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In this paper we present a model for the swelling kinetics of gels that incorporates the free energy
in a novel way. We provide a complete analysis of how the swelling kinetics and stable states and
sizes of the swelled gel depends on the free energy parameters, specifically the free energy of the
pure phases, i.e., the polymer standard free energy. Classical theories of gel swelling employ the
mixing free energy. Such theories do not include effects of the polymer standard free energy, and as
we show, cannot correctly describe equilibrium states or the swelling kinetics.
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I. INTRODUCTION

The theory to understand the swelling and deswelling of gels has a long history beginning with the classical work
of Flory [1–3] and Katchalsky [4]. (See also [5, 6].) In this theory, the free energy is used to make predictions about
the thermodynamical equilibrium configurations of polymer gels and their dependence on environmental parameters
such as temperature or ion solvent concentrations.

An important problem is to understand how the kinetics (and not simply the equilibria) of swelling and deswelling
is governed. An early answer was given by Tanaka and colleagues [7, 8] who developed a kinetic theory of swelling
gels viewing a gel as a linear elastic solid immersed in a viscous fluid.

This early work gave rise to the concept of gel diffusivity as a way to characterize the kinetics of swelling. The gel

diffusivity is defined as D = aL2

τ where L is the equilibrium size (length or radius) of a gel and τ is the time constant
of exponential swelling toward the equilibrium size. The dimensionless scale factor a is related to the geometry of
the gel. They found that expansion of the gel was governed approximately by a diffusion equation with diffusion
coefficient D. However, how the diffusivity of the gel, or more generally the kinetics of swelling, is affected by the free
energy is less well understood.

There are numerous studies of the kinetics of gel swelling [9–15] and numerous applications of these theories to
study, for example, cartilage mechanics [16–19], the contraction of actin-myosin networks [20, 21], the propulsion of
myxobacteria via swelling of slime [22, 23] and biofilm formation [24–26].

A feature of all of these works is that at some point there is use or invocation or extension of the Flory-Huggins
theory of polymer gels. In most, if not all, of these works, something akin to the mixing free energy is used.

The main point of this paper is that to get a correct understanding of the kinetics of swelling gels, it is not sufficient
to consider the mixing free energy; one must include in the free energy the standard free energy of the pure polymer
state and the solvent state.

II. DESCRIPTION OF THE MODEL EQUATIONS

We view a polymer gel as a two phase fluid, consisting of polymer network phase with volume fraction θ and solvent
phase with volume fraction 1 − θ. These two phases move with velocity vp and vs respectively, and since both are
conserved quantities (there is no interconversion between polymer and solvent),

∂θ

∂t
+ ∇ · (vpθ) = 0, ∇ · (vpθ + vs(1 − θ)) = 0. (1)

Force balance equations are also assumed to hold in each of the two phases

∇ · (θσp) − ξθ(1 − θ)(vp − vs) − θ∇µp − θ∇P = 0, (2)



2

and

∇ · ((1 − θ)σs) − ξθ(1 − θ)(vs − vp) − (1 − θ)∇µs − (1 − θ)∇P = 0. (3)

Here σj , j = p, s, are the stress tensors, ξ measures the drag between solvent and network, and µp and µs are
the network and solvent chemical potentials, respectively. Finally, P is the pressure, required to maintain overall
incompressibility.

The solvent stress tensor σs is taken to be that for a Newtonian fluid. The polymer stress tensor σp can include
viscous, elastic or visco-elastic contributions, arising, for example, from permanent bonds between polymer strands
or the effect of entanglements amongst polymer strands. For this paper, we consider a polymer with no permanent
cross-linking bonds (hence no elastic stresses). This assumption is appropriate for many biological gels, such as mucus.
While entanglements are important in such gels, they do not change substantially the analysis presented here, and so
are not considered. Hence, the stress tensors have the form σj = 1

2
ηj(∇vj +∇vT

j )+λjI∇·vj , j = p, s, with viscosities
ηj and λj . To insure that the system is dissipative, it must be that ηj > 0 and ηj + 3λj > 0.

Typically, a gel is immersed in a bath of pure solvent, where θ = 0. Thus, between the region with gel and no
gel, there is an edge, i.e., a discontinuity in θ, which may move when the gel is swelling or deswelling. For a radially
symmetric gel, the condition at the interface is [27]

∂

∂r

(

ηevp

(1 − θ)

)

= µp − µs, (4)

where ηe = ηp(1 − θ) + ηsθ, and vp is the radial component of the network velocity. A derivation of these governing
equations is given in the Appendix.

The chemical potentials are defined in the usual way [28] as

µp = F + (1 − θ)
∂F

∂θ
, µs = F − θ

∂F

∂θ
. (5)

where F is the free energy density. With these definitions, it is immediate that

µp − µs =
∂F

∂θ
, θµp + (1 − θ)µs = F. (6)

The second of these is also known as the Gibbs-Duhem relationship. Another important identity is that

θ∇µp + (1 − θ)∇µs = 0, (7)

implying that the force that the network exerts on the solvent is equal and opposite to the force of the solvent acting
on the network.

Classical theories of polymer mixtures begin with a free energy density F (θ) of the form

νm
F (θ)

kBT0

= f(θ) =
kBT

kBT0

(

θ

N
log(θ) + (1 − θ) log(1 − θ)

)

+ χθ(1 − θ) + µ0θ + µ0
s, (8)

where N is the number of monomers per polymer, νm is the monomer volume, kB is the Boltzmann constant, T is
absolute temperature, T0 is some reference temperature, χ is the Flory interaction parameter, and µ0 ≡ µ0

p − µ0
s,

where kBT0µ
0
p and kBT0µ

0
s are the standard free energies of polymer and solvent, respectively. Note that µ0

p and µ0
s

are non-dimensional numbers.
In most (if not all) of the literature on the kinetics of gel swelling [1–3, 6, 14, 24–26, 28–32] the mixing free energy

is used rather than the total free energy. The difference between these two is that the mixing free energy does not
include the standard free energies, i.e, takes µ0 ≡ µ0

p − µ0
s = 0 and µ0

s = 0, thus ignoring the underlined terms in (8).

Because energies are always relative quantities, one can take µ0
s = 0 without loss of generality, however, in general,

the difference µ0
p − µ0

s is not zero and should not be ignored.

The standard free energies kBT0µ
0
p and kBT0µ

0
s are also known as the cohesive energies or the latent heat of

vaporization (△E) for pure polymer and solvent, respectively. These are the energy of all the interactions between
the molecule and its neighbors in a pure state that have to be disrupted to remove the molecule from the pure state
[33] pg. 141-144. These can be determined from the Hildebrand solubility parameters δj,HI via

−kBT0µ
0
j = νm△Ej/Vj = νmδ2

j,HI (9)
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with j = p, s, where Vp, Vs are the molar volume of the polymer and the solvent, respectively. The negative sign
indicates that kBT0µ

0
p, kBT0µ

0
s < 0 (since they are the interaction energies) while the latent heats are positive. The

value of these solubility parameters for some hydrogels can be found in a standard handbook of solubility parameters
[34]. For example, δp,HI for Poly(N-Butyl Acrylamide) at T0 = 298K is 17.6 MPa1/2 giving the cohesive energy
density as △Ep/Vp = δ2

p,HI = 309.76 MPa.

Similarly, the cohesive energy density for a common solvent, e.g. water, at the same temperature is △Es/Vs = 552.25
MPa (δwater,HI = 23.5 MPa1/2) [35]. With νm = 2 × 10−29 m3 as the monomeric volume, the values of the non-
dimensional parameters µ0

p and µ0
s for the above mentioned polymer and solvent are

µ0
p = −νmδ2

p,HI/(kBT0) = −1.51,

µ0
s = −νmδ2

s,HI/(kBT0) = −2.68,

so that for this polymer-solvent mixture, µ0 = µ0
p − µ0

s = 1.17.
The eqns.(1-4) are derived and studied in [27]. A significant result of that study is a determination of how the free

energy affects both the equilibrium size and volume fraction of the gel as well as the time constant for expansion (or
contraction) to equilibrium. It follows from the interface condition (4) and (6) that for the model presented here, the

equilibria for volume fraction of the gel are extremal values of the free energy, i.e., values of θ for which ∂f
∂θ = 0.

According to classical theory, the swelling of a gel is well approximated by a first order process characterized by
the diffusivity

D =
αL2

τ
, (10)

where τ is the time constant (or inverse decay rate) for equilibration, L is the equilibrium radius of the gel and α is
a geometrical factor. This definition of gel diffusivity comes from early work of Tanaka and Fillmore [7] who derived
a diffusion equation to describe the return of an elastic network to its equilibrium size, subject to drag with the
surrounding fluid. According to that study, the diffusivity D is a constant.

Our analysis of the model equations [27] provides more detail for how the time constant for gel expansion depends
on the rheological parameters of the gel and on the free energy. In particular, it is found that the decay rate (inverse
time constant) is given by

kd =
1

τ
= kBT

θ∗(1 − θ∗)f ′′(θ∗)

η∗

e + ξL2

ω2

=
kBTk0

η∗

e + ξL2

ω2

, (11)

where θ∗ is the equilibrium volume fraction, η∗

e = (ηp + λe)(1 − θ∗) + (ηs + λs)θ
∗, L is its size, and ω is a geometric

factor, which for a one-dimensional gel is π
2
, and k0 = θ∗(1 − θ∗)f ′′(θ∗). Thus, we have explicit formulas for how the

equilibrium volume fraction θ∗ and the time constant of gel swelling depend on the free energy density. Specifically,
for the free energy function (8),

k0 = kBT

(

1 − θ

N
+ θ

)

− 2χθ(1 − θ). (12)

The main purpose of this paper is to examine in more detail the effect of the polymer standard free energy on the
equilibria and the diffusivity of a gel, and to show that this effect is significant.

III. MAIN RESULTS

The equilibrium volume fraction of a gel is at a critical point of the free energy. For the free energy function (8)
there are only two cases to consider. For this free energy, f ′(θ) → −∞ as θ → 0, while f ′(θ) → ∞ as θ → 1. Thus,
there is always at least one critical point between 0 and 1. If the Flory interaction parameter is negative, χ < 0, then
f ′′(θ) > 0 and the critical point is a unique minimum. However, if χ > 0 then it is possible that there are two interior
minima separated by a maximum.

Since µ0 appears as an additive constant in f ′(θ), increases in µ0 shift the location of a minimum to the left, and
the location of a maximum to the right. The physical consequence of this is that increasing µ0 causes a gel to swell
or hydrate, while decreasing µ0 causes the gel to dehydrate.
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This is illustrated in Fig. 1 where we show free energy curves with T = T0 and χ = −1, for three different values
of µ0. When the free energy density of the pure polymer phase is substantially larger than the pure solvent phase
(µ0 = 3.0), the pure polymer phase is thermodynamically unfavourable and hence the gel dissolves (equilibrium
volume fraction θ∗ →≈ 0). Conversely, a value of the pure polymer phase free energy density much lower than the
pure solvent free-energy density (µ0 = −3.0), causes the gel to dehydrate (θ∗ →≈ 1). When the pure phase free
energy densities are equal (µ0 = 0.0), the sol-gel mixture phase equilibrates to a value near but not exactly the equal
phase mixture (θ∗ = 0.5), since the free energy density is not a symmetric function of θ.
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FIG. 1: Swelling free energy density (Eqn. 8) for Flory interaction parameter χ = −1.0 and µ0 = (3.0, 0.0,−3.0). The number
of monomers in one polymer chain is fixed at N = 3, and T = T0.

In Fig. 2, θ∗ is shown plotted as a function of µ0 for several values of χ, N , and T/T0. Here we see illustrated the
fact that the unique equilibrium value is always a decreasing function of µ0, with θ∗ close to 1 if µ0 is sufficiently
negative and close to zero if µ0 is sufficiently positive.

The decay rate for return to equilibrium is also affected by µ0. This is illustrated in Fig. 3, where k0 = θ∗(1 −
θ∗)f ′′(θ∗) is plotted as a function of µ0. Note that, from (12), k0 is a monotone function of θ if χ is sufficiently small
in magnitude. Hence, k0 is also a monotone decreasing function of µ0 when χ is sufficiently small in magnitude.

In Fig. 4(a,b,c), θ∗ is shown plotted as a function of T/T0 for several values of µ0 and χ < 0. The important
observation here is that when µ0 = 0, θ∗ is an increasing function of T , so that decreasing temperature causes the gel
to hydrate or swell. This remains true for positive values of µ0. However, for sufficiently large negative values of µ0,
decreasing T causes the gel to dehydrate rather than hydrate. In fact, one can easily show that there is a negative
number µ∗ for which if µ0 > µ∗ then decreasing temperature causes hydration whereas if µ0 < µ∗, then decreasing T
causes dehydration.

In Fig. 4(d) are shown the scaled decay rates k0 corresponding to the case (b). For all other cases, k0 is quite similar.
Because θ∗ asymptotes to a fixed value for large T , these curves are, not surprisingly (see Eqn. 12), approximately
linear in T . Notice that k0 is always positive if χ is negative, indicating that the steady solution is always stable if χ
is negative.

In the case that χ > 0, for appropriate values of T and µ0, the free energy function can have two minima. However,
for T and |µ0| sufficiently large, the free energy function can have only a single minimum. This is illustrated in Fig. 5
where free energy curves with T0 = T and χ = 1.9, for three different values of µ0, are shown.

For each value of χ, the T -µ0 phase space can be divided into two regions, one in which there is a unique equilibrium
and another in which there are two stable equilibria. Examples of the phase diagrams are shown in Fig. 6.

Plots of the equilibrium values θ∗ as function of µ0 and T/T0 are shown in Fig. 7 and 8 respectively. Since these
correspond to slices of the phase diagram, Fig. 7 a µ0 ‘slice’ holding T fixed, and Fig. 8 a T ‘slice’ holding µ0 fixed,
we expect these curves to exhibit bistability and hysteresis, as indeed they do.

We make several observations about these curves. First, the bistability seen in Fig. 7 is reversible, whereas in
Fig. 8 it is not. That is, increasing µ0 always leads to swelling and decreasing µ0 always to deswelling, through a
discontinuous jump if there is bistability, or continuously if not. However, a cycle in which µ0 is first increased and
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FIG. 2: (Color Online) Equilibrium solution θ∗ plotted as a function of µ0 for different negative values of χ and at the indicated
values of N and T/T0.

then decreased can bring the gel back to the state from which it started.
Such is not the case with temperature variation. In this case there is a solution branch which exists for all

temperatures and a second branch which exists only for small temperatures. Furthermore it is possible to leave the
second branch by increasing T , but it is not possible to leave the first branch. Thus, if one starts on the second branch
and increases temperature, thereby experiencing a phase transition to the first branch, it is not possible by decreasing
the temperature to reverse this transition.

The second interesting feature of the curves in Fig. 8 is that, similar to the case when χ < 0, here increases in
temperature lead to swelling if µ0 is zero or negative, but increases in temperature lead to deswelling if µ0 is sufficiently
positive.

The scaled decay rates k0 for these are shown in Figs. 9 and 8(b, d, f). In Fig. 9 there is a single curve for each
value of χ corresponding to the fact that the equilibrium solutions lie on a single curve. The transition at which k0

changes sign corresponds to the change of stability and saddle-node bifurcation. In contrast, in Fig. 8(b, d, f) there
are two curves for each value of χ, one for the branch which exists for all temperatures and one for the branch which
exists only for small values of temperature. As expected, k0 is asymptotically linear for large values of T , but in
contrast to the earlier case, there are significant deviations from linearity when T is small. Nonetheless, k0 is always
positive on this branch, indicating that these solutions are always linearly stable.
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FIG. 3: (Color Online) The decay rate k0 vs µ0 for N = 3 and negative χ.

IV. DISCUSSION AND CONCLUSION

As described here, the equilibrium states and the swelling kinetics of a gel are significantly affected by the standard
free energy of the pure polymer state relative to the standard free energy of pure solvent, kBTµ0 ≡ kBT (µ0

p − µ0
s).

Thus, theories that do not include this term in the free energy, using instead the mixing free energy, are certain to
miss important features of gel swelling kinetics.

One of the more striking observations is that increasing temperature causes swelling if µ0 is sufficiently large whereas
increasing temperature causes deswelling if µ0 is sufficiently small (i.e. less than a certain positive number).

Including the standard free energy is particularly important for chemically reactive polymers, or polyelectrolyte gels,
where the concentration of different ion species can influence the free energy of the pure state. For example, mucins,
which are negatively charged polymers, can have their charges shielded by monovalent (sodium) or divalent (calcium)
ions, and the relative concentrations of these ions can have a significant impact on how the gel swells. Furthermore,
changes in the affinities of the mucin for these ions, as may happen in disease states such as cystic fibrosis, can also
affect the swelling kinetics and equilibrium states of the gel.

A detailed exploration of how the balance of monovalent and divalent ions affects the standard free energy of the
pure polymer state, and thus the swelling and deswelling of polyelectrolyte gels, is the topic of a separate publication
[36].

The model we described here is not appropriate for gels for which there are permanent chemical bonds. Such a
situation was studied by Hirotsu [37], who included a rubber elasticity term in the free energy. Hirotsu found that, in
order to have multiple equilibria (i.e., a double well energy function) it was necessary to allow the Flory interaction
parameter to be a function of volume fraction. (A similar volume fraction dependence was also included in [14].)

While the inclusion of standard free energy as described here does not resolve the issues raised by Hirotsu, the
standard free energy does have a significant effect on the nature of equilibria for these other free energy functions, as
well.

V. APPENDIX

Here, we derive Eqs. (1-4) using the notation θp and θs for the polymer and solvent volume fractions. We suppose
that Ω is a fixed domain inside of which there is polymer and solvent, and on the boundary of which the velocities
specified. Let Γ denote an interface across which θp is discontinuous. We extremize the total energy dissipation rate

ET ≡

∫

Ω

{1

2
ηpθpǫ(Vp) : ǫ(Vp) +

1

2
ηsθsǫ(Vs) : ǫ(Vs) +

1

2
ξθpθs(Vp − Vs)

2

− µp∇ · (θpVp) − µs∇ · (θsVs)
}

dV, (13)



7

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

θ
∗

N = 3, µ0 = −0.5

T /T0

χ=−0.01
χ=−0.1
χ=−1.0

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

θ
∗

N = 3, µ0 = 0.5

T /T0

χ=−0.01
χ=−0.1
χ=−1.0

(b)

0 0.2 0.4 0.6 0.8 1
0  

0.2

0.4

0.6

0.8

1  

θ
∗

N = 3, µ0 = 0.0

T /T0

χ=−0.01

χ=−1.0
χ=−0.1

(c)

0 1 2 3 4 5
0

1

2

3

4
N = 3, µ0 = 0.5

T /T0

k
0

χ=−1.0
χ=−0.1
χ=−0.01

(d)

FIG. 4: (Color Online) (a, b, c) Equilibrium value θ∗ plotted as a function of T/T0 at the indicated values of the parameters
and (d) the decay rate k0 corresponding to (b).

subject to the incompressibility constraint

∇ · (θpVp + θsVs) = 0, (14)

That is, we extremize the functional

FT ≡

∫

Ω

{1

2
ηpθpǫ(Vp) : ǫ(Vp) +

1

2
ηsθsǫ(Vs) : ǫ(Vs) +

1

2
ξθpθs(Vp − Vs)

2

− µp∇ · (θpVp) − µs∇ · (θsVs) − P∇ · (θpVp + θsVs)
}

dV, (15)

over all admissible (Vp,Vs, P ). In Eq. 15, the first three terms represent dissipation of energy by viscosity and drag,
the terms µp∇(θpVp) and µs∇(θsVs) represent the work required to compress the network and solvent, respectively,
and P is the Lagrange multiplier used to enforce the incompressibility constraint Eq. 14. Functions Vp and Vs are
admissible if they are differentiable and specified on the boundary of Ω and if ∇ · (θpVp + θsVs) is well defined.

The Euler-Lagrange equations are calculated in the standard way. We let (Vp + ǫvp,Vs + ǫvs) be a perturbation,
and set to zero the derivative of FT with respect to ǫ at ǫ = 0. After applying the divergence theorem to the result,
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FIG. 5: Free energy density (equation 8) for Flory interaction parameter χ = 1.9, T = T0 and µ0 = (0.4, 0.0,−0.25). The
number of monomers in one polymer chain is fixed at N = 3.

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

 

 

µ0

T
/
T

0

χ=1.5
χ=2.5

χ=1.0

I

II

(a)

−3 −2 −1 0 1 2 3
0

1

2

3

4

5

 

 

µ0

T
/
T

0

χ=1.0
χ=1.5
χ=2.5

II

I

(b)

FIG. 6: (Color Online) Phase diagram T/T0 vs µ0 for different values of χ and (a)N = 3, (b)N = 1000. In region I (the
exterior domain) there is a unique equilibrium, while in region II (the interior domain) there are two minima and hence two
stable equilibria.

we obtain

0 =

∫

Ω

{

−∇ · (ηpθpǫ(Vp) + ξθpθs(Vp − Vs) + θp∇µp + θp∇P
}

· vp dV

+

∫

Ω

{

−∇ · (ηsθsǫ(Vs) + ξθpθs(Vs − Vp) + θs∇µs + θs∇P
}

· vs dV

+

∫

Γ

[θpepvp + θsesvs] dS. (16)

Here, epvp = ηpǫ(Vp) : (nvp)−Pvp ·n−µpvp ·n, and esvs is defined analogously, n is the unit outward normal along
Γ, and [g] denotes a jump in the quantity g across Γ. Treating vp and vs on the interior as arbitrary, we obtain the
force balance equations Eqs. 1-4, and we are left with the integral over Γ in Eq. 16 required to be zero. The individual
velocities need not be continuous across the interface, but θpVp + θsVs must be because of conservation of mass, and
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FIG. 7: (Color Online) Equilibrium values θ∗ plotted vs µ0 for different positive values of χ and at the indicated values of N ,
T/T0.

so the variation must satisfy 0 =
[

θpvp + θsvs

]

on Γ. This implies that three independent variations (v−

p , v−

s , v+
p )

are possible and that

0 =
{

e−p − e+
s

}

θ−p v−

p +
{

e−s − e+
s

}

θ−s v−

s −
{

e+
p − e+

s

}

θ+
p v+

p . (17)

Since θ−p 6= 0 and θ−s 6= 0, we must have that e−p = e+
s and e−s = e+

s (and e+
p = e+

s if θ+
p 6= 0). In this paper, θ+

p = 0
and the interface conditions reduce to

σ−

p n− σ−

s n = (µ−

p − µ−

s )n, (18)

where σp = ηpǫp and σs = ηsǫs are the viscous stress tensors for polymer and solvent, respectively. In the case of a
radially symmetric gel, the radial component of this equation is

ηp

∂v−p
∂r

− ηs
∂v−s
∂r

= (µ−

p − µ−

s ), (19)

where v−p and v−s are the radial components of the polymer and solvent velocities. Since the free energy f(θ) satisfies
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FIG. 8: (Color Online) (a,c,e) Equilibrium value θ∗ vs T/T0 at the indicated values of the parameters and (b,d,f) the corre-
sponding decay rate k0.
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FIG. 9: (Color Online) The decay rate k0 vs µ0 for indicated values of N = 3 and T/T0 and with positive χ.

f ′ = µ−

p − µ−

s , and because θpvp + θsvs = 0, Eq. 19 reduces to

∂

∂r

(

ηpvp + ηs
θp

1 − θp
vp

)

= f ′, (20)

which is equivalent to Eq. 4.
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