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Abstract

A protein folding model is proposed at the amino acid level, in which the folding process is divided

into two successive stages: the rate-determining step dominated by the “stochastic interactions” of solvent

molecules and the rapid phase dominated by the “order interactions” among atoms in polypeptide. The

master equation approach is used to investigate the folding kinetics, and an analytical treatment of the

master equation yields a simple three-parameter expression for folding time. It is found that both two-sate

and downhill protein folding kinetics can be described by a unifying model.
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I. INTRODUCTION

Protein folding is the physical process by which a random coil polypeptide folds into its unique

native structure. As an integral part of the “central dogma” of molecular biology, protein folding

is sometimes dubbed the “second half of the genetic code” [1]. In a living cell, a protein is

synthesized on a ribosome that makes a protein chain residue by residue. However, up to now,

it is difficult to follow the in vivo folding of a nascent protein chain against the background of the

huge ribosome. Nearly half a century ago, Anfinsen et al. discovered that a globular protein is

capable of spontaneous folding in vitro under suitable conditions [2, 3]. Such observations allow

one to detach, at least to the first approximation, the study of protein folding physics from the

protein folding study in vivo. Hence, experimentalists and theoreticians have mainly focused their

efforts on these proteins which can spontaneously fold into their native states in test tube [4, 5].

In vitro experiments showed that many small proteins (less than ∼ 110 amino acids) can fold

with simple two-state kinetics [6], and can do so amazingly quickly than that by randomly explor-

ing all possible conformations of their unfolded states at the atomic level [7]. Different models

have been established to address the speed principle, e.g., framework model [8, 9], hydropho-

bic collapse model [10, 11], nucleation-condensation mechanism [12, 13], zipping and assembly

mechanism [14, 15], etc. However, these microscopic theories of folding kinetics generally can-

not be responsible for the vast range of folding rates (105s−1
∼ 10−1s−1) observed in experiments

[6, 16], and cannot explain the quantitative relationships between protein folding rates and their

topological parameters. The topological parameter here refers to the set of non-covalent contacts.

The first famous topological parameter comes from the pioneering work of Plaxco et al. [17],

where they demonstrated that a topological parameter called “relative contact order” (RCO) is

statistically linearly correlated to the logarithm of folding rate constant (ln k) of small two-state

protein. Since then, a number of other protein topological parameters have been discovered that

also have the almost linear relationships with the logarithms of folding rate constant. Such topolog-

ical parameters include long-range order (LRO) [18], total contact distance (TCD) [19], absolute

contact order (ACO) [17, 20], total number of native contacts (N) [21], etc.

One prediction that emerged from the energy landscape theory of protein folding is that the

energy barriers between the folded and the unfolded states are minimized when there is an ex-

treme energetic bias towards the native state, such as at low temperature or in the absence of

denaturant [22]. Under such conditions, two-state folders are predicted to be turned into downhill

2



folding which proceeds through an array of temporary conformations with broad distributions of

folding times. Due to the significance of downhill folding in benchmarking molecular dynamics

simulations and testing protein folding theories, it has received lot of attention in theory [23, 24],

simulation [25–27], and experiment [28, 29] in recent years. The downhill folding is expected to

take place very rapidly, approaching the speed limit of folding, which is about L/100 µs (where L

is the number of residues) [30].

In this paper, we proposed a generic protein folding model at the amino acid level. The folding

process is divided into two successive stages: the first stage is rate-determining step of protein

folding, which can be dealt with analytically by solving the master equation. The second one is

a rapid free energy downhill stage, which can be regarded as an almost instantaneous process.

The model and its conclusions showed that both two-sate and downhill folding kinetics can be

described by a unifying model.

II. THEORETICAL MODEL

At the atomic level, there exist vast, complex interactions during protein folding. However,

many studies show that the folding rates and mechanisms appear to be largely determined by the

topology of the native states [31]. Thus, it is possible to use the coarse-grained model based on

the folding rate and native structure to predict some overall features of protein folding.

Suppose a protein has N native contacts in its folded state, we assume that the protein folding

process is mainly driven by two different interactions during different folding phases: From the

beginning of folding to the formation of the Nth contact, the “stochastic interactions” of solvent

molecules dominate. This progress is described by the evolution of the number of native contacts

in time, which is a Markov process with transitions between neighboring configurations with n

and (n ± 1) native contacts (n = 1, 2, ...,N − 1). After that, the phase is dominated by the “order

interactions” among atoms in polypeptide, and the conformational changes between forming all

N native contacts to final folded state is regarded as an almost instantaneous process. Hence, the

first phase is the rate-determining step of protein folding, and is approximately considered as the

protein folding time here. Obviously, such folding process is also a funnel one: there are many

parallel microscopic routes at the beginning of folding, and fewer and fewer sequential routes with

the increase of the number of native contacts, and unique native state at the end of folding.

It should be pointed out here that although both the state with the Nth native contact coming
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into existence and native state have the same native contacts, their structures are different at atomic

level. During the rapid free energy downhill process from the former state to the latter one, a

lot of atoms constituting polypeptide may quickly rearrange their relative positions owing to the

interatomic interactions, but all these adjustments in atomic positions are too slight to lead to the

change of the formed N native contacts.

In addition, although the second stage is a free energy downhill process, the model does not

restrict the overall change trend of free energy in the first stage. If the first stage proceeds uphill

in free energy, the folding process corresponds to a two-state folding, and the state with the Nth

contact coming into existence corresponds to the “transition state”. If the first stage also goes

downhill in free energy, just as stage two, the folding process corresponds to one-state folding,

which can also be referred to as downhill folding.

The model presented here is the extension of our previous one [32]: it is no longer limited to

two-state folding kinetics, but may also include downhill one; a more strict mathematical treat-

ment (the master equation approach) to the model is used to investigate the folding kinetics of

small proteins; in addition, instead of the micro parameters (the probability to form or break a

native contact and the time of forming or breaking a native contact) in original model, the macro

parameters (mean rates of forming and breaking a native contact) would appear in the description

of the model.

The above protein folding picture is somewhat similar to the Zwanzig model [33, 34], which

is based on the idea of the degree of “correctness” of a protein configuration compared with the

native state. Protein folding in Zwanzig model is a random walk process in the space of the

degree of “correctness”. This is different from ours, in which protein folding process is obviously

divided into two different stages. Although a generic reaction coordinate including but not limited

to the number of native contacts was considered in Zwanzig model, no any particular definition

of “correctness” in physics or chemistry was given obviously. Hence, although the model and its

conclusions can qualitatively explain some general folding natures independent of actual protein

structures, it could not quantitatively explain the folding kinetics of any specific protein.

III. MATHEMATICAL DERIVATION

The mathematical aspects of the first phase of above model by the master equation approach is

now outlined. Let ρ(n, t) be the probability that the polypeptide has formed the nth native contact
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at a given time t. This probability will change by gains from the configurations with (n − 1) and

(n+ 1) native contacts and losses to the configurations with (n− 1) and (n+ 1) native contacts. Let

k+ and k− be the rates of forming and breaking a native contact, respectively. Then, ρ(n, t) satisfies

the following master equation,

d

dt
ρ(n, t) = k+ρ(n − 1, t) + k−ρ(n + 1, t) − k+ρ(n, t) − k−ρ(n, t). (1)

For a protein which has N native contacts in the folded state, the discrete variable n is bounded

between 0 and N (n = 0, 1, 2, ...,N). The master equation Eq.(1) is valid for n = 1, 2, ...,N − 1, but

meaningless at the boundaries n = 0 and N. Two boundary equations should be added as closure

conditions. Obviously in our case, n = 0 is a reflecting boundary, while n = N is an absorbing

boundary. Then, two boundary conditions can be given by

d

dt
ρ(0, t) = k−ρ(1, t) − k+ρ(0, t), (2)

d

dt
ρ(N, t) = k+ρ(N − 1, t). (3)

The first-passage time to the absorbing boundary, which is approximately equal to the protein

folding time in the present model, is the time that a protein starts from some arbitrary initial the

nth native contact, to arrive the Nth native contact. The mean first-passage time τ(n) is the average

of this time over all ways of getting from n to N. The fundamental equation that determines the

mean first-passage time is [35]

k+ [τ (n + 1) − τ (n)] + k− [τ (n − 1) − τ (n)] = −1, (4)

with the boundary conditions

τ (−1) = τ (0) , (5)

τ (N) = 0. (6)

It is easy to prove that the solution of Eq.(4) under the above conditions can be expressed as,

τ (n) =
N∑

l=n

φ (l)
l∑

m=1

[k+(m)φ (m)]−1, (7)
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with,

φ (a) =
a∏

b=1

k− (b)
k+ (b)

. (8)

Although the rate constants of forming different contacts are different in general, as an approxi-

mation of the actual situation, the rate constant of forming a specific contact is replaced with an

average value in this work. So is the rate constant of breaking a specific contact. Then, all the rate

constants are independent of position, i.e., k− (b) = k−, and k+ (b) = k+. Thus, Eq.(8) becomes

φ (a) = Ka. (9)

where, K ≡ k−/k+, is an important parameter in the present model.

It is a natural assumption that there is not any native contact at the beginning of protein folding.

Then, take n = 0 in Eq.(7) and use Eq.(9), we can obtain the mean folding time,

τ =
K

(K − 1)2k+
KN
−

1
(K − 1)k+

N −
K

(K − 1)2k+
. (10)

Eq.(10) is a simple three-parameter expression for folding time in terms of the mean rates of

forming and breaking a native contact k+, k−, and the total number of native contacts N. For two-

state protein folding, as more and more formations of native contacts correspond to proceeding

uphill in free energy, the rate of breaking a contact is higher than the rate of forming it for most

contacts. This implies that k− > k+, or K > 1 is generally valid for two-state folding kinetics. In

this case, for the actual N values of most small two-state proteins (see next section), comparing

with the first term, the last two terms at the right hand of Eq.(10) are too small to considerably

contribute to τ. So, we get

τ ≈
K

(K − 1)2k+
KN . (11)

The above equation implies that, for two-state folding kinetics, folding time exponentially in-

creases with the total number of native contacts.

Notice that the mean folding time τ is the reciprocal of the mean folding rate constant k, the

logarithm of rate constant of protein folding can be approximately given by
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ln k = a − b · N. (12)

where, a = ln [(K − 1)2k+]/K, b = ln K.

In contrast with two-state folding, as more and more formations of native contacts correspond

to proceeding downhill in free energy in downhill folding, the rate of forming a contact is higher

than the rate of breaking it for most contacts. This implies that k+ > k−, or K < 1 is generally valid

for downhill folding kinetics. In this case, comparing with the second term, the first term and the

last term at the right hand of Eq.(10) are too small to considerably contribute to τ. Thus, we have

τ ≈
1

(1 − K)k+
N. (13)

Different with two-state folding case, Eq.(13) implies that folding time linearly increases with the

total number of native contacts for downhill folding kinetics. And further, the logarithm of rate

constant of downhill folding can be approximately given by

ln k = c − ln N. (14)

where, k = 1/τ, c = ln[(1 − K)k+].

IV. COMPARISON WITH EXPERIMENTS

Let us now first consider a set of 66 small two-state proteins, where all of their folding rates and

native structures were measured by experiments (Among them, 47 proteins come from reference

[36], the others come from a protein folding kinetics database [37]). As is well known, protein

folding rates are sensitive to a wide variety of environmental conditions, such as temperature,

pH, buffer, the concentration of denaturant, etc. To make the protein folding rates reported in

Table I as comparable as possible, for the same protein studied in several different conditions, the

measurement done at conditions closest to the “standard conditions”: 25◦C at pH 7.0, 50 mM

buffer, is selected [37, 38].

By linear regression analysis, we find that the logarithm of folding rate constant ln k is negative

linear correlated with the number of native contacts N
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ln k = 10.411 − 0.071 · N, (15)

with a correlation coefficient R = −0.81. The p-value associated with correlation, p < 0.0001,

is extremely low, suggesting that the observed correlation is highly unlikely to have arisen by

chance in the 66 member test set. Fig.1 shows the linear regressions of ln k vs. N together with the

experimental points. Here, we assume that two residues in the folded protein are in contact if the

straight-line distance between their Cα atoms is less than d, and if there are more than l residues

between them along the chain. To calculate the total number of native contacts N, we take the

cutoffs d = 7.00Å and l = 11 residues. It is found that cutoffs d from 6.00Å to 8.00Å, l from 4

to 15 residues, do not significantly affect the correlations described in this work. The correlation

coefficient remains greater than 0.76.

Different from the native contact in relative contact order, two residues forming a native contact

here (cutoffs d ≤ 7.00Å, l ≥ 11 residues) are close in space but far in the sequence. In this way,

for example, two residues connected by backbone hydrogen bond in alpha helix do not form a

native contact in the present model. In fact, this kind of native contact emphasizes the importance

of long-range interactions in protein folding.

Comparing the theoretical prediction Eq.(12) and the experimental result Eq.(15), for the two-

state folding kinetics, we can determine the two mean rate constants of forming and breaking a

contact,

k+ = 6.5 × 106s−1, k− = 7.0 × 106s−1. (16)

Eight proteins in table 1, 1E0L, 1ENH, 1L2Y, 1LMB, 1PIN, 1VII, 2A3D and 2PDD, are the

so-called ultrafast folding proteins [30]. The mean value of their total numbers of native contacts

(nearly 10) is significantly less than that of the other proteins (nearly 70). According to the present

folding model, for a two-state folding protein, it is the total number of native contacts determines

the height of free energy barrier, and thus the folding rate. The ultrafast folding protein with

two-state kinetics has smaller N value, and thus lower folding free energy barrier, and thus faster

folding rate.

Assume that a protein has at least one native contact, take N = 1 in Eq.(10), and use k+ value

given in Eq.(16), we can estimate the fastest folding time,
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    FIG. 1. The linear regression of ln
 k
 vs. 
N
 together with the experimental

points for the 66 small, two-state proteins used in this work.


τ =
1
k+
≈ 1.5 × 10−7s (17)

which is close to the folding speed limit that experimental and theoretical approaches predict [30].

Although fast-folding experiments have given evidence for downhill folding in some proteins

artificially designed [39, 40], it has been debated whether downhill folding occurs for natural

proteins under native conditions [41–43]. Owing to the controversy surrounding the experiments

and the lack of accepted experimental data, it is difficult at present to directly verify Eq.(14) by a

set of valid downhill folding proteins. However, if the time to form one native contact is the same

for downhill and two-state folders, and let the range of the total numbers of native contacts of

downhill folders be 1 ∼ 100, then, the range of folding rates from Eq.(14) should be 107
∼ 105s−1,
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TABLE I: List of the selected proteins in this article. The columns in this table are as follows: PDB id,

Protein Data Bank entry; L, number of residues in the protein used in experimental study; N, total number

of native contacts; ln k, the natural logarithm of the experimental folding rates in the water.

Note: Four proteins in the table, 1C8C, 1E0L, 1PRB, and 1T8J are actually the mutants of corresponding

wild type proteins, (1C8C)Y34W, (1E0L)W30A, (1PRB)K5L/K39V, and (1T8J)V3Y/F8W, respectively.

PDB id L N ln k PDB id L N ln k PDB id L N ln k

1APS 98 149 -1.5 1HRC 104 79 7.94 1RIS 97 109 5.9

1AVZ 57 72 4.88 1IMQ 86 43 7.3 1RLQ 56 68 4.36

1AYI 86 26 7.2 1JMQ 40 18 8.4 1SHF 59 74 4.5

1BA5 49 6 5.9 1JO8 58 77 2.46 1SHG 57 69 1.4

1BDD 60 14 11.74 1JYG 69 17 9.1 1SPR 103 80 8.7

1BRS 89 70 3.4 1L2Y 20 3 12.43 1SRL 56 67 4

1C8C 64 42 7.0 1LMB 80 19 8.5 1T8J 23 1 11.8

1C9O 66 78 7.2 1M9S 76 93 3.98 1TEN 89 143 1.1

1CIS 66 78 3.87 1MJC 69 84 5.3 1U5P 110 19 11.0

1CSP 67 80 6.5 1N88 96 105 2.02 1UBQ 76 74 5.9

1CUN 106 22 4.8 1NTI 86 49 6.96 1URN 96 100 5.8

1DIV1 92 93 3.27 1O6X 81 67 6.8 1VII 36 6 11.51

1DIV2 56 39 6.1 1PBA 81 69 6.8 1WIT 93 158 0.4

1E0L 37 13 10.6 1PGB1 16 7 12.0 1YCC 103 77 9.62

1E0M 37 17 8.9 1PGB2 56 44 6.0 256B 106 39 12.2

1ENH 54 3 10.59 1PIN 34 15 9.44 2A3D 73 13 12.2

1FEX 59 6 8.2 1PKS 76 107 -1.05 2ABD 86 55 6.6

1FKB 107 159 1.5 1PNJ 86 91 -1.0 2ACY 98 137 0.92

1FKF 107 156 1.6 1POH 85 94 2.7 2CI2 64 68 5.8

1FNF 89 145 -0.9 1PRB 47 18 13.8 2PDD 41 10 9.8

1G6P 66 92 6.3 1PSF 69 78 3.2 2PTL 60 56 4.1

1GV2 47 4 8.7 1RFA 78 77 8.36 3GB1 56 44 6.3
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which is consistent with the recognized downhill folding rates range [30].

Recently, experimental evidence has emerged that a two-state folding protein can turn into

a downhill folding one under some certain solvent conditions. For example, Kim et al. have

examined the same fast-folding protein under very different solvent conditions, and found that

it behaves like a two-state folder in one, a downhill folder in another [44]. In our model, such

solvent-tuning two-state to downhill folding corresponds to the parameter K changing from less

than 1 to greater than 1.

Finally, it should be pointed out that although the folding rates of an ultrafast two-state folding

protein and a downhill folding protein may be very close to each other, they fold through different

folding kinetics. For the former, there exists a lower folding free energy barrier, or smaller N

value. For the latter, there is no any significant free energy barrier along the reaction coordinate,

and its total number of native contacts N may not be very small.

V. SUMMARIZE AND REMARKS

In summary, although it is impossible for a polypeptide to find its native structure by random

search among its configuration space at the atomic level, it can find its folded state by random

search among its contact number space at the amino acid level. And both two-sate and downhill

folding kinetics can be described by a unifying model, depending on the different solvent condi-

tions (temperature, denaturant, PH etc.), and therefore the different folding funnel landscapes, and

therefore the different parameter values: K < 1 or K > 1 in the present model.
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NSF China with No. 10875072.
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