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ABSTRACT 

We propose a mechanism to grow a large superlattice of phase domains from a 

continuum homogenous binary film by sequential activation of self-assembly. Self-assembly was 

initiated in a small mobile region (where atoms could diffuse) to form a seed pattern, and then 

the mobile region was shifted gradually. This process led to a long-rang ordered superlattice 

regardless whether the seed was perfect or not, since the pattern quickly improved to a perfect 

superlattice along with the sequential activation. At bistable state the scanning velocity 

controlled the type of superlattice. Further exploration led to an intriguing finding which we call 

the self-activation of self-assembly, a domino effect where the self-assembly in a small region 

causes a long-range interaction that destabilizes its homogeneous neighbor and triggers the 

propagation of self-assembly to the entire system. 

 

PACS numbers: 68.43.Hn, 68.43.Jk, 81.16.Dn 
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I. INTRODUCTION 

The self-assembly of nanostructures enables a wide range of applications from 

nanoelectronic devices [1], ultrasensitive biosensors [2], carriers for drug delivery [3], to 

advanced materials with unique mechanical [4], electrical [5] or photonic [6] properties. 

Depending on the type of building blocks, self-assembled systems can be classified into two 

categories: discrete and continuum. A discrete system uses pre-fabricated building blocks with 

fixed sizes and shapes. Examples include the self-assembly of nanoparticles [5, 7, 8], nanorods 

[9, 10] and nanoplates [11, 12].  In contrast, a continuum system exploits the spontaneous 

formation of nanoscale domains. Examples include self-assembled domain patterns in binary 

monolayers [13], block copolymers [14] and organic molecular adsorbates on metal surfaces 

[15]. A continuum system offers several unique features. For instance, domains and their 

patterns self-assemble simultaneously, so that there is no need to pre-synthesize the building 

blocks; a significant degree of process flexibility and control can be achieved; and the approach 

may be applied to diverse systems.  

The lack of long-range order has been a major challenge for self-assembled 

nanostructures since high regularity is crucial to many applications [16, 17]. Recently, the 

integration of self-assembly with the traditional “top-down” approach has been exploited to 

improve the long-range order. This approach uses templates to help a self-assembly process by 

modulating the energy profile. For instance, geometric templates have been used to guide the 

self-assembly of block copolymers [18], quantum dots [19, 20], and nanocrystals [21]. The 

templating approach typically requires lithography to fabricate a pre-patterned substrate or mask 

as a template. The wavelength of the template has to be small enough to provide effective 

guidance and the overall pattern is limited by the size of the template. In this paper we propose a 
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general kinetics-based template-free approach to grow nanostructured superlattices over a very 

large area.  

The essence of our approach is sequential activation of self-assembly. The idea is 

illustrated in Fig. 1. A binary monolayer is used as an example, which may separate into two 

phases and self-assemble into domain patterns such as a hexagonal lattice of dots. Typically 

multiple grains of dots will form due to simultaneous self-assembly at different locations, 

producing a pattern lack of long-range order. Here we propose to first activate self-assembly in a 

finite mobile region, where atoms are allowed to diffuse and form domain patterns. This initial 

mobile region will serve as a “seed”. The seed does not need to have a perfect lattice. We then 

shift the mobile region like scanning. The self-assembly in the newly activated region will be 

influenced by the pattern already formed in the seed. In experiments, we envision that this 

process can be achieved by laser or ion beam scanning to control the local temperature, so that 

diffusion is activated sequentially at each spot along the scanning path. We show that this 

sequential activation will lead to a large long-rang ordered domain pattern even if we start with 

an imperfect seed. The pattern quickly improves and converges to a perfect superlattice along 

with the sequential activation. Note that sequential activation of self-assembly is different from 

crystal growth. The former expands by the simultaneous formation and ordering of domains 

through long-range interactions, while the latter grows by the local attachment of atoms with a 

fixed size and interatomic distance.  

More interestingly, the self-activation of self-assembly can be achieved under certain 

conditions. In other words, the self-assembly in a small region may induce a domino effect and 

produce a perfect lattice expanding spontaneously without the need of explicit sequential 

activation such as laser scanning. This mechanism may motivate new ideas such as self-repairing 
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devices where self-assembly can be triggered by environment, or self-assembled drugs that form 

in situ in response to antimicrobial resistance. It may also promote thoughts in remotely 

analogous systems such as social events that propagates in certain ordered way through long-

range interactions when a threshold is reached. 

 

II. THEORETICAL FRAMEWORK 

A wide variety of continuum self-assembled systems demonstrate similar domain 

patterns, suggesting a possible universal framework to capture the essential mechanism.  Here 

we use a phase field model to describe the formation of these patterns [22]. To explain this idea, 

we consider a two dimensional epilayer of two atomic species A and B, which occupies the 

1x − 2x  plane and forms a coherent lattice with the substrate. Experiments have shown that the 

composition often modulates in the plane of the layer, and the layer may separate into two 

phases, forming periodic dots or other regular domain patterns [13, 23]. The domain size may be 

in the range of 1-100nm, and stable against coarsening. Define C  as the concentration fraction 

of B, where C=0 represents pure A, and C=1 represents pure B. The phase separation leads to A-

rich and B-rich domains. The pattern is expressed by a spatial function 1 2( , )C x x , or ( )C x . The 

free energy of the system is determined by the short-range atomic/molecular interaction and the 

long-range interaction between domains [24], which is given by 

 ( )31 1 32 2
2 1( )

2A A A
G g C dA h dA u u dC Aσ σ= + −∇ +∫ ∫ ∫ . (1) 

The first term represents the chemical energy of the epilayer per unit area, which drives phase 

separation. The second term represents the phase boundary energy, where h is a positive material 
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constant. This term prefers a larger domain size. The third term captures the long-range 

interaction, which prefers a smaller domain size. These two competing actions lead to the 

formation of a periodic pattern of alternating A-rich and B-rich domains, and the domain size is 

determined by their relative strength. Here 31σ , 32σ  are the traction forces per unit area on the 

substrate, and 1 2,u u  are the corresponding displacements. The integration extends over the 

epilayer. 

The form of the long-range interaction in Eq (1) is representative. The elastic interaction 

is dipole type, where the energy has 31/ r dependence ( r is the distance between to interacting 

points). Such an interaction is quite common in nature. To account for a layer of polar molecules 

with electric dipoles, one can simply replace the third term with 3 31/ 2
A

p E dA∫ . Here 3p  is the 

electric dipole moment per area, and 3E  is the corresponding electric field associated with the 

dipole distribution. While different in the physical origin, the interaction term shows a similar 

mathematical structure. Thus the discussion below applies to a wide range of systems. 

Domain patterns emerge by a diffusion process to reduce the free energy. The diffusion 

flux, J, is proportional to the gradient of chemical potential, G Cμ δ δ= , namely ( )M μ= − ∇J x . 

To consider regionally activated self-assembly, we allow the mobility ( )M x to be position-

dependent. We take 0( )M M=x  in the activated region, where 0M  is the mobility for diffusion, 

and ( ) 0M =x  in other regions. Substituting the diffusion flux into the mass conservation 

equation, / 0C tΛ∂ ∂ + ∇ ⋅ =J , where Λ is the number of atomic sites per unit area, gives a 

diffusion equation [22], 
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 2
2

1 2C gM h C
t C ββφε∂ ⎛ ∂ ⎞⎛ ⎞= ∇ ∇ − ∇ +⎜ ⎟⎜ ⎟∂ Λ ∂⎝ ⎠⎝ ⎠

. (2) 

Here φ  is the surface stress difference of the two species, and ( )21 /R Eββε ν φ π= − −  is the 

surface strain with E  being the Young’s modulus and ν  the Poisson’s ratio. R  is an area 

integration characterizing the long range interaction, which is given by  

 
( ) ( )

( ) ( )

1 1 2 2
1 2

1 23/ 22 2
1 1 2 2

C Cx x
R d d

x x

ξ ξ
ξ ξ ξ ξ

ξ ξ

∂ ∂− + −
∂ ∂=

⎡ ⎤− + −⎣ ⎦
∫∫  (3) 

To describe phase separation, one can take any double well function for ( )g C . We take a 

regular solution, ( ) ( ) ( ) ( ) ( )A B1 ln 1 ln 1 1Bg C g C g C k T C C C C C C= − + + Λ + − − + Ω −⎡ ⎤⎣ ⎦ , where 

gA  or gB is the chemical energy of pure A or pure B. The first two terms in the bracket result 

from the entropy of mixing, and the third term from the energy of mixing.  The dimensionless 

number Ω measures the exchange energy relative to the thermal energy Bk T , where Bk  is the 

Boltzmann constant and T is temperature. 

Equation (2) can be written in a dimensionless form by scaling the coordinates with 

/ Bh k TΛ  and the time with ( )2
0/ Bh M k T , which gives  

 2( ) 2C QM P C C R
t π

∂ ⎛ ⎞⎡ ⎤= ∇ ⋅ ∇ − ∇ −⎜ ⎟⎢ ⎥∂ ⎣ ⎦⎝ ⎠
. (4) 

Here M is a normalized mobility taking values of 0 or 1, ( ) ln[ / (1 )] (1 2 )P C C C C= − + Ω − , and 

/Q b l=  is the ratio of characteristic scale of domain width, / Bb h k T= Λ , and size, 

( )2 2/ 1l Eh ν φ= − .  
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The diffusion equation has a simple form in Fourier space,  

 
ˆ

ˆ{ ( )( ) }r k
C i M i
t

μ∂ = ⋅
∂

k x k ,  (5) 

where the hat and subscript ‘k’ denote Fourier transform, ‘r’ denotes inverse Fourier transform, 

and k  is the wave number vector. The chemical potential, 2( ) 2 /P C C QRμ π= − ∇ − , has a 

Fourier transform of 2 ˆˆˆ 2( )P k kQ Cμ = + − . P is a nonlinear function of C, so P̂  is calculated by 

numerical Fourier transform. A semi-implicit method [25] in Fourier space for time integration 

was adopted for enhanced computational stability. We added a linear term, 4C∇ , to both sides of 

Eq. (4), so that Eq. (5) became 4 4ˆ ˆ ˆˆ/ { ( )( ) }r kC t k C i M i k Cμ∂ ∂ + = ⋅ +k x k . The idea was to treat the 

4C∇  ( 4 ˆk C  in Fourier space) term implicitly on the left hand side and explicitly on the right 

hand side. This semi-implicit approach significantly alleviated the time step constraint. Denote 

the time step by tΔ  and replace ˆ /C t∂ ∂  by ( )( 1) ( )ˆ ˆ /m mC C t+ − Δ . The algorithm for m+1 time is 

given by 4 ( 1) 4 ( ) ( )ˆ ˆ ˆ(1 ) (1 ) { ( )( ) }m m m
r kk t C k t C t i M i μ++ Δ = + Δ + Δ ⋅k x k . Simulations were carried out 

with Ω=1.6, Q=1.6, and a calculation cell size of 512 512×  grids with a grid spacing of 1. 

Periodic boundary condition was applied to extend the cell to the entire plane. Initial conditions 

were random, i.e. the initial concentration had an average of 0C  with a random fluctuation within 

0.001.  

 

III. SEQUENTIAL ACTIVATION OF SELF-ASSEMBLY 

We first demonstrate the growth of long-range ordered superlattices from a seed by 

sequential activation of self-assembly. Representative results are shown in Fig. 2. Rather than 
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placing a perfect lattice directly, we grew the seed on site. Take Fig. 2a as an example. The 

initial concentration was 0 0.37C = everywhere. We assigned mobility to be 1 in the square 

mobile region. We evolved the entire calculation cell to 510t = . The constraint of kinetics led to 

a square seed composed of white B-rich phase in the matrix of black A-rich phase. We found 

that smaller seeds had fewer defects. Here we took a square seed with a size of 192 192× , which 

was larger than the size of a typical single grain. Therefore defects such as misalignment and 

multiple grains appeared in this seed. Next we shifted the mobile region to the right, which we 

called scanning. The shift distance in each step was much smaller compared to the seed size, 

which created a continuous scanning effect. The scanning velocity was chosen to ensure ample 

time for new domains to develop. In simulations we shifted the mobile region by one grid 

spacing, allowed it to evolve for a time duration of 410 , and then shifted it further. This process 

gave an effective scanning velocity of 410− . Figure 2b shows the structure after we scanned over 

the width of the calculation cell, which formed a band of nicely ordered hexagonal superlattice. 

Noticeably, the lattice improved to perfection along with the scanning, demonstrating the 

tolerance of defects in the seeds. Figures 2c and 2d show a circular seed and its growth pattern. 

Unlike straight boundaries in the square seed, the circular boundary does not have any fixed 

relevance to the grain orientation in the seed. We still obtained a nicely-ordered superlattice 

consistent with the prevalent orientation in the seed. These results suggest that the scanning 

approach is not affected by the shape of the seed. This behavior is in contrast to the geometrical 

templating, which relies on the boundary shape to guide self-assembly. 

The seeding effect can be better understood by looking into the third term in Eq.(4), 

which reflects the long-range interaction through R. The field induced by the seed is key to the 

interaction between the modulated phases in the seed and its homogeneous neighbor where the 
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concentration is still uniform. To quantify the field, we calculated the R distribution as shown in 

Fig. 3b, which corresponds to the domain pattern in Fig. 3a. The highs and lows of the R field 

and the domain pattern are consistent. Outside the seed, the R field promotes phase separation so 

that B-rich dots emerge at the locations of high R. This preference causes the dots to form at the 

right spots. The R field decays quickly away from the seed. Below we refer the mobile region 

just ahead of the seed as growth front, which experiences a significant R effect. 

We identified two scenarios that the long-range field of a seed may direct the location of 

new domains (dots). 1) New domains emerge at the right lattice spots during the stage of phase 

separation. 2) New domains emerge at locally preferred locations and then migrate to the right 

spots under the influence of the seed. Our simulations suggest that if the seed has a close to 

perfect lattice, scenario 1 dominates the process. However, when the seed contains major defects 

such as significant misalignment, the pattern formation process shows complicated dynamics and 

scenario 2 dominates. In this situation the seed can experience significant self-adjustment, since 

part of the seeds is mobile before the mobile region shifts completely outside of the seed region. 

When the portion of seed next to the growth front lacks any prevailing grain orientation, it is 

difficult to form a single grain lattice in the growth front to match the poly grain boundary of the 

seed. As a result, new domains emerge at locally preferred locations. This disordered region, 

including the growth front and the portion of seed next to it, demonstrates realignment and local 

rotation to negotiate a common lattice orientation. After the lattice improves, scenario 1 

dominates the following scanning. 

We found the scanning velocity can control the domain pattern when the system is in a 

bistable state. This state refers to a window of average concentration, where both hexagonal 

lattice of dots and stripes can stabilize. To better understand the behavior, we calculated the free 
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energy for different phases, including homogeneous, hexagonal, stripe, and mixed patterns. The 

average energy per unit area depends on material properties and the average concentration, 0C . 

For a given material system, the average energy density can be expressed by 0( )Bk T g CΛ ⋅ , 

where g  is dimensionless. The equilibrium pattern is determined by minimizing g . To compute 

0( )g C , we consider a concentration field represented by a Fourier series, namely,  

 

1 2
0 0 0

1 2

,

2 2cos cos
3

2 2cos cos
3

m n
m n

mn
m n

x xC C q m q n
d d

x xq m n
d d

π π

π π

⎛ ⎞⎛ ⎞= + +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
⎛ ⎞⎛ ⎞+ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑ ∑

∑     
, (6) 

where the summation runs from 1 to ∞. This expression describes a hexagonal pattern of dots 

lining up along the 1x  direction, as shown in the inset of Fig. 4a. Here d  is the normalized 

distance between dots. The physical distance is given by multiplying the length scale, i.e. bd . 

Note that this expression can also represent stripe patterns if we only retain the first two terms in 

Eq. (6), where d  becomes the distance between two stripes. We seek coefficients d , 0mq , 0nq , 

mnq  to minimize the free energy. This process would give the equilibrium distance and shape of 

dots or stripes. The corresponding minimized energy is the free energy for the dot or stripe 

phases. 

Combining Eq. (1) and (6) gives 

 
22 2

2 2
S QHg L

d d
π π⎛ ⎞ ⎛ ⎞= + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
, (7) 

where 
1/2 1/2

1 21/2 1/2
[ ln (1 ) ln(1 ) (1 )]L C C C C C C d dξ ξ

− −
= + − − + Ω −∫ ∫ , 1 1 /x dξ = , 2 2 / 3x dξ = , 

2 2 2 2 2 2 2
0 0 ,

/ 3 1/ 2 ( / 3)m n mnm n m n
S m q n q m n q= + + +∑ ∑ ∑ , and 
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2 2 2 2 2
0 0 ,

/ 3 1/ 2 / 3m n mnm n m n
H mq nq q m n= + + +∑ ∑ ∑  depend only on the geometry, and not 

the scale, of the patterns. By minimizing g  in terms of d , namely / 0g d∂ ∂ = , we obtain the 
equilibrium size 4 /d S QHπ= . This equation combined with Eq. (7) gives 

 
2 2

8
Q Hg L

S
= − . (8) 

We minimize Eq. (8) with respect to 0mq , 0nq , and mnq by the conjugate-gradient method to 

obtain the free energy of the dot phase. For the stripe phase we only retain the first two terms in 

Eq. (6) and minimize Eq. (8) with respect to 0mq . For the homogenous phase the free energy is 

simply L evaluated at the uniform concentration, 0C C= .   

Figure 4a shows the phase energy of hexagonal and stripe patterns as well as the 

homogenous phase with a uniform concentration when Ω=1.6 and Q=1.6. When the average 

concentration is small, the homogenous phase is stable. Note that the curves of the hexagonal 

and stripe patterns all converge to the homogenous phase for small concentrations since the 

energy minimization of Eq. (8) automatically selects uniform concentration with vanishing 0mq , 

0nq , and mnq . The common tangent of the curves for hexagonal and stripe patterns defines a 

window of 0.41< 0C <0.47 where the mixed pattern is stable. The hexagonal pattern is stable for 

0 0.41C < , and the stripe pattern is stable for 0 0.47C > . Stability analysis and simulations also 

revealed this window [26]. We took 0C  to be 0.42 which is within the window of the bistable 

state. Figure 4b shows the pattern in the seed grown in the same way as that in Fig. 2. The seed 

consists of ordered dots with few very short stripes. However, when we scanned with the same 

velocity of 410−  as before, a band of parallel stripes formed, as shown in Fig. 4c. The slow 

scanning velocity allowed the pattern to evolve close to equilibrium in each scanning step. Note 
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that these stripes did not take over the dots in the seed, suggesting that they can coexist. In Fig. 

4d, we increased the scanning velocity to 0.5. Surprisingly, a band of hexagonal lattice of dots 

formed. This phenomenon reflects a non-equilibrium growth mode, where new domains do not 

have much time to relax before the mobile region shifts. This observation suggests a new growth 

mechanism controlled by scanning velocity, which manipulates the competition between domain 

coarsening and growth. At low velocity, new domains have sufficient time to coarsen into 

parallel stripes, which have lower energy. Here the regular spacing of dots in the seed has 

provided an important guidance, since a pattern of parallel stripes is difficult to form 

spontaneously. At high velocity, new domains do not have much time to coarsen so that they 

form a lattice of dots.  Figure 4f shows a ‘phase diagram’ of patterns in terms of the scanning 

velocity and average concentration. This diagram was obtained by calculating a series of 

combination of the scanning velocity and average concentration. The unique effect of kinetic 

guidance divides the patterns into two regimes, stripes and dots, with a transition region of 

mixed patterns in between. 

High output is essential to nanostructure applications. We propose two schemes to 

facilitate large-scale fabrication. 1) As shown in Fig. 5a, we alternated the scanning directions 

between left-right scanning and up-down scanning, using the superlattice created in each 

previous step as a large seed. This scheme allowed the growth rate (area of lattice created per 

unit time) to increase exponentially with time, greatly accelerating large area fabrication. 2) As 

shown in Fig. 5b, we increased the size of the mobile area in two dimensions, rather than 

scanning along one direction. This scheme allowed the growth rate to be quadratic of the 

scanning velocity. 
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IV. SELF-ACTIVATED SELF-ASSEMBLY 

An intriguing finding is that under certain condition a single grain superlattice can grow 

spontaneously from a seed without explicit scanning. In this case the whole surface is mobile. 

We suppress simultaneous self-assembly at multiple locations by choosing a low average 

concentration so that phase separation does not occur. In the simulations we took 0C  to be 0.33, 

which was stable upon any small perturbation and no pattern would form. We then added 

material to a small region as shown in Fig. 6a, so that the concentration in the central circular 

area became 0.37. The diameter of the area was 10, which was about the size of one domain. 

Figure 6b shows that the small area became unstable and phase separation started to emerge. The 

process further destabilized the homogeneous neighbor of this seed, causing a domino effect 

which expanded the activated self-assembly region. Finally a large hexagonal superlattice 

formed. We found that the long-range elastic field generated by the seed is key to this self-

activation of self-assembly, which provides an additional destabilizing force that causes the 

would-be homogenous region outside the seed to phase separate and form patterns. The process 

was accompanied by a diffusion of B atoms from distance to the boundary of the seed, as 

illustrated by the arrow in Fig. 6d. 

This self-activation of self-assembly demonstrates an interesting growth behavior. New 

domains tend to form at the kink site as noted in Fig. 6d, where a domain has half of the nearest 

neighbors in a lattice. This behavior can be generally expressed by / 2n Z= , where n is the 

actual number of nearest domains and Z is the number of nearest neighbor sites in the domain 

lattice. The kink sites in Fig. 6 have 6Z =  and 3n = .  The formation of new domains at step 

sites, where 2n = , is less common since forming a kink domain leads to more free energy 

reduction. Due to the low average concentration, forming B-rich domains will exhaust B atoms 
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locally segregated out of the A-rich matrix, and thus incurs diffusion of B from distance. Under 

this competition for B, forming kink domains slows down the possible nearby step domains. The 

growth rate of the repeatable kink sites does not change much along an edge of the seed, 

suggesting that the overall growth rate of the superlattice may be determined by a kink kinetics 

─ dominated self-assembly process.  

The effects of the kink growth and long range diffusion are reflected in Fig. 6g, which 

shows the size of the superlattice as a function of the growth time. The area of a superlattice 

scales with the number of dots in it. The growth rate characterized by area per unit time is almost 

constant when the growth time is less than 10000. In this time frame there is sufficient local 

supply of B atoms so that the growth rate is limited by the kink kinetics. This effect causes the 

formation of a fixed number of new dots per unit time, and therefore leads to a constant growth 

rate of the superlattice. The growth rate decreases as the superlattice grows larger since 

sustaining the growth requires the diffusion of B atoms from distance. The growth eventually 

stops when all the B atoms are consumed in the calculation cell to form the superlattice.    

 

V. CONNECTION TO REPRESENTATIVE SYSTEMS 

Equations (4) and (5) are dimensionless, so that the simulation results are representative 

of a wide range of materials systems having different pattern size scales. A particularly 

interesting system is substrate-mediated spinodal decomposition of a binary epitaxial monolayer, 

such as lead on copper [13], oxygen on copper [23], or thin film separating into A-rich and B-

rich domains. This system can also be a submonolayer of adsorbates on a substrate, where one 

phase is the adsorbate and the other phase is simply the bare substrate surface. Using magnitudes 
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h~10−19J, Λ~5×1019 m−2 and Bk T ~5×10−21 J (corresponding to T=400K), we have b~0.6nm. In 

simulations a grid spacing of 1 corresponds to a physical spacing of b, which can be used to 

correlate the calculation cell size mentioned in previous sections to the physical size. Assuming 

that the Young’s modulus of the substrate is E~1011 N/m2 , the Poisson’s ratio is ν ~0.3, the 

surface stress difference of two domains is on the order of φ ~1─4N/m [27], we have a 

characteristic size scale l~0.6─10nm. The domain size is roughly 4 lπ . A larger surface stress 

difference, and a smaller interfacial tension and substrate stiffness lead to smaller domain sizes. 

The value of h can be related to the interfacial tension, γ, between A-rich and B-rich 

domains by an integration across the interface, namely ( )2/h C x dxγ
∞

−∞
= ∂ ∂∫ . Experimentally the 

gradient in the interfacial region can be approximated by /C δΔ , where CΔ  is the concentration 

difference of the two phases, and δ  is the interfacial thickness. This approximation gives 

2/( )h Cγδ= Δ .  

For a system with quite different magnitudes of b and l, it is computational intensive to 

resolve both the interface and multiple domains. In most cases we are interested in the domain 

size and patterning, when it is not necessary to resolve accurately the interfacial transition. In 

such situations one may treat b as a spatial resolution to be resolved in the simulation, whose 

value is given by /l Q . Here l  is calculated from material parameters and determines the physical 

size scale. The parameterQ  controls the spatial resolution and the number of domains to appear 

in a calculation cell. 

 Equation (4) may also be connected to other systems where the long-range interaction is 

electric dipole [28, 29] instead of elasticity. Examples include Langmuir films and adsorbates of 
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dipole molecules. The former has a typical domain size of 1─10μm [30] while the latter has a 

typical size of 1-100nm. These sizes can be converted to the characteristic size scale by the 

relation of 4 lπ . Domain patterns are also encountered in polymeric assemblies during 

microphase separation [31, 32]. The connectivity of molecular blocks precludes composition 

modulation over large length scale, leading to an effective long rang interaction similar to dipole 

interactions. In analogy to 2~ /l Eh φ for epitaxial layers, from dimensional analysis we have a 

characteristic scale 2~ /l hε η  for systems involving dipole interaction, where ε  is the 

permittivity of the media and  η  is the dipole density (electric dipole moments per unit area) 

difference of A-rich and B-rich domains. Thus a larger dipole density difference and a smaller 

interfacial tension reduce the domain sizes. 

From an experimental point of view, we envision that there are several ways to achieve a 

sequential series of self-assembly in addition to laser scanning or thermal activation. For 

instance, one may translate a substrate or nozzle during local deposition, or use other fields such 

as light or electric field to activate self-assembly at different locations sequentially. 

 

VI. CONCLUSIONS 

In summary, we proposed an approach of sequentially activated self-assembly to grow 

large-area superlattices from a continuum medium. We revealed the underlying mechanism and 

demonstrated the flexibility and defect tolerance of this approach. We also discovered a self-

activated self-assembly mechanism where the growth of superlattice can be achieved without 

explicit scanning. The 31 / r  long range interaction considered in this paper is representative of a 

range of systems such as Langmuir films, ferromagnetic films, and self-assembled monolayers. 
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The demonstration of self-propagation of ordering may motivate study of similar phenomena in a 

range of fields from physics to materials and bio-systems. 
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FIGURE CAPTIONS 

 

FIG. 1.  A schematic of sequential activation of self-assembly. Self-assembly is first 

activated in a finite mobile region, where atoms are allowed to diffuse and form domain patterns. 

This initial mobile region serves as a “seed”. The mobile region is then shifted like scanning. 

Self-assembly in the newly activated region will be under influence of patterns already formed in 

the seed. 

FIG. 2.  Growth of superlattice from seeds. 0 0.37C = . (a) A square seed. (b) A band of 

nicely ordered hexagonal superlattice formed after scanning over the width. The lattice improved 

to perfect along with the scanning, demonstrating tolerance of defects in the seeds. (c) A circular 

seed. (d) Superlattice formed after scanning. The circular boundary does not have any fixed 

relevance to the grain orientation in the seed, suggesting that the scanning approach is not 

affected by the shape of the seed. 

FIG. 3.  How a seed affects self-assembly by the R field. (a) A seed region and its 

homogenous neighbor. (b) The corresponding R distribution in grey scale, brighter for higher R. 

This field promotes phase separation so that B-rich dots emerge at locations of high R. This 

preference causes the dots to form at the right lattice spots. 

FIG. 4.  Scanning velocity can control the domain pattern when the system is in a bistable 

state, 0 0.42C = . (a) Free energy of different patterns as a function of the average concentration. 

(b) A square seed. (c) A band of parallel stripes formed at scanning velocity of 410− . (d) A band 

of hexagonal lattice of dots formed at scanning velocity of 0.5. (e) A pattern diagram in terms of 

scanning velocity and average concentration.  
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FIG. 5.  Two schemes for scaling-up growth. (a) Alternate the scanning directions, using 

the superlattice created in previous step as a large seed.  (b) Increase the size of the mobile in 

two dimension. 

FIG. 6.  Self-activated self-assembly from a small region in the center. The entire plane is 

mobile, however, the low average concentration outside the seed prohibits any spontaneous 

phase separation or pattern formation. The long-range field generated by the seed destabilizes its 

homogeneous neighbor, causing a domino effect which extends the active self-assembly region. 

(a) t=0 (b)t=100 (c)t=500 (d)t=5000 (e)t= 41 10×  (f) t= 45 10× . (g) The size of the superlattice as 

a function of the growth time. 
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