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The effects of cluster diffusion on the submonolayer island density and island-size distribution
are studied for the case of irreversible growth of compact islands on a 2D substrate. In our model,
we assume instantaneous coalescence of circular islands, while the cluster mobility is assumed to
exhibit power-law decay as a function of island-size with exponent u. Results are presented for
u=1/2,1, and 3/2 corresponding to cluster diffusion via Brownian motion, correlated evaporation-
condensation, and edge-diffusion respectively, as well as for higher values including ¢ = 2, 3, and 6.
We also compare our results with those obtained in the limit of no cluster mobility (1 = c0). In
agreement with theoretical predictions of power-law behavior of the island-size distribution (ISD)
for p < 1, for p = 1/2 we find Ns(8) ~ s~ (where Ny(0) is the number of islands of size s at
coverage 0) up to a cross-over island-size S.. However, the value of the exponent 7 obtained in our
simulations is higher than the mean-field (MF) prediction 7 = (3 — p)/2. Similarly, the measured
value of the exponent ¢ corresponding to the dependence of S. on the average island-size S (e.g.
Se ~ S<) is also significantly higher than the MF prediction ¢ = 2/(u + 1). A generalized scaling
form for the ISD, Ns(0) = 6/S*t7¢ f(s/5°), is also proposed for p < 1, and using this form excellent
scaling is found for p = 1/2. However, for finite u > 1 neither the generalized scaling form nor the
standard scaling form N;(0) = 0/5%f(s/S) lead to scaling of the entire ISD for finite values of the
ratio R of the monomer diffusion rate to deposition flux. Instead, the scaled ISD becomes more
sharply peaked with increasing R and coverage. This is in contrast to models of epitaxial growth

with limited cluster mobility for which good scaling occurs over a wide range of coverages.

PACS numbers: 68.55.A-, 68.65.-k, 81.16.Dn

I. INTRODUCTION

Recently, there has been a lot of interest in under-
standing the scaling behavior in submonolayer island nu-
cleation and growth.[1-6] One reason for this is that the
submonolayer growth regime plays an important role in
determining the later stages of thin-film growth.[1-5] Of
particular interest is the dependence of the total island-
density N and island-size distribution N4(0) (where Nj
is the density of islands of size s at coverage 6 and s is
the number of monomers in an island) on deposition pa-
rameters such as the deposition flux F' and growth tem-
perature T'.

One concept that has proven especially useful in stud-
ies of submonolayer epitaxial growth is that of a critical
island size,[2] corresponding to one less than the size of
the smallest “stable” cluster. For example, if we assume
that only monomers can diffuse, then in the case of sub-
monolayer growth of 2D islands on a solid 2D substrate,
standard nucleation theory[2, 3] predicts that the peak
island density NNp, and the monomer density N; at fixed
coverage satisfy,

Ny ~ (D1p/F)™ Ny~ (Dyp/F)™ (1)

where D1 j, is the monomer hopping rate, ¢ is the critical
island size, x; = H% and x; = 1 — x;. We note that in
the case of irreversible island growth (¢ = 1) this implies
that x1 = 1/3 and x} = 2/3. In addition, it has been

shown that in the absence of cluster-diffusion and in the

pre-coalescence regime the island-size distribution (ISD)
satisfies the scaling form, [7, 8]

N0 =5 (5). @

where S is the average island size, and the scaling func-
tion f;(u) depends on the critical island size.[9]

However, in some cases (such as in epitaxial growth
on metal(111) surfaces) it is also possible for significant
small cluster diffusion to occur.[10-12] In addition, sev-
eral mechanisms for the diffusion of large clusters on
solid surfaces have also been proposed. [13-19] In each
case, scaling arguments predict that the cluster diffusion
coefficient Dy decays as a power-law with island-size s
(where s is the number of particles in a cluster), i.e.
Dy ~ s7#. In particular, three different limiting cases
have been considered[13-19] - cluster diffusion due to
uncorrelated evaporation-condensation (u = 1/2), clus-
ter diffusion due to correlated evaporation/condensation
(u=1), and cluster diffusion due to periphery diffusion
(u = 3/2). We note that the case p = 1/2 also cor-
responds to the Brownian (Stokes-Einstein) diffusion of
compact 2D clusters in two-dimensions.

In order to understand the effects of island diffusion
on the submonolayer scaling behavior a number of sim-
ulations have previously been carried out. For example,
Jensen et al[20] have studied the effects of island-diffusion
with u = 1 on the percolation coverage for the case of ir-
reversible growth without relaxation, corresponding to
islands with fractal dimension d; ~ 1.5. More recently,



Mulheran and Robbie[21] have used a similar model to
study the dependence of the exponent y on the cluster-
diffusion exponent p for values of p ranging from 0 to 9.
They found that for small values of y the value of the
exponent (y ~ 0.45) is significantly larger than the value
(x =~ 1/3) expected in the absence of cluster diffusion,
although it decreases with increasing . However, the
scaling of the ISD was not studied.[22]

Motivated in part by these simulations, Krapivsky et
al[23, 24] have carried out an analysis of the scaling be-
havior for the case of point-islands, based on the corre-
sponding mean-field Smoluchowski equations.[25] Their
analysis suggests that due to the large amount of dif-
fusion and coalescence in this case, for y < 1 the total
island density saturates (corresponding to “steady-state”
behavior) while the ISD exhibits power-law behavior of
the form, Ny ~ s~7, where 7 = (3 — u1)/2 and the pref-
actor does not depend on coverage.! This power-law de-
pendence for the ISD is predicted to hold up to a critical
island-size S., where S. ~ S¢ and ( = 2/(u+1). In con-
trast, for p > 1 continuous island evolution is predicted,
e.g. the total island density does not saturate, and as
a result no simple power-law behavior is predicted for
the ISD. Their analysis also indicates that for all values
of p, one has x1 = x} = 1/2 with logarithmic correc-
tions. However, it should be noted that the point-island
approximation is typically only valid at extremely low
coverages.

Here we present the results of kinetic Monte Carlo sim-
ulations of irreversible island growth with cluster diffu-
sion for the case of compact islands with fractal dimen-
sion df = 2. Among the primary motivations for this
work are recent experiments[28] on the growth of (com-
pact) colloidal nanoparticle islands at a liquid-air inter-
face in which significant cluster diffusion has been ob-
served. Accordingly, in contrast to much of the previous
work|[20, 21, 29] our model is an off-lattice model. How-
ever, our main goal here is not to explain these experi-
ments but rather to obtain results which may be used as
a reference for future work. As already noted, if cluster
diffusion is due to 2D Brownian motion (as might be ex-
pected at a fluid-interface) then the value of the exponent
w (= 1/2) is the same as that expected for uncorrelated
evaporation-condensation. However, we also present re-
sults for p = 1 (corresponding to cluster-diffusion due
to correlated evaporation-condensation), u = 3/2 (corre-
sponding to cluster-diffusion due to periphery diffusion)
as well as for higher values of 1 (up = 2,3,6 and o).

This paper is organized as follows. In Sec. II, we de-
scribe our model in detail along with the parameters used
in our simulations, while in Sec. III we discuss the meth-
ods we have used to enhance the simulation efficiency.
In Sec. IV we derive a generalized scaling form for the

I The expression 7 = (3 — 11)/2 has also been derived by Cueille
and Sire[26] and Camacho.[27]

ISD which is appropriate for the case of a power-law ISD
with 7 > 1, corresponding to p < 1. We then present our
results for the scaling of the island-size distribution and
island and monomer densities as a function of Dy /F,
coverage, and u in Sec. V. Finally, in Sec. VI we discuss
our results.

II. MODEL AND SIMULATIONS

For simplicity we have studied a model of irreversible
aggregation in which all islands are assumed to be circu-
lar and rapid island relaxation (perhaps due to periph-
ery diffusion) is assumed. In particular, in our model
each island or cluster of size s (where s is the number
of monomers in a cluster) is represented by a circle with
area A, = wd§/4 and diameter ds = d131/2, where d
is the monomer diameter. In addition, each cluster of
size s may diffuse with diffusion rate Dy = D1s™* where
Dy = Dy 3,6 /4 is the monomer diffusion rate, Dy p, is the
monomer “hopping rate”, and ¢ is the hopping length.
Similarly, we may write Dy = Dy, 62/4 where Dy}, is
the hopping rate for a cluster of size s.

In order to take into account deposition, monomers
are also randomly deposited onto the substrate with rate
F/d? per unit time per unit area. Since instantaneous
coalesce and relaxation is assumed, whenever two clus-
ters touch or overlap, a new island is formed whose area
is equal to the sum of the areas of the original clusters,
and whose center corresponds to the center-of-mass of
both islands. We note that in some cases a coalescence
event may lead to overlap of the resulting cluster with
additional clusters. In this case, coalescence is allowed
to proceed until there are no more overlaps. In addi-
tion, if a monomer lands on an existing cluster, then that
monomer is automatically ‘absorbed’ by the cluster.

Thus, at each step of our simulation either a monomer
is deposited (followed by a check for overlap with any
clusters) or a cluster is selected for diffusion. If a clus-
ter is selected for diffusion, then the center of the cluster
is displaced by a distance § in a randomly selected di-
rection. For computational efficiency, and also because
it is the smallest length-scale in the problem, in most
of the results presented here we have assumed 6 = dj.
However, we have also carried out some simulations with
smaller values (6 = 0.5 d; and 6 = 0.25 dy) in order to ap-
proach the continuum limit. As discussed in more detail
in Sec. VI, our results indicate that the dependence of the
island and monomer densities on the hopping distance §
is relatively weak.

We note that besides the exponent p describing the
dependence of the cluster diffusion rate on cluster-size,
the other key parameter in our simulations is the ratio Ry
of the monomer hopping rate to the monomer deposition
rate (scaled by the ratio of the hopping length to the



monomer diameter) e.g.,

Dy (6
R, = 2t (d—) (3)

We note that this definition implies that the dimension-
less ratio R = D1 /Fd3? of the monomer diffusion coeffi-
cient D7 to the deposition flux satisfies,

R = Ry/A (4)

Our simulations were carried out assuming a 2D square
substrate of size L (in units of the monomer diameter
dy) and periodic boundary conditions. In order to avoid
finite-size effects, the value of L used (L = 4096) was
relatively large, while our results were averaged over 100
runs in order to obtain good statistics. In order to de-
termine the asymptotic dependence of the island density
on coverage and Ry our simulations were carried out us-
ing values of R} = 4Rj,/r ranging from 107 — 10° up to
a maximum coverage of 0.3 monolayers (ML). In order
to study the dependence on u, simulations were carried
out for p = 1/2 (corresponding to Brownian diffusion
or uncorrelated evaporation-condensation), = 1 (cor-
responding to correlated evaporation-condensation), and
1 = 3/2 (corresponding to periphery diffusion) as well
as for higher values (u = 2,3, and 6) as well as the case
1 = oo corresponding to only monomer diffusion.

In order to obtain a quantitative understanding of
the submonolayer growth behavior, we have measured
a variety of quantities including the monomer density
Ny = (7/4) n1/L? (where n; is the number of monomers
in the system) as a function of coverage 6, and the to-
tal island density N = (7/4) n/L? (where n is the total
number of islands including monomers in the system).
In addition, we have also measured the island-size dis-
tribution N,(6) where N, = (w/4) ns/L? corresponds to
the density of islands of size s. We note that the fac-
tors of /4 in the definitions above take into account the
fact that the area of a monomer is (7/4) d?, and as a
result the densities defined above all correspond to area
fractions. Similarly, the coverage § = > ., sN, corre-
sponds to the fraction of the total area covered by islands
(including monomers).

III. SIMULATION METHODS

While a simple Monte Carlo approach can be used|[30]
to simulate the processes of monomer deposition and
cluster diffusion such a method can be very inefficient
for large values of Ry and small values of u, since the
large range of island-sizes and diffusion rates can lead to
a low acceptance ratio. Accordingly, here we use a ki-
netic Monte Carlo approach. In particular, if we set the
deposition rate F per unit area d3 equal to 1, then the
total deposition rate in the system is L? while the hop-
ping rate for a cluster of size s is given by Rsj, = Rps™*.
As aresult, the total diffusion rate for all clusters is given

by Rr = > .2 nsRsn (where ng is the number of clus-
ters of size s) while the total rate of deposition onto the
substrate is L?. The probability Py, of depositing a
monomer is then given by,

L2
Pdep - RT + 1.2 (5)
while the probability of cluster diffusion is Pgirr =
1 — Pgep. If cluster diffusion is selected, then a binary
tree[31] (whose bottom leaves correspond to the total
hopping rate nsRs p for each size s) may be used to ef-
ficiently select with the correct probability which cluster
will move as well as to efficiently update Rp. However,
for large Ry and small p the maximum cluster-size can
be larger than 10* and as a result the computational
overhead associated with the binary tree can still be sig-
nificant.

Accordingly, we have implemented a variation[32] of
the binary tree approach in which a range of cluster-sizes
are clustered together into a single ‘leaf’ or bin. In par-
ticular, to minimize the size of the binary tree, starting
with island-size s > 3 we have used variable bin-sizes
such that each bin contains several different cluster sizes
ranging from a starting value i to a value approximately
equal to 1.2¢. Using this scheme allows us to use a bi-
nary tree with a maximum of 64 leaves and a rejection
probability of only 10%. To further decrease the com-
putational overhead, our binary tree grows dynamically
from 4 leaves to as many as needed.

By properly selecting the rates in the binary tree
and the corresponding acceptance probabilities, one can
ensure that each diffusion event is selected with the
proper rate. In particular, if we define the rate of bin
1 as Ry, = np,Rmazp;, where Royapp, is the maxi-
mum cluster-diffusion rate in bin b; (corresponding to
the smallest cluster-size in the bin) and np, is the num-
ber of islands in the bin, then the sum over all leaves may
be written,

RE =) Ry, (6)
i=1

The probability of attempting a diffusion event is then
given by,

RT
Paisr = Rgbrijljg (7)
while the probability of selecting bin ¢ is given by P; =
Ry, /RY. Once a bin is selected using the binary tree, a
specific cluster is then selected randomly from the list of
all the clusters in that bin. This implies that a cluster
of size s will be selected with probability P = ng/ny,.
Thus, by assuming an acceptance probability for the se-
lected cluster-diffusion event given by

R
Pacc:_u 8
i ©

K



each diffusion event will be selected with the proper rate.

Since our simulations are carried out off-lattice, one of
the most time-consuming processes is the search for over-
laps every time a cluster is moved. While the simplest
way to carry out such a search is to check for overlaps
with all other islands in the system, the search time scales
as L?, and as a result it becomes very time-consuming
for large systems. Accordingly, we have used a neighbor
look-up table[33] which contains a list of all other islands
within a buffer-distance of each island. The search for
overlaps is then carried out only among the neighbors
on this list rather than over all the islands in the sys-
tem. The neighbor list is updated whenever the total
displacement of any island since the last update is larger
than half the buffer-distance.

To speed-up the updates of the neighbor table, we have
also used a “grid” method[33] in which our system is
divided into an ng by ng, grid of boxes of size l; = L/ng
and each cluster can be rapidly assigned to a given box.
Using this method the search for neighbors only includes
clusters within an island’s box as well as the 8 adjacent
boxes. As a result, the table update time is reduced to
9L%/ ng instead of L2. To further optimize the speed of
our simulations, the grid size is varied as the average
island-size increases.

IV. GENERALIZED SCALING FORM FOR THE
ISLAND-SIZE DISTRIBUTION

As discussed in Sec. I, in both simulations and experi-
ments on submonolayer epitaxial growth, the island-size
distribution (ISD) is typically assumed to satisfy the scal-
ing form given in Eq. 2. However, this scaling form has
been derived[7-9] on the assumption that there is only
one characteristic size-scale S corresponding to the av-
erage island-size, and that the ISD does not diverge for
small s/S. However, in our simulations of monomer de-
position and cluster diffusion and aggregation with p < 1,
we find that the ISD exhibits a well-defined power-law
behavior for small s/S. In addition, the existence of a
shoulder in the ISD for large s = S, implies the exis-
tence of a second characteristic length-scale which scales
as S. ~ S¢. We note that this corresponds to an island
size-scale such that steady-state behavior breaks down,
due to the existence of mass-conservation and a finite
diffusion length.

In general one would expect this to lead to a more
complicated two-variable scaling of the form N (0) =
A g(s/S,s/S.). However, if the power-law behavior for
small s/S is well-defined (and 7 > 1) then it is possible
to derive a generalized scaling form involving only one
variable. In particular, we assume that a scaling form
for the island-size distribution may be written,

Ni(0) = A(S,0)f(s/5°) 9)

In order to determine A(S,f) note that N =
Yo Ns = 0/S = A(S,0) > 5, f(s/S)As. Convert-

ing to an integral this may be rewritten as 6/S =
A(S,0) S¢ f1075< f(u) u du where u = s/S¢. If we now

assume that f(u) ~ «~7 for small v and 7 > 1, then the
small-u part of the integral dominates and we obtain,
A =0/S'7¢, This leads to the generalized scaling form,

NO) = e (). (10)

We note that a similar scaling form (corresponding to the
special case ¢ = 1) has previously been derived in Ref. 35
for the case of the deposition of spherical droplets with
dimension D > d on a d-dimensional substrate. We also
note that for ¢ = 1 and 7 = 1 (corresponding to the
critical value of 7) the standard scaling form Eq. 2 is
obtained.

V. RESULTS
A. Stokes-Einstein diffusion (u =1/2)

We first consider the case p = 1/2 corresponding to
Stokes-Einstein diffusion. Fig. 1(a) shows our results for
the total cluster density N (including monomers) as well
as for the monomer density Nj as a function of cover-
age for three different values of Rj ranging from 107 to
10°. In good agreement with the theoretical prediction
in Refs. 23 and 24 of “steady-state” behavior for p < 1,
we find that both the monomer density N7 and total is-
land density N reach an approximately constant value
beyond a critical coverage 6,,,. We note that this cover-
age decreases with increasing Ry, while the peak island
and monomer densities also decrease with increasing Ry,.

The inset in Fig. 1(b) shows our results for the expo-
nents x (x ~ 0.46) and w (w ~ 0.38) corresponding to
the dependence of the peak island density IV, and cover-
age 0., on Rj. In qualitative agreement with the results
of Mulheran et al[21] for fractal islands, the value of x
obtained in our simulations is slightly lower but close to
1/2. This is also consistent with the prediction[23, 24]
that for point-islands x should be equal to 1/2 with log-
arithmic corrections. Fig. 1(b) shows the corresponding
scaled island density NR}* as a function of the scaled
coverage OR,*. As can be seen there is good scaling
up to and even somewhat beyond the value (R} * ~ 1)
corresponding to the peak in the island-density. In con-
trast, replacing the scaled coverage by OR},“ as in Ref. 21,
leads to good scaling at 6 = 6,,,, but the scaling is sig-
nificantly worse for 6 # 6,,. Also shown is the scaled
monomer density NR},” (where the peak monomer den-

sity scales as Ny, ~ R}~ " and the coverage correspond-

ing to the peak monomer density scales as 6; ,, ~ R;;w,
and v ~ w’ ~ 1/2) as a function of the scaled coverage
OR;}". As for the case of the island density, there is good
scaling up to and even beyond the scaled coverage corre-
sponding to the peak of the monomer density. We note
that in contrast to the exponents x and w, the exponent



~ does not appear to depend on p. In particular, we
find that for all the values of p that we have studied, the
value of 7 (y ~ 0.45—0.47) is close to the value (y = 1/2)
expected in the absence of cluster-diffusion.

We now consider the scaled island-size distribution
(ISD). In Refs. 23 and 24 “steady-state” power-law be-
havior of the form,

N,(0) ~ s "R), X (11)

where 7 = (3 — p)/2 was predicted for p < 1 for island-
sizes s << S, where S, corresponds to the shoulder in the
ISD for large s. Similarly, the exponent ¢ characterizing
the scaling of S, as a function of S (e.g. S. ~ S¢) was
predicted to satisfy the expression ¢ = 2/(u+1). We note
that for 4 = 1/2 these expressions imply that 7 = 5/4
and ¢ = 4/3. Since N ~ R} X and S = 0/N, one has
0/S ~ R, ~*. Accordingly, Eq. 11 may be rewritten as,

Ny(0) ~ s~ 0/S (12)

Fig. 2(a) shows the ISD scaled using this form. As
can be seen there is reasonably good scaling for s < S,
although the tail of the distribution does not scale. How-
ever, the measured value of the exponent 7 (7 ~ 4/3) is
significantly higher than the predicted value. In addition,
the measured value of ¢ (¢ ~ 3/2) is also significantly
higher than the predicted value. Fig. 2(b) shows the cor-
responding scaling results obtained using the generalized
scaling form Eq. 10 and assuming ¢ = 3/2 and 7 = 4/3.
We note that this implies that,

Ny(0) ~ S730 f(s/S*?) (13)

As can be seen, in this case both the power-law region for
small s/S as well as the ‘bump’ for large s/.S scale well
using this form. We note however, that for the smallest
clusters (e.g. monomers and dimers) there is poor scaling
due to deviations from power-law behavior for small s.

B. Correlated attachment-detachment (u = 1)

We now consider the case u = 1 which corresponds to
cluster diffusion via correlated attachment-detachment.
We note that this is the critical value for power-law
behavior of the ISD (which is expected to occur for
0 < p < 1) and as a result Krapivsky et al[23, 24] have
predicted “nested” logarithmic behavior for the island-
density. Since the simulations are not as computationally
demanding as for u = 1/2, in this case we have carried
out simulations up to § = 0.3. Fig. 3(a) shows our results
for the total island density N and monomer density N;
as a function of coverage for R) =107 — 10°. As can be
seen, while there is a plateau in the island-density which
appears to broaden and flatten somewhat with increasing
R}, the plateau is not as flat as for the case p = 1/2, thus
indicating deviations from steady-state behavior. As for
the case u = 1/2, a plot of the scaled densities NR}*
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FIG. 1: (a) Island and monomer densities N and N as a func-
tion of coverage 6 for R}, = 10" —10° and p = 1/2. (b) Scaled
densities NR};,* and N1R},” as a function of scaled coverage
(OR;,* and OR},”, respectively). Inset shows dependence of
peak island density N,, and coverage 6,, on R}L.

(N1R;”) as a function of scaled coverage R, * (6R}")
shows relatively good scaling up to the coverage corre-
sponding to the peak island-density, although the value
of x (x ~ 0.45) is slightly lower than that obtained for
w=1/2.

We now consider the island-size distribution. As shown
in Fig. 3(b), in this case the ISD does not exhibit a well-
defined power-law behavior. In particular, on a log-log
plot the ISD is curved with a slope 7 ~ 2 for small s and a
smaller effective slope (7 ~ 1) for large s. Similarly, while
¢ ~ 1 its effective value ranges from 1.03 to 1.1 depending
on the value of R}, and coverage. As a result, neither the
standard scaling form Eq. 2 nor the generalized scaling
form Eq. 10 can be used to scale the entire island-size
distribution. However, using the generalized scaling form
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FIG. 2: (a) Scaled ISD for u = 1/2 obtained using steady-
state scaling form Eq. 12. (b) Scaled ISD obtained using
generalized scaling form Eq. 10 with 7 = 4/3 and ¢ = 3/2.

(10) with ¢ ~ 1 and 7 = 2, we find good scaling for small
s/S (see Fig. 3(b)), although the ISD does not scale for
large s/S. On the other hand, if we use the standard
scaling form (2) (which corresponds to the generalized
scaling form with ¢ = 1 and 7 = 1, see inset of Fig. 3(b))
then the ISD scales for s > S. but not for small s. We
note that this lack of scaling is perhaps not surprising
since for g > 1 there are two characteristic size-scales S
and S., but no well-defined power-law behavior.

C. Periphery diffusion (u = 3/2)

We now consider the case = 3/2 which corresponds
to cluster diffusion via edge-diffusion. In this case, the
dependence of the total island density N and monomer
density Ny on coverage and Rj, is similar to that found
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FIG. 3: (a) Island and monomer densities N and N; as a
function of coverage 6 for R}, = 107 — 10° and u = 1. (b)
Scaled ISD for p = 1 using generalized scaling form (10)
with ¢ = 1 and 7 = 2. Results correspond to coverages
6 = 0.025, 0.05 ,0.1, R) = 107 —10° and p = 1. Inset
shows corresponding scaling results obtained using the stan-
dard scaling form (2).

for p = 1. In particular, there is a plateau in the island-
density which appears to broaden with increasing R},
although it is not as flat as for the case y = 1, thus
indicating deviations from steady-state behavior. In ad-
dition, the peak island-density for y = 3/2 is somewhat
larger than for y = 1. As for the case u = 1, a plot of
the scaled densities NR} X (N1R},") (with x ~ 0.46 and
v ~ 0.45) as a function of scaled coverage OR,* (AR} ")
shows relatively good scaling up to the coverage corre-
sponding to the peak island-density.

We note that for u > 1, Krapivsky et al[23, 24] have
predicted that for point-islands there is a continuous log-



arithmic increase in the total island density of the form,

. w/2
N~ gy [ g (14)
™

However, we find that for u = 3/2 and higher (not shown)
scaling plots using this form (e.g. NR'? as a function of
[In(AR'/?)]*/2) provide very poor scaling. In particular,
since x ~ 0.45, the scaled peak island-density increases
with R while the peak position also shifts significantly to
smaller values.

We now consider the scaled ISD for p = 3/2. Again in
this case, it is not possible to scale the entire ISD using
the average island-size S since there are two characteris-
tic size-scales but no well-defined power-law behavior. In
particular, if we use the generalized scaling form Eq. 10
with 7 = 2 and ¢ = 1, then reasonable scaling is only ob-
tained for the small-s “tail” corresponding to s/S < 0.1
(not shown). In addition, as shown in Fig. 4(a), using the
standard scaling form Eq. 2 neither the tail nor the peak
scale. Instead we find that the height and width of the
“power-law” portion of the ISD corresponding to small
s/S decreases with increasing R), and coverage, while the
peak near s/S = 1 becomes higher and sharper. As a re-
sult, the power-law portion of the ISD is significantly less
important than for smaller values of u. In particular, for
R} = 10° and 6 = 0.1, it corresponds to only approxi-
mately 10% of the area under the curve.

Fig. 5 shows pictures of the submonolayer morphology
for Rj, = 10° and # = 0.1 for p =1/2,1,3/2, and 2. We
note that the size-scale M of each picture decreases with
increasing p so that approximately the same number of
islands is visible. As can be seen, in qualitative agree-
ment with our results, there is a very broad distribution
of island-sizes for y = 1/2 while the distribution becomes
narrower with increasing p.

D. Scaling of ISD and densities for p > 2

In order to obtain a better understanding of the de-
pendence of the island density and ISD on the mobility
exponent pu, we have carried out additional simulations
for larger values of u (u = 2,3 and 6) as well as in the
limit p = oo in which only monomers can diffuse. While
the ISD shows excellent scaling for the case yu = oo as
a function of coverage and R}, (see Fig. 4(b)), in general
we find that (just as for the case p = 3/2) for all finite
> 2, the ISD does not scale but instead exhibits a peak
near s/S = 1 which becomes higher and sharper with
increasing Rj and coverage. In addition, the width and
height of the small-s “tail” of the ISD decreases signif-
icantly with increasing p, as well as with increasing R},
and coverage.

Fig. 6 shows a summary of our results for the scaled
ISD at coverage § = 0.1 and Rj = 10° for u =
1,3/2,2,3,6, and co. As already discussed, for > 1 a
peak develops at s/S = 1 whose height increases with R},
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FIG. 4: (a) Scaled ISD for p = 3/2 using standard scaling
form (10). (b) Scaled ISD for u = oco.

and coverage 6, although somewhat surprisingly for R, =
10° the ISD peak-height f, depends non-monotonically
on p. Accordingly, we have carried out power-law fits
at fixed coverage using the form f,r ~ (R'5)" (with R},
ranging from 107 to 10° and at # = 0.025 and § = 0.1) in
order to get an estimate of the asymptotic dependence of
the ISD peak-height on R} and p. As shown by the inset
of Fig. 6, while the effective value of n appears to depend
somewhat on coverage, in general, we find that n(u) de-
creases with increasing p from a value of approximately
0.11 for 4 = 3/2 to 0.05 for g = 6. Thus, while the scaled
ISD for p > 1 appears to diverge with increasing Rj, the
rate of divergence decreases with increasing .

Fig. 7(a) shows a summary of our results for the
monomer density N; and total island density N as a
function of coverage for p = 1/2,1,3/2,2,6, and oo for
the case Rj = 10°. As can be seen, up to the coverage
01,m corresponding to the peak monomer density both
the island and monomer density are essentially indepen-
dent of p. Fig. 7(a) also shows clearly that both the
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island-density and the coverage 6,, corresponding to the
peak island-density increase with increasing p, while the
monomer density decreases with increasing u.

Fig. 7(b) shows a summary of our results for the de-
pendence of the exponents y, x’, and v on . As can
be seen, the exponent y depends continuously on u, de-
creasing from a value close to 1/2 for small u (= 1/2)
and approaching a value close to 1/3 for large u. We
note that these results are similar to previous results ob-
tained for fractal islands with dy = 1.5 by Mulheran and

Robbie.[21] Similarly, we find that the exponent x’ de-
scribing the dependence of the monomer density at fixed
coverage on R} also shows a continuous variation with
increasing u, starting at a value close to 1/2 for p=1/2
and increasing to a value close to 2/3 for large p. In con-
trast, the exponent  describing the flux-dependence of
the peak monomer density is close to 1/2 for all p.

VI. DISCUSSION

Motivated in part by recent experiments on colloidal
nanoparticle island nucleation and growth during droplet
evaporation,[28] we have carried out simulations of a sim-
plified model of irreversible growth of compact islands
in the presence of monomer deposition and a power-law
dependence (D; ~ s™#) of the island mobility D on
island-size s. In particular, we have considered the cases
u = 1/2 (corresponding to cluster-diffusion via Brownian
motion), 4 = 1 (corresponding to cluster-diffusion via
correlated evaporation-condensation), and p = 3/2 (cor-
responding to cluster-diffusion via periphery diffusion).
For comparison, we have also carried out simulations for
higher values of p including p = 2,3 and 6 as well as
= 00.

In agreement with the predictions of Ref. 23 and
Ref. 24 for point-islands, we find that for small values
of u the value of the exponent y characterizing the de-
pendence of the peak-island density on R} is close to but
slightly lower than 1/2. However, we also find that y de-
creases continuously with increasing p, approaching the
value 1/3 for large pu. As already noted, these results
are in good agreement with previous results obtained for
fractal islands.[21] Similarly, the exponent X’ character-
izing the dependence of the peak monomer density on R},
is also close to 1/2 for small u, but increases with increas-
ing u, approaching the value 2/3 in the limit g — oco. In
contrast, the exponent w describing the dependence of
the coverage 0, (corresponding to the peak-island den-
sity) on R}, is significantly smaller than 1/2 for small p
and also decreases with u, approaching zero in the limit
of infinite pu. This is consistent with the fact that when
only monomers are mobile (¢ = o) the peak island-
density occurs at a coverage which is independent of R},
in the asymptotic limit of large Rj},. For comparison, we
note that while the monomer density N;(0) depends on

,, it only depends on p for coverages beyond the peak
monomer density (see Fig. 7(a)). As a result, the ex-
ponents v and w’ corresponding to the dependence of
the peak monomer density (and corresponding coverage
61,m) on R} are close to 1/2 for all p.

The similarity of our results for x and w to previous
results[21] for fractal islands suggests that these expo-
nents (along with the exponent x’) depend primarily on
the cluster-mobility exponent i and substrate-dimension
d but not on the shape or fractal dimension of the is-
lands. We note that such a result is not entirely sur-
prising, since for the case in which only monomers can
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(b) Dependence of exponents x, X', and v on the parameter
L.

diffuse (u = o00) it has been found that the exponent x
depends only weakly on the island fractal dimension.[6]
In addition, we have found that the scaled island and
monomer densities (N RX and N; RX) lead to reasonably
good scaling as a function of 6 RX, up to and somewhat
beyond the peak island-density. We note that this scal-
ing form is somewhat different from that used in Ref. 21
in which the coverage is scaled by #R¥ so that only the
peak scales.

In addition to the scaling of the island and monomer
densities, we have also studied the dependence of the
island-size distribution (ISD) on the cluster-mobility ex-
ponent x. In agreement with the prediction[23, 24, 26, 27]
that for point-islands well-defined power-law behavior
should be observed for u < 1, for the case p = 1/2
we find a broad distribution of island-sizes with a well-
defined power-law. However, in contrast to the point-
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FIG. 8: Island density N’ (not including monomers) and
monomer density Ny for § = di, § = 0.5 di, and contin-
uum limit corresponding to § = 0. Inset shows dependence of
peak monomer density N on §.

island prediction that 7 = (3 — p)/2 (which implies
T = 5/4 for p = 1/2) the value of 7 obtained in our
simulations (7 ~ 4/3) is somewhat larger. Similarly, the
value of the exponent (¢ ~ 3/2) describing the depen-
dence of the crossover island-size S, on S for p = 1/2
is also significantly larger than the point-island predic-
tion ¢ = 2/(p+ 1) = 4/3. One possible explanation for
this is that for compact islands the coalescence rate de-
creases more slowly with increasing island-size than for
point-islands due to the increase in “aggregation cross-
section” with increasing island-radius. However, another
possible explanation is the existence of correlations that
are not included in the mean-field Smoluchowski equa-
tions. In particular, we note that in previous work for
the case of irreversible growth in the absence of cluster
diffusion (@ = 00), it has been shown[34] that there exist
strong correlations between the size of an island and the
surrounding capture-zone.

We note that in contrast to previously studied growth



models with only limited cluster-diffusion,[6-9] in which
there is a single well-defined peak in the ISD correspond-
ing to the average island-size S, in the presence of sig-
nificant cluster mobility there are typically two different
size-scales S and S.. As a result, in general it is not pos-
sible to scale the ISD using just the average island-size
S. However, for the case u < 1 (corresponding to well-
defined power-law behavior up to a critical island-size S.)
our results confirm that for compact islands the ISD ex-
hibits steady-state behavior. As a result, the power-law
region corresponding to s < S. can be scaled using the
steady-state Eq. 12, although the large-s “tail” does not
scale. Accordingly, we have proposed a generalized scal-
ing form for the ISD, N4(0) = 6/S'*7¢ f(s/S¢) for the
case i < 1. Using this form, we have obtained excellent
scaling for the case u = 1/2.

In contrast for u = 1, there are still two competing size-
scales S and S, but there is no well-defined power-law
behavior. As a result, no single scaling form can be used
to scale the entire ISD. However, we find that the value
of the exponent ¢ ({ ~ 1) is close to that obtained using
the point-island expression ¢ = 2/(x + 1). In addition,
for small s/S the ISD satisfies Ns(f) ~ s~ 7<// where
Ters =~ 2. As a result, we find that the small s/S “tail”
of the ISD can be scaled using the generalized scaling
form Eq. 10 with 7 = 2 and ¢ = 1, while the standard
scaling form Eq. 2 leads to reasonably good scaling of the
ISD for s > S..

However, for u > 1 there is no effective power-law be-
havior even for small s/S and as a result, neither the
general scaling form Eq. 10 nor the standard scaling
form Eq. 2 lead to good scaling of the ISD for finite
R . Instead we find that, using the standard scaling
form (2), the fraction of islands corresponding to small
s/S decreases with increasing Rj and coverage, while
the peak of the scaled ISD increases in height and be-
comes sharper. As a result, the peak position shifts to
the left with increasing R) and coverage and appears to
approach 1 for large R} . Interestingly, this implies, as
shown in Fig. 4(a) and Fig. 6, that for ;4 > 1 the peak
of the scaled ISD is even higher than for the case of ir-
reversible growth without cluster diffusion (1 = c0). In
addition, our analysis of the R} -dependence of the peak
height suggests that while the scaled ISD for p > 1 ap-
pears to diverge with increasing Rj, the rate of divergence
decreases with increasing pu.

It is also interesting to compare our results for p > 1
with those obtained by Kuipers and Palmer[29] who stud-
ied the scaled ISD for the case of fractal islands, assum-
ing an exponential dependence of the cluster mobility,
e.g. Ds ~ D1£° where £ < 1. Because of the rapid decay
of the mobility with increasing cluster-size assumed in
their model, the resulting scaled island-size distributions
(using the standard scaling form Eq. 2) were much closer
to those obtained for the case of irreversible growth with
no cluster mobility (e.g. p = oo) than the results pre-
sented here. However, for values of £ which were not too
small, they also found some evidence of a small island-size
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“tail”, although it was much weaker than found here.

It is also interesting to consider the applicability of the
model studied here to recent experiments by Bigioni et
al[28] for the case of colloidal nanoparticle cluster forma-
tion during drop-drying. We note that in this case, one
expects that clusters will diffuse on the droplet surface
via Brownian motion which implies that ¢ = 1/2. How-
ever, one also expects that, due to the relatively weak
Van der Waals attraction between nanoparticles, in this
case cluster formation may be reversible. Accordingly,
it would be interesting to carry out additional simula-
tions for the case of reversible growth corresponding to a
critical island-size 7 > 2.

Finally, we consider the continuum limit of our sim-
ulations. As already mentioned, while our simulations
are off-lattice, in all of the results presented so far we
have assumed a hopping length J equal to the monomer
diameter di;. We note that this makes our simulations
similar to previous simulations[6-9, 20, 21, 24] with and
without cluster mobility in which a lattice was assumed.
However, it is also interesting to consider the continuum
limit § — 0. In order to do so, we have carried out addi-
tional simulations with smaller values of § (6 = d;/2 and
dy/4). In general, we find that both the monomer density
N1, as well as the density N’ of all clusters not including
monomers exhibit a weak but linear dependence on the
hopping length § (see inset of Fig. 8(b)) e.g.,

X(8) = X(0)[1 + alp) (8/dn)] (15)

(where X corresponds either to the monomer or island
density and X (0) corresponds to the continuum limit).
Accordingly, by performing a linear extrapolation we
may obtain the corresponding densities in the continuum
limit. As shown in Fig. 8, for p = 1/2 and p = 3/2 the
island-density N’ depends relatively weakly on the hop-
ping length, and as a result there is very little difference
between our results for § = d; and the continuum limit.
In contrast, the monomer density exhibits a somewhat
stronger dependence on the hopping length §;. However,
in general we find a(y) < 0.1 while the value of a(u)
decreases with increasing y. In particular, in the limit
1 = oo in which only monomers can diffuse, we find
a(oco) = 0.01 (0.07) for the island and monomer density
respectively. These results indicate that in the continuum
limit the island and monomer densities are only slightly
lower than in our simulations. Accordingly, we expect
that in the continuum limit the scaling behavior will not
be significantly different from the results presented here.
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