simultaneous reduction in vg and fc at 7µM for threshold 20 (blue circles) is an artifact of our
procedure to extract DI parameters, due to short MTs at this concentration. aut - arbitrary units of time.

NT `b dg ∆g ds ∆s

3m 450 25 5 8 7 10
S8 130 7 1 1.6 1.5 2.5

Table I: Simulation estimates of the number of GTP-Tu during growth (NT ), laterally bonded GTP cap during growth (`b), and crack depths (d
and ∆), during growth and shortening. The values are for the sets 3m and S8 with [Tu]= 14 and 10µM, respectively.
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sets 3m and S8 at 14 and 10µM, respectively. This indicates that for chosen parameters, oligomers can detach from unbonded
protofilament tips. This conclusion contradicts [25], which argues that both polymerization and depolymerization during growth
phase occur overwhelmingly by single dimer addition and loss. We suggest that one explanation for this difference is that in
[25], the growing tip of an MT was held at the solid wall, which would hinder incorporation of dimers especially to the longest
protofilament. This would be expected to reduce the length of protofilament extensions, and in turn reduce the likelihood of
observable oligomer detachment.

How much undestanding of these simulations can be achieved from purely theoretical analysis? In what follows, we develop
a mean-field theoretical model (MFM) and compare its predictions with the results obtained using MTs described above.

III. THEORETICAL APPROXIMATIONS

After describing Monte Carlo simulations, we turn to a theoretical approach. The aim is to develop a better intuitive under-
standing of the numerical model and, it is believed, of real microtubules. Ideally, given the set of dimer-scale parameters, we
would like to predict the growth and shortening velocities, as well as transition frequencies. We would also like to predict some
characterisitics of a GTP-Tu cap, e.g. its size. As seen below, we make substantive progress with the theory, even though the
phase transitions remain to be studied. In our theoretical approximations, we make a few assumptions. Initially, in Section
III A, we consider a microtubule (MT) consisting of only one type of heterodimer, e.g., either all GTP-Tu, all GDP-Tu or all
GMPCPP-Tu. This approximation will be relevant to real MTs, either in the case of relatively long GTP-cap or in the case of
MT shortening, when the tip configuration is defined, wholly or predominantly, by dimers of the same type. In Section III B, this
restriction is lifted, and we consider hydrolysis. Also, we make a “mean-field” approximation, and in particular, do not consider
the MT seam specifically.

A. One-dimer-type MT approximations

Since currently there are no dimer interconversions, the MT dynamics can be described as a Markovian process using only the
lengths of protofilaments and of their lateral contacts (bonds). Our goal is to obtain estimates of MT dynamics and tip structure.
Specifically, we make predictions of MT growth and/or shortening velocities, v∞ (eq.(7)) and of the interprotofilament crack
depth d∞ (eq.(6)). These values are in reasonable agreement with numerical simulations (the theoretical and simulated values
can differ by a factor of 2 or 3 for considered parameter sets) and hence can serve as an initial guide for the parameter choice.

Let pi(t) and bi(t) be the lengths of the ith protofilament and of the interprotofilament lateral formed (“zipped”) bond between
the ith and (i+1)’th protofilaments, respectively, at time t (in units of a dimer length). Then, with a lateral bonding rate of Kbond
(Section II and Appendices A, B) and introducing an effective lateral breakage rate Kbreak,e f f (see below),

ḃi(t) =−Kbreak,e f f H(bi(t)≥ 1)+KbondH(pi(t)≥ bi(t)+1)H(pi+1(t)≥ bi(t)+1), (1)

where the dot over the variable denotes temporal derivative, and the Heaviside function H is defined as 1, if the condition in
brackets is true, and 0 otherwise. These conditions are necessary for the breakage or bonding to be possible. The first condition
is a boundary condition, while the second and the third conditions state that to form a lateral bond there should be pre-existing
neighboring protofilaments between which this bond can form. If there are n protofilaments, then, disregarding the seam shift,
we can introduce the periodic boundary condition by setting pn+1(t) ≡ p1(t). The ith protofilament can shorten by no more
than pi−max(bi−1,bi), which is the length of its laterally unbonded end, and of course b0(t)≡ bn(t). Therefore, considering all
possible shortening events by s dimers,

ṗi(t) = Kgrow−
pi(t)−max(bi−1(t),bi(t))

∑
s=1

sKshorten, (2)

where Kgrow is the polymerization rate and Kshorten is the rate of breakage of a longitudinal (intra-protofilament) bond. (See
Appendices A, B.) The values of Kbreak, Kbond , Kgrow and Kshorten are given, and Kgrow depends on the concentration of soluble
tubulin, [Tu]. In our computational model, the lateral breakage rate of ith bond is Kbreak unless both bi−1(t)≥ bi(t) and bi+1(t)≥
bi(t). In that case, the lateral breakage rate is reduced to Kbreak/πbreak to reflect the steric constraints, due to a partially or fully
closed cylindrical MT body. When the lateral bond breaks the participating dimers have to move at least slightly away from
each other. This movement is hindered by the presence of the surrounding dimers, especially when there is a fully formed
MT tube near the considered locus. The simplest way to take this into consideration here is to calculate the probability q
that for a randomly picked bond its two neighboring bonds are not shorter than it is. Then we will approximate Kbreak,e f f =
(1− q)Kbreak + qKbreak/πbreak. It is easy to argue that the probability of having N independent, identically distributed (iid)
random numbers to be greater or equal to another randomly chosen iid number is 1/(N + 1). Indeed, we have N + 1 random



6

numbers in total, so that the probability to randomly pick the smallest among them is 1/(N +1). (Moreover, there is no need for
independence.) In our case, N = 2 and hence, q = 1/3 and

Kbreak,e f f =
2
3

Kbreak +
1
3

Kbreak

πbreak
. (3)

We futher argue in Appendix A that in fact 1/3 < q < 1. Because of the occurrence of the seam shift, it is impossible to have
q = 1. Hence, it is interesting to observe that the seam shift may facilitate catastrophe by preventing the lock-up of the MT tip in
a too stable perfectly blunt configuration.

The simplest mean-field approximation would be to set for any i pi(t) = p(t) and bi(t) = b(t). Defining the “crack depth”
d(t) = p(t)−b(t) and always assuming that b(t)≥ 1,

vb(t)≡ ḃ(t) = −Kbreak,e f f +KbondH(d(t)≥ 1)

vp(t)≡ ṗ(t) = Kgrow−Kshortend(t)(d(t)+1)/2

, (4)

where we introduced mean-field bond and protofilament velocities vb and vp. However, given the mean-field nature of the
approximation, it seems reasonable to modify the first equation to

vb(t)≡ ḃ(t) =−Kbreak,e f f +Kbond(1− e−d), (5)

as d(t) stands for the average crack depth. Individual lateral bonds may form even when d(t) < 1, and when d(t) > 1, not all
the bonds have to be cracked. Indeed, assume that the individual cracks di are approximately Poisson-distributed with the mean
depth d. Bonding can happen only if di ≥ 1 and so 〈Kbond〉 = KbondProb[di ≥ 1] ≈ Kbond(1− e−d). If we wish to approximate
it by a second-order polynomial, the expression 〈Kbond〉 = Kbondd(1− d/4) for d ≤ 2 (and 〈Kbond〉 = Kbond for d ≥ 2) is a C1

approximation of Kbond(1− e−d).
We are interested in obtaining a steady-state behavior vp = vb, which would presumably describe either a growth phase of

GMPCPP-Tu-like MT with sufficient [Tu], or an MT shortening phase. At long times, the mean-field crack depth d(t) reaches a
steady state value d∞, which can be found from ḋ(t)≡ vp(t)− vb(t) = 0:

Kshortend∞(d∞ +1)/2+Kbond(1− e−d∞) = Kgrow +Kbreak,e f f . (6)

Now that we know the steady state crack depth d∞, the velocity of MT length change (either growth or shortening) is given
via the long-time asymptotics of vp(t) = vb(t):

v∞ = Kgrow−Kshortend∞(d∞ +1)/2 = Kbond(1− e−d∞)−Kbreak,e f f . (7)

Positive v∞ means growth, negative means shortening. This equation determines the steady state velocity v∞ of a one-dimer-type
MT as a function of dimer-scale parameters and [Tu], which affects Kgrow. Based on derivations above, we see that there is
always a solution, and this solution is unique (because both terms on the left of eq. 6 are increasing functions of d∞, while
the right is constant). In other words, a single dimer type MT under constant external conditions will either grow to infinity or
shorten to zero. As expected, there is no dynamic instability. The situation becomes more diverse when we introduce hydrolysis
in Section III B below.

From eq.(7), we see that when Kgrow decreases, so does d∞, and eventually, v∞ will become negative. Also, if the parameters
are such that Kbond < Kbreak,e f f , then MT growth is not possible, no matter how large [Tu] is. This simply states that the lateral
bonds are energetically unfavorable, so the neighboring protofilaments will not bond together.

To estimate the depolymerization (shortening) velocity, we can put Kgrow = 0 (or a sufficiently small value), because shortening
velocity is roughly independent of [Tu] for GDP-Tu MT. Also, all the rates should correspond to the considered dimer type (e.g.,
should use rates for GTP-Tu (GDP-Tu) for regular growing (shortening) MT). See Appendix C for more details.

B. Model with hydrolysis

We now relax the restriction that all the dimers must be identical. The GTP-Tu dimers can hydrolyze with hydrolysis rate Kh
to the GDP-Tu, making the MT less stable. We assume here that, as in the discussed numerical simulations, the identity of the
dimer (either GTP or GDP) affects only the lateral breakage rates. Dependence of shortening, growth, and/or lateral bonding on
dimer identity can be accommodated along the lines presented below.

As we are using a mean-field approach, we want to estimate the effective lateral breakage rate that will now depend on the age
of the dimer; the older it is, the higher the chance that it is a GDP-Tu dimer and consequently, the higher the breakage rate. If the
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MT grows, then, given the dimer age t, the probability not to hydrolyze by this age is η = e−tKh . When the MT is shortening,
then one should assume η = 0, as the dimers that get exposed at the MT tip had stayed in the MT lattice for a long time. The
breakage rate depends on the identities of two laterally neighboring dimers, and hence

Kbreak,e f f = η
2KT T

break,e f f +η(1−η)[KT D
break,e f f +KDT

break,e f f ]+ (1−η)2KDD
break,e f f , (8)

where the superscripts stand for the corresponding neighbors, and each of KXY
break,e f f can be calculated as in (3). The rest is similar

to the treatment of Section III A, and the only open issue is how to determine the age t, when the MT is growing. To answer
this, we recall that in the case of a one-dimensional random walker, the distribution of its first passage times over distance x is
given by f (t;x) = |x|√

4πDt3 exp
(
− (x−vt)2

4Dt

)
with the mean first passage time x/v in the direction of average drift. (This last relation

should be obvious as this is in fact the meaning of the average velocity v.) Hence, we can say that the visit to the position of
origin was time x/v ago (on average), if the walker has just arrived at a location at distance x from the origin (and the current
position has age zero). In our case, velocity v (the average drift of the tip of a protofilament) is not constant and depends on the
crack depth x. Therefore, the mean age of the dimer sitting just at the bottom of the crack (at the depth d from the MT tip) can
be approximated as

〈t〉=
dˆ

0

dx
v(x)

=

dˆ

0

dx
Kgrow− x(x+1)Kshorten/2

=
2

γKshorten
ln
∣∣∣∣1+2d/(γ +1)
1−2d/(γ−1)

∣∣∣∣ , (9)

where γ =
√

1+8Kgrow/Kshorten and we have used the expression (4) for the protofilament growth velocity as a function of
crack depth. Note that 〈t〉 logarithmically diverges when the steady-state MT growth velocity v(d) approaches zero. We also
observe that when v(d) = 0, then d = dcusp = (γ−1)/2, and 〈t〉 given by (9) is infinite. Given that shortening events can happen
everywhere in the cracked region, one could wonder if 〈t〉< 1/Kshorten, where 1/Kshorten is the mean life time of the longitudinal
bond, in the absence of lateral bonds. The equation 〈t〉< 1/Kshorten leads to d < d0 ≡ (eγ/2−1)/

(
2
(
1/(γ +1)+ eγ/2/(γ−1)

))
,

and the ratio d0/dcusp = 1− 2γ/
(
(γ +1)eγ/2 + γ−1

)
is close to 1 for large enough γ . For γ = 1, d0/dcusp ≈ 0.39, while for

γ = 3, d0/dcusp ≈ 0.70, and for γ = 5, d0/dcusp ≈ 0.87. Respective values of dcusp are 0, 1 and 2.
The age of dimers n dimer lengths below the crack should be estimated as 〈t〉+n/vg (if they polymerized during the current

growth phase), where vg = v(dg) is the growth velocity and d = dg is the crack depth at the growth phase. Therefore, we
can estimate a laterally bonded GTP-Tu cap length (the number of GTP-Tu dimers below the crack), `b, from the relation
1/Kh ≈ 〈t〉+ `b/vg, yielding at steady state

`b ≈ vg(1/Kh−〈t〉). (10)

For the growth to be possible, we need 〈t〉< 1/Kh. The estimate of the total number of GTP-Tu in the MT body then would be
13 · (`b +dg) for 13 protofilaments. See Appendix C for an additional discussion of (9).

To be precise, we would like to determine η =
〈
e−tKh

〉
with 〈t〉 given above. The two simplest choices would be either to

assume t = 〈t〉 always, leading to η = e−〈t〉Kh , or to assume that t is exponentially distributed with mean 〈t〉, leading to

η = 1/(1+ 〈t〉Kh). (11)

Both of these approximations lead to very similar results. We choose the latter one, as our numerical simulations (see Appendix
C) indicate that, typically, distribution of t is close to the exponential.

As in Section III A, to find the steady-state solutions, we need to solve the equation ḋ(t) ≡ ṗ(t)− ḃ(t) ≡ vp(t)− vb(t) = 0,
where now Kbreak,e f f is a function of d, through (8,9,11). This equation can be solved numerically.

In Figures 5 and 6, we plot ḋ ≡ vp−vb as a function of d. Depending on [Tu], there is typically either one or three solutions to
the steady state vp = vb, with the transient case of two solutions. Observe that the cusps (the local maxima) in these graphs occur
when 〈t〉 from (9) reaches infinity, indicating that the dimers at both sides of the top lateral bond are GDP-Tu. However, this
happens exactly when vp drops to zero (see discussion after (9)). Note that vp grows when d decreases (cf. (4)); hence, vp > 0 to
the left of the cusp, and vp < 0 to the right of it. Since at the steady state vp = vb = v∞, it follows that at the steady-state v∞ > 0,
if the intersection of the considered curve with the abscissa is to the left of the cusp and vice versa. We denote the value of d at
the cusp, for which vp(d) = 0 by dcusp.

There are several interesting features displayed in Figures 5 and 6. First, when [Tu] is low, there is only one solution for the
steady state crack depth d∞, and this solution has negative MT velocity (v∞ < 0), i.e., there is no macroscopic polymerization
possible. When [Tu] is large, there are three solutions for d∞, which we denote dg, du and ds. The left and the right ones (dg
and ds, respectively) are stable solutions and correspond to the MT growth and shortening phases. The middle solution, du, is
unstable and is therefore transient. (The stability of a solution is determined by slightly perturbing the steady state value. If a
small increase in d from its steady state value d∞ leads to negative ḋ ≡ vp− vb, then d will decrease and return to d∞, which is
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Figure 5: (Color online) Dependence of ḋ ≡ vp−vb on the crack depth d for the set 3m. The steady state solutions are found when vp−vb = 0.
Legend denotes free GTP-Tu concentrations, [Tu], in µM. When [Tu] is sufficiently high (above 2µM), there are three steady state solutions
for each curve. The left and the rightmost, denoted in the text as dg and ds, are stable growth and shortening solutions, respectively, because
the slope of the curve is negative. The middle solution, du, is an unstable “pause” solution, whose velocity is just slightly positive. See text for
details.

then a stable solution. If, on the other hand, a small increase in d leads to positive ḋ ≡ vp− vb, then d will increase even further,
so that such a solution is unstable.) One could argue that the middle solution represents the “pause” state, as discussed later. It is
tempting to think of a difference du−dg as the length of the laterally bonded GTP cap. However, this does not have to be true,
as du reflects the crack depth after the loss of some dimers from the protofilament tip, in order to accommodate for the drop in
vb. So, du− dg should be smaller than the laterally bonded GTP cap length. We note that, depending on parameters, only the
steady-state growth solution could be possible, when the cusped maximum between du and ds would fall below the ḋ = 0 line.
An extreme example of that situation is when GDP-Tu dimers are identical to GTP-Tu dimers. We also observe that under given
assumptions, ds > dg always, for a fixed [Tu].

Figures 7 and 8 show the steady-state crack depth and MT velocity as functions of [Tu]. The shortening velocity is overes-
timated in comparison with numerical simulations by a factor of 2 to 3; compare this to Figures 3 and 4. This discrepancy can
be explained by our choice of q = 1/3, while all bond heights can have a very limited choice of values (at any given time), so
that q should be higher (see Section III A after (3)). We also see that the theoretical estimates of the crack depths are close to
the values of d and ∆ given in Table I. Slightly higher theoretical estimates of ds are again explained by our choice of q = 1/3,
which leads to overestimation of vs and hence overestimation of ds as well. Using (10), the theoretical estimates for the number
of GTP-Tu dimers and of the laterally bonded cap length for the concentrations listed in Table I are 467 and 29 for set 3m and
61 and 3.3 for set S8, respectively. If, instead of comparing values for a given [Tu], we use similar vg then for set S8, we take
theoretical estimates when [Tu]= 12µM, which lead to 118 GTP-Tu dimers and laterally bonded cap length of 7.5 dimers.

There are two additional observations. First, the velocity at pause vu is just slightly above zero because du is just slightly
below dcusp, which is the position of the cusp maxima at which vp(dcusp) = 0. This provides justification for calling this state a
"pause" (see also [15, 17]). Second, the curvature around the local minima between d = 0 and d = dcusp determines the initial
polymerization velocity when it first becomes possible (when the minimum touches the vp−vb = 0 line). The steeper the curve,
the closer the initial vg to zero. This happens for the same reason as above, namely, when the minimum touches the vp− vb = 0
line, formally dg = du . dcusp. This observation describes initial appearance of the growth steady state.

The curves in Figures 5 and 6 should be treated with care. They are perfectly justified, given the nature of discussed approx-
imations, only at and near the steady state ḋ ≡ vp− vb = 0 line. Beyond the vicinity of the steady state, the system, even under
the current approximations, cannot be solely described by a single parameter d. This situation is analogous to consideration of a
physical system at equilibrium and fluctuations around it. When the fluctuations are small, equilibrium statistical mechanics is
still valid, and the state of the system can still be described by a few relevant macroscopic parameters. When the system is far
from equilibrium, this approach is no longer valid. In our case, it matters whether the change in vb or in vp or the change in both
of them caused a change in the steady-state value of d. Depending on this, the consequent decay in this fluctuation will follow
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Figure 6: (Color online) Dependence of ḋ ≡ vp− vb on the crack depth d for the set S8. Legend denotes free GTP-Tu concentrations, [Tu], in
µM.

Figure 7: Crack depth (squares) and growth and shortening velocities (circles) as functions of [Tu] for set 3m. For small [Tu], there is no
growth solution, so no data are shown.

different curves, leading to a hysteresis-like picture (see Figure 9). In Figure 9, the upper and the lower dotted curves represent
the one-dimer-type GDP-Tu and GTP-Tu microtubules described at the end of Section III A, reflecting shortening and growth,
respectively.

While our MFM deals quantitatively with steady states, we can still think in its terms, in order to qualitatively describe
conceivable ways of the phase transitions. For the catastrophe to happen, there should be a significant fluctuation in the crack
depth, causing it to penetrate into the GDP-rich inner part of the MT. The vb should decrease in this case. As the minimum of
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Figure 8: Crack depth (squares) and growth and shortening velocities (circles) as functions of [Tu] for set S8. For small [Tu], there is no
growth solution, so no data are shown.

ḋ ≡ vp− vb between dg and du becomes deeper with [Tu], the frequency of catastrophe should go down (see Figures 5, 6 and
Appendix D). For the rescue to happen, the crack should become very short or disappear altogether, starting from the steady-state
value ds and following the upper dotted line of Figure 9. Note that these fluctuations are independent of [Tu], and hence on the
height of the cusped maximum in vp− vb, as the shortening can happen independently anywhere along the laterally unbonded
part of the protofilament (i.e., anywhere in the crack region). Then, if there is a sufficient supply of soluble GTP-Tu (i.e., [Tu] is
large enough), rescue becomes likely when the newly polymerized GTP-Tu dimers form lateral bonds. In terms of our model,
this would mean the transition from the upper dotted line to the lower (full) line somewhere around small d values. The higher the
[Tu], the more likely the rescue is to happen, as opposed to the relaxation back to the shortening steady-state depth ds. One could
expect that the frequency of switching to the lower curve is proportional to P0,sKgrow, where P0,s is the probability to have zero

crack depth in the shortening phase (cf. Appendix C; another possibility would be to use Kshorten

[
Kgrow/(Kgrow +KDD

break,e f f )
]

or similar expressions, which is proportional to [Tu] when it is not too high. Indeed, the total rate of a step (any event) in the
shortening phase can be approximated as Ktot = KDD

break,e f f +Kbond(1−P0)+Kgrow +Kshortend(d +1)/2. Let us assume that we
first need to obtain a zero crack depth, with probability Kshorten/Ktot , and then to add a GTP-Tu before developing a crack, with
probability Kgrow/(Kgrow +KDD

break,e f f ). If these two events are what is needed in order to switch to the lower curve, then we have
to multiply Ktot by these two probabilities). For the multi-protofilament MT, however, these arguments can hardly count as a
good approximation, as different protofilaments and bonds do not act synchronously during the phase transitions.

Emergence of growth solution and of the unstable “pause” between growth and shortening bears close resemblance to the
formal Landau theory of phase transitions [33]. For example, Sept and Tuszynski [34] use this theory to describe co-existence of
free tubulin and assembled MTs. However, there are significant differences as well. Unlike [34], our approach is directly based
on the dimer-scale model parameters, and we are able to predict steady-state characteristics of the MT growth. In addition, the
Landau-Ginzburg model yields that for high enough [Tu] the coexistence of free and polymerized tubulin is impossible. This
would correspond to unbounded MT growth. What we have does not contradict this obviously correct result but is somewhat
different: we always have a shortening solution. There is a well-known concept of multistability in biological systems [35], and
we have a bistable system. However, as the catastrophes become very rare and rescues frequent, the shortening phases, while
theoretically possible, will not be clearly distinguishable (see Appendix D).
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Figure 9: (Color online) Dependence of ḋ ≡ vp− vb on the crack depth d for the set 3m for [Tu]= 14µM. Depending on the cause of the
fluctuation in the steady-state value of d, its subsequent relaxation can follow either the blue or the red lines, and the transition from upper to
lower curve and vice versa does not necessarily have to occur along the vertical blue connection. Arrows schematically show fluctuations in d
and transitions between growth (lower curve) and shortening (upper curve) phases.

IV. CONCLUSIONS

There are multiple studies of microtubules (MTs) and their dynamic instability (DI). Many papers focus on modeling DI and
its consequences by using simplified representation of MTs in the form of linear fibers and introducing DI parameters. Other
papers aim to explain and/or justify some of these parameters by considering MT structure in more detail. Computational dimer-
scale lattice and mechanochemical models have been developed to this end. There are also theoretical models addressing the
catastrophe frequency and growth. However, the quantitative theoretical understanding of the computational models and of MTs
themselves at a scale of inter-dimer interactions remains limited. The most conspicuous feature missing from the theoretical and
from majority of the computational approaches is the explicit consideration of interprotofilament interactions that would allow
for cracks.

In this paper, a dimer-scale numerical Monte Carlo model of MT dynamics, which takes experimental observations of inter-
protofilament cracks into account, was constructed. Two different parameter sets were used to demonstrate the model’s behavior,
both displaying dynamic instability at certain tubulin concentrations [Tu], similar to experimental observations. Dynamic insta-
bility was quantified using the standard four parameters: velocities of growth and shortening phases and frequencies of the phase
transitions. In addition, the GTP-cap characteristics and the crack depths have been determined.

Next, a theoretical dimer-scale mean-field model (MFM) was introduced near the steady-state. Predictions obtained using
this model were compared with the Monte Carlo simulations for the same values of parameters. In spite of many simplifying
assumptions used in the derivation of the MFM, its predictions were shown to be in good agreement with the Monte Carlo
simulations. As a result, a connection was established between dimer-scale processes and macroscopic characteristics of MT
dynamics.

The MFM was used to predict the minimal concentration of free tubulin needed for polymerization. It also predicted existence
of the growth, shortening and pause states, and it was used for calculating their respective velocities. The MT tip structure was
also described in terms of crack depths and a laterally bonded GTP-Tu cap length. The original idea of [7] to use a two-state
approach to MT dynamic instability was elaborated and a more detailed picture of dynamic instability cycle was presented
(Figure 9).

More specifically, the model analysis yielded that for sufficiently high [Tu] and with hydrolysis taking place, there existed
stable growth and shortening states, as well as an unstable "pause" state. These states are caused by the interplay of longitudinal
(within-protofilament) and lateral (between-protofilament) dimer interactions.

Also, the model predicted that there was no growth steady state for low [Tu]. This is stronger than just saying that the MT
would grow at small [Tu] but stay short. There is a discontinuous transition meaning that there appears a growth steady state at
some positive [Tu]c. Below this [Tu]c, the steady state growth phase does not exist, and the MT cannot grow.
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The MFM described in Section III is a novel theoretical-mathematical quantitative framework describing steady states of
an MT-like polymer consisting of multiple laterally connected protofilaments/strands. Howard [37] discusses the stability of
two-stranded polymer versus one-stranded and shows that the former is long, while the latter is short. All one-dimensional
(linear or one-stranded) models simply have to postulate/imply that the fiber/protofilament cannot break anywhere in the middle.
Hence, effectively, these models cannot be represented at dimer-scale. On the other hand, our model cannot be reduced to a
one-dimensional model because both protofilaments and bonds (i.e., their lateral interactions) are explicitly represented. We are
able to devise a dimer-scale theory by making it two-dimensional.

Since we restricted our theory to the case when the depolymerization rate is not a function of the dimer identity, we presented
in this paper only simulation results for such parameter sets. It is worth mentioning, however, that other simulations not subject to
this restriction will be published in a forthcoming paper. Those results address certain experimental findings and yield interesting
biologically important conclusions, but they are not of major interest for the current discussion.
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Appendix A: Processes taking place in the model

The model simulates the events occurring in a 13-protofilament microtubule at the dimer scale. It includes five processes:
protofilament growth, protofilament shortening, inter-protofilament bond growth, inter-protofilament bond shortening, and the
transition of each GTP-Tu subunit to GDP-Tu (i.e. GTPase). At each step, the algorithm checks all possible events that can
occur in any of the protofilaments and bonds and determines the fastest event. This event is then implemented. After that, the
hydrolysis cycle is run, randomly converting GTP-Tu dimers into GDP-Tu dimers. Then, the next step begins.

Growth is the addition of a single subunit (single tubulin heterodimer) from the solution to the end of a protofilament. The
probability of growth depends on soluble tubulin concentration and the identity (i.e., GTP/GDP) of the dimer at the tip. Shorten-
ing is a depolymerization event that is independent of soluble tubulin concentration. Instead, it depends on the presence/absence
of lateral bonds between subunits, which are influenced by the nucleotide states of the subunits in question. Any part of a laterally
unbonded protofilament end can detach, meaning that multiple subunits can fall off simultaneously, which is consistent with ex-
perimental observation [36]. Bonding is the formation of a new lateral bond between two dimers of neighboring protofilaments.
A new lateral bond can form only if the subunits below it are already laterally bonded (similar to a zipper). This is reasonable
given the likely separation between unbonded protofilaments. Breaking is the loss of such a bond. An existing bond can break
only if it is the highest (last) bond between the two protofilaments. (This rule is based on the structural constraints inside the MT
lattice.) The bonding and breaking rules result in the formation of continuous bonded segments between protofilaments from
the seed up to the point at which a crack between protofilaments starts. Hydrolysis is modeled as a stochastic first order process.
Hydrolysis can occur only in interior subunits (not on the terminal subunit of a protofilament), which is consistent with structural
data indicating that binding of alpha tubulin is necessary to induce the beta tubulin GTPase [36]. In the present version of the
model the rate of hydrolysis is not influenced by the state of surrounding subunits.

The rate ki of each possible event is calculated based on the identities of the neighboring dimers, except in the case of growth,
where it also depends on soluble tubulin concentration. All rates are provided in the configuration file. We model the events
as Poisson processes with waiting times following an exponential distribution. Then, the time for each event is drawn from its
respective rate: ti = − lnr/ki , where r is a random number uniformly distributed between 0 and 1. If this time is shorter than
the previous shortest time, the present event becomes the candidate for implementation.

The rate of bond breaking depends on whether there are neighboring bonds at the same height. Effectively, this keeps MT
shortening somewhat coordinated after catastrophe, so that it shortens roughly simultaneously along all the protofilaments. This
dependence is justified by arguing that the steric constraints of being in the middle of a tight lattice make it harder for a dimer to
break free (see also [23]).

Processes occurring on the protofilaments next to the seam are governed by different rates because the MT structure near the
seam differs from that in the rest of the MT. Also, for the presently considered half-integer seam shift of 1.5 dimers, the bonds
at the seam grow and shorten by half a dimer, in contrast to other bonds that evolve by a full dimer length. This is done to avoid
introducing artificial asymmetry at the seam.

We now turn to eq.(3). Here is an alternative derivation of q. Let X ,Y,Z be iid bond heights with some distribu-
tion function F ; Y is the bond between X and Z. Conditioning on the value of Y = y, we want to find q(y) = Prob[X ≥
y
⋂

Z ≥ y] = (Prob[X ≥ y])2 = (1−F(y))2 = (G(y))2, where G = 1− F . Now, q =
´

∞

−∞
dF(y)q(y) =

´ 1
0 G2dG = 1/3. In

fact, X ,Y,Z are not independent, but this is not necessary for the derivation, as long as the joint probability (or density)
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Kh k+ Kshorten Kbond Kbond,seam Kbreak Kbreak,seam πbreak

3m 0.2 2.5 1 30 60

30, T |T
40, T |D
80, D|T
80, D|D

60, T |T
150, T |D
150, D|T
150, D|D

10

S8 0.25 3.5 20 30 60

30, T |T
40, T |D
40, D|T

250, D|D

60, T |T
80, T |D
80, D|T

500, D|D

1000

Table II: Parameter summary for sets 3m and S8. T stands for GTP-Tu and D for GDP-Tu. Lateral bond breakage rate Kbreak depends on the
left and right neighbor, and its values are given for the specified neighbors le f t|right.

∆G∗long, kBT ∆Glat , kBT ∆Gπ
lat , kBT

3m -14.7 (-6.2)

0, T |T
0.3, T |D
1, D|T
1, D|D

−2.3, T |T
−2, T |D
−1.3, D|T
−1.3, D|D

S8 -12.1 (-3.6)

0, T |T
0.3, T |D
0.3, D|T
2, D|D

−6.9, T |T
−6.6, T |D
−6.6, D|T
−4.8, D|D

Table III: Energies of regular bonds.

P(X ≥ x,Y = y,Z ≥ z) = f (x,y) f (y,z), i.e., it splits into a product for any given y. Then the above derivation holds:
P(X ≥ Y,Y = y,Z ≥ Y ) = P(X ≥ Y,Z ≥ Y |Y = y)P(Y = y) = P(X ≥ y)P(Z ≥ y)P(Y = y).

In fact, q = 1/3 is the lower estimate of q. In the case of discrete random variables (bond heights), q will be ≥ 1/3 if there
is a positive probability of having bonds of equal height. An extreme example is when all heights have to be identical: then,
obviously, q = 1. Generally, for bond heights X ,Y,Z we will have q = P(X ≥ Y,Z ≥ Y ) = 1

3 P(X 6= Y,X 6= Z,Y 6= Z)+ 1
2 P(X =

Y 6= Z
⋃

X = Z 6= Y
⋃

X 6= Y = Z)+1P(X = Y = Z)≥ 1/3, where 1/3 arises as before, and 1/2 occurs because (first) three out
of the following six choices satisfy {X ≥ Y,Z ≥ Y}: X = Y < Z,X > Y = Z,X = Z > Y,X = Y > Z,X < Y = Z,X = Z < Y , and
from the symmetry of the problem, the probability of the first three choices is equal to the probability of the last three. Because of
the occurrence of the seam shift, it is impossible to have all 13 bonds at the same level simultaneously, so that P(X =Y = Z) < 1,
making it impossible to have q = 1.

Appendix B: Parameter sets 3m and S8

Table II contains the parameters used in sets 3m and S8 described in this paper. Arbitrary units of time (aut) are used. For
comparison to the experiment, 1aut ≈ 1sec. Respectively, Kh, Kshorten, Kbond , Kbreak, etc. are the rates of dimer hydrolysis,
shortening (breaking the longitudinal bond), forming, and breaking the lateral bond (given in (aut)−1). The polymerization
rate of a dimer is formally defined by the relationship Kgrow = (1/(k+c) + 1/κ)−1 = κ

c
c+ c1/2

, where c is the free tubulin

concentration, κ is the maximal possible growth rate and c1/2 = κ/k+ is the concentration at half-maximum. This relationship
was chosen because it allows the reaction to saturate at infinite tubulin concentration. However, for all simulations in our analysis,
the polymerization rate is governed by the more familiar relationship for a first order chemical reaction, i.e., Kgrow ≈ k+c. This
occurs because the equation for Kgrow reduces to Kgrow = k+c when c� c1/2, and in both parameters sets, c1/2 = 200µM.

As the seam bond evolves by half-dimer (i.e., monomer) steps (in contrast to the regular bonds which evolve by full dimers),
the seam lateral bonding and breakage rates are typically twice those of the regular bonds, for simplicity. The rate of breaking
any lateral bond decreases by a factor of πbreak if there are two presently formed lateral bonds to the left and to the right of the
considered one.

The bond energy values of Table III are qualitatively similar to those used in [4, 17] and estimated in [3]. The authors of [18]
cite values similar to [4, 17]. Note that the curvature energy Ec(> 0) in [18] for straight GDP-Tu protofilaments is reflected in
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our parameters through the decreased stability of lateral D|D bonds in comparison to T |T bonds. These energies are calculated

using ∆G∗long = −kBT ln
k+106

Kshorten
, with k+ in units of µM−1aut−1, ∆Glat = −kBT ln

Kbond

Kbreak
, and ∆Gπ

lat = −kBT ln
Kbond

Kbreak/πbreak
.

Note that ∆G∗long includes entropic contribution, and ∆Gπ
lat arises instead of ∆Glat , due to steric constraints, when both of the

lateral neighboring bonds exist. The value in brackets for ∆G∗long is calculated using ∆G∗long = −kBT ln
κ

Kshorten
, where κ is

the maximal possible value of Kgrow at high [Tu]. It is worth mentioning that the energy values and rates used are only a
convenient approximation. It is plausible that actual bond breakage and formation dynamics are faster than that described by
the rates of Table II. This would mean that actual bond energies are smaller if we want to preserve the bonding/unbonding
(“zipping/unzipping”) velocity.

In [4], for the value of k+ = 2µM−1s−1, the authors predict ∆G∗long = −9.4kBT and ∆GGT P
lat = −3.2kBT , where we now

added a superscript GTP to indicate that this was the estimation of the lateral energy for the simulations of MT growth. For the
simulations of MT shortening, [4] find ∆Gkink = 2.1kBT leading to ∆GGDP

lat = ∆GGT P
lat +∆Gkink =−1.1kBT . The energies ∆GGT P

lat
and ∆GGDP

lat can be interpreted in terms of our model as the lateral bond energies between two GTP-Tu dimers (i.e., for T|T) and
between two GDP-Tu dimers (D|D), respectively, and when all the possible lateral neighbor bonds exist (because in [4], there
is no possibility of having broken bonds). There is also no lateral asymmetry in [4]. The structural computational studies [3]
estimate that ∆Glong−∆Glat ≈−7kkal/mol≈−11.7kBT for room temperature, which is also in agreement with our parameters.

Appendix C: Distribution of crack depths

Here, we make a more detailed analysis of the evolution of a crack depth, in comparison to Section III A. We denote Pi as the
probability that the crack has a depth i. (Don’t confuse this with pi used in Section III A.) We have the following equations:

Ṗ0 =−KgrowP0 +Kshorten

(
∞

∑
j=1

Pj

)
+KbondP1 (C1)

Ṗi =−(Kgrow + iKshorten +Kbond)Pi +Kshorten

(
∞

∑
j=i+1

Pj

)
+KgrowPi−1 +KbondPi+1 for i≥ 1. (C2)

It can be verified that ∑
∞
i=0 Ṗi = 0. Note that we did not introduce any breakage rate. It, however, can trivially be added to the

above equations by replacing Kgrow with Kgrow +Kbreak,e f f .
To solve these equations, it is convenient to define

G j =
∞

∑
i= j

Pi. (C3)

We have the normalization (boundary) condition G0 = 1; hence, Ġ0 = 0 and for j ≥ 1

Ġ j =−(Kgrow +Kbond + jKshorten)G j +KgrowG j−1 +KbondG j+1. (C4)

Our second boundary condition is of course the convergence of the series ∑
∞
j=0 Pj, which is equivalent to demanding G j → 0

as j → ∞. If we want to stick to the discrete case, (C4) can be solved in Laplace space or for a steady state as follows.
Let α = Kbond/Kgrow and β = Kshorten/Kgrow. Then, at steady state, we have a tridiagonal infinite system of linear equations
G j−1− (1 + α + jβ )G j + αG j+1 = 0 with unknowns G1, G2, ... and we should utilize G0 = 1. This system can be solved
numerically to a desired precision after choosing jmax, such that G jmax+1 = 0, as an approximation for the second boundary
condition. Alternatively, there is an iterative solution. Define x j = G j+1/G j. Putting G jmax+1 = 0 is equivalent to x jmax = 0,
and we can iteratively find all x j−1 = 1/(1 + α + jβ − αx j) going from j = jmax down to 0. Having found x0 ≡ G1, we
can go in the reverse direction and find all G j = x j−1G j−1 = ∏

j−1
i=0 xi. The continuous (in j) version of these equations was

used for the cap model proposed in [9]. It leads to a second-order differential equation [(1 + α)/2]G′′( j) + (α − 1)G′( j)−
β jG( j) = 0 (at steady state) with the Airy function Ai as a desired solution, which decays to zero as j goes to infinity: G( j) =
e j(1−α)/(1+α)Ai

[(
(1−α)2 +2β (1+α) j

)
/
(
(2β )2/3(1+α)4/3

)]
/Ai

[
(1−α)2/

(
(2β )2/3(1+α)4/3

)]
.

It is easy to derive the moments of the crack depth distribution:

〈i〉=
∞

∑
i=1

iPi =
∞

∑
i=1

Gi (C5)
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and

∞

∑
i=1

iGi =
1
2
(〈

i2
〉
+ 〈i〉

)
. (C6)

Setting the average crack depth d = 〈i〉, from (C1,C2) or (C4) we can derive the following equation for the evolution of d:

ḋ = Kgrow−KbondG1−Kshorten
(
d +

〈
i2
〉)

/2. (C7)

Observe that G1 = 1−P0 is the probability that the crack depth is at least one dimer. In addition, if we have Pi = δi,d , then〈
i2
〉

= 〈i〉2 = d2 and (4) is recovered, after replacing Kgrow with Kgrow +Kbreak,e f f .
We have performed simulations to check our analytical derivations and to estimate the age of a dimer when it becomes

laterally bonded. In these simulations, we did not have lateral breakage events. The results are presented in Figure 10. The main
conclusions from these simulations are that we have good mean-field estimates of the crack depth and of the dimer age at lateral
bonding (or dimer age near the crack bottom) for a wide range of parameters. It is true that our mean-field age estimate (red
lines in the left column) is too high for small Kbond because the mean age cannot go beyond 1/Kshorten = 1. However, here we
are dealing with a simplified situation of no lateral breakage. Allowing lateral breakage will permit ages above 1/Kshorten = 1
because long-bonded dimers might become unbonded again. In that case, our mean-field formula should be even more accurate.

Appendix D: Catastrophe frequency

We now use a mesoscopic approach [8] to estimate catastrophe frequency. The idea is to assume that when the crack penetrates
the GDP-Tu rich inner body of the MT, in analogy to the disappearance of a GTP-Tu cap in [8], this leads to a catastrophe. Only
the lateally bonded part of the cap prevents catastrophe, and the length of this part fluctuates. In [8], a one-dimensional MT
evolved by one-dimer steps. In the present model, the bond length serves as a good approximation of MT length, and it evolves
by one-dimer steps as well. We let KgT = Kbond(1− e−d) (see Appendix C) and KsT = Kbreak,e f f , where KgT and KsT stand for
the rates of gaining and losing one dimer in the MT length (see [8]). Here, we only consider the case of growing MT; otherwise,
there is no point talking about catastrophe.

Following the mesoscopic approach, we estimate the catastrophe frequency as

fcat = Ke f f
sT /nmeso (D1)

where

Ke f f
sT =

−KgT +KsT +
√

(KgT −KsT )2 +4βmeso

2
, (D2)

nmeso =
KgT KsT

KgT +KsT

√
(KgT −KsT )2 +4βmeso

βmeso
, (D3)

βmeso ≡
KgT KsT

τ +ρ ·
KgT +KsT

Kh

(D4)

and ρ is the auxiliary parameter such that 1/2≤ ρ ≤ 1 (see [8]). We also use an additional parameter τ , which is the probability
that the dimers at the level of the last formed bond cannot hydrolyze. In the original mesoscopic model, we assumed that the
dimer at the very tip does not hydrolyze, corresponding to τ = 1. Presently, we are concerned with bonds, and therefore τ = 0
might be a better choice. Perhaps, a more accurate identification would be to use τ ∼ P0, where P0 is the probability of having
zero crack depth (see Appendix C). Nevertheless, for the range of parameters used, this modification is negligible. An estimate
of the laterally bonded cap length is `b ≈ τ + vg(1/Kh−〈t〉) - cf. (10).

Note that if penetration of only a single crack into the GDP-Tu rich MT is sufficient for the initiation of the catastrophe, then
a better choice might be KsT = Kbreak/πbreak, i.e., q = 1, because this single crack will be the deepest one. Also, as we argued in
Section III A, it is reasonable to have q > 1/3. The higher the q, the smaller the catastrophe frequency. In Figure 11, we show
the theoretical estimates of fc for the two parameter sets for different values of ρ and q. Unfortunately, the curves cover a wide
range of possible values, so it is difficult to make any predictions. Nevertheless, the results of numerical simulations lie inside
this range.
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Figure 10: (Color online) Crack depth simulations of (C1,C2) for Kshorten = 1 and Kbreak = 0, and theoretical predictions. The columns from
left to right show dimer age at a time of lateral bonding, probability of no crack P0, and crack depth, as functions of Kbond with Kgrow fixed.
The rows from top to bottom correspond to Kgrow = 0.01,0.1,1,10 and 100, respectively. Blue circles are the means, and green crosses (on
the left and right panels) are the standard deviations obtained from the numerical simulations. Full and dotted (on the right panels) black lines
are the corresponding exact theoretical solutions described in the text, perfectly matching the simulations (circles and crosses). (We do not
have exact solutions for the age.) Red full lines are the mean-field approximations: we assumed P0 = e−d (see after eq.(4)) and numerically
solved Kgrow−Kshortend(d +1)/2 = Kbond(1−P0) for d (cf. (7)). Then, for the age we used (9), and we plotted two additional estimates: the
dashed green line is 1/(Kbond + Kshorten), and the dash-dotted magenta line was calculated using (9), but now with the exact solution for d.
The dash-dotted cyan line is an approximation for P0 given by

[
1+Kgrow/(Kbond +Kshorten)

]−1.
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Figure 11: (Color online) Theoretical estimates of the frequency of catastrophe for sets 3m (left) and S8 (right) for different values of ρ and q.

We point out that in simulations and in experiments as well, selecting a threshold to determine phase transitions can effectively
reduce the frequency of catastrophe if the rescue frequency is large and vice versa. This effect is not present in the theory. For
example, ideally, the algorithmic threshold h for the decision to switch the phase should be h� λg,λs, where λg ≡ vg/ fc and
λs ≡ vs/ fr are characteristic growth and shortening interval lengths. If the MT was growing but its length actually decreases by
h, then we switch to the shortening phase, and vice versa. Also, h should not be too small in order to disregard fluctuations in
length during a given phase. However, if λg� λs, it can be that h ∼ λg and then fr ≈ fr,t exp(− fc,t(h/vg)) ≈ fr,t exp(−h/λg),
where the subscript t stands for theoretical estimates. So, if the rescue frequency is small, it may be significantly underestimated
even more. Similar arguments apply when λg � λs. Note that the mean MT length λ satisfies 1/λ = 1/λg− 1/λs (e.g., [8]).
When λ < 0, the MT growth is unbounded, and the transition from bounded to unbounded growth happens when λg = λs.

Alternative versions of the mesoscopic approach of [8] can be constructed. The idea still is to conserve the mean velocity and
dispersion when rescaling the step from one-dimer-long to n-dimer-long. For example, as the waiting times between the steps
are now exponentially distributed, we might use the formulas vg,i = i(λi− µi) and Di = (λi + µi)i2/2, where i defines the step
length, and λi and µi denote (effective) rates of going up or down (with λ1 = KgT and µ1 = KsT ). Then, we might solve the two
equations vg,1 = vg,n,D1 = Dn with n = τ + ρ(`b− τ), where µn would be the estimate of catastrophe frequency. The problem
with this solution is that for n too large, it yields negative µn (if λ1 > µ1). This means that for such n, it is impossible to have
an upscaled (rescaled) evolution with exponentially distributed step durations. To overcome this limitation, we can replace Dn
by the expression suitable for the fixed step duration (cf. [8]; we have a freedom to choose what the rescaled process will be):
Dn = 2n2λnµn/(λn + µn). The solution is µn =

(
(µ1−λ1)+ [(µ1 +λ1)/(2n)]+

√
(µ1−λ1)2 +[(µ1 +λ1)/(2n)]2

)
/(2n). This

estimate gives larger catastrophe frequencies than those in Figure 11. One can argue that it might be harder to catastrophe in the
multi-protofilament MT than in the “mean-field” MT, so that the mean-field expressions tend to overestimate the true catastrophe
frequency.
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