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A variety of soft and hard condensed matter systems are known to form stripe patterns. Here we
use numerical simulations to analyze how such stripe states depin and slide when interacting with
a random substrate and with driving in different directions with respect to the orientation of the
stripes. Depending on the strength and density of the substrate disorder, we find that there can be
pronounced anisotropy in the transport produced by different dynamical flow phases. We also find
a disorder-induced “peak effect” similar to that observed for superconducting vortex systems, which
is marked by a transition from elastic depinning to a state where the stripe structure fragments
or partially disorders at depinning. Under the sudden application of a driving force, we observe
pronounced metastability effects similar to those found near the order-disorder transition associated
with the peak effect regime for three-dimensional superconducting vortices. The characteristic
transient time required for the system to reach a steady state diverges in the region where the flow
changes from elastic to disordered. We also find that anisotropy of the flow persists in the presence
of thermal disorder when thermally-induced particle hopping along the stripes dominates. The
thermal effects can wash out the effects of the quenched disorder, leading to a thermally-induced
stripe state. We map out the dynamical phase diagram for this system, and discuss how our results
could be explored in electron liquid crystal systems, type-1.5 superconductors, and pattern-forming
colloidal assemblies.

PACS numbers: 64.60.Cn,61.20.Gy,05.40.-a

I. INTRODUCTION

Stripe formation occurs in a wide variety of soft1–10 and hard11–17 condensed matter systems. These stripe patterns
are often a consequence of some form of effective competing or multiple length scales in the pairwise interactions
between the particles1,3–6,9,10,14–16,18. For soft condensed matter, pattern formation can occur when the particles
experience intermediate range repulsion and short range attraction, such as in certain types of colloidal systems6,9.
In addition to stripe phases, numerous other patterns can appear as a function of density, temperature, or particle
interaction strength, including bubble, clump, and uniform crystalline phases1,3–5,10,14,17,19. The competing interac-
tions responsible for the stripe formation may be produced by particles that have both a short range attraction and
a long range repulsion10,14,18,19; however, systems with only repulsive interactions can also exhibit stripe phases4,5,7,8

provided that there are at least two length scales in the interaction potential. Typically, as the density increases,
the system progresses from a low density clump phase to an intermediate density stripe phase, and then to a higher
density bubble phase where organized voids appear in the system; finally, at the highest densities, the particles form a
uniform crystal state4,8,9,19. In two-dimensional (2D) systems of finite size, a stripe phase containing oriented stripes
is often observed4,5,19; however, for larger systems, the strong degeneracy in the stripe ground state orientation can
produce a labyrinth pattern composed of many different stripe orientations3,4,8,20. The presence of any type of bias
produced by the boundaries, a substrate, or an external drive such as a shear breaks the symmetry of the stripe
ground state and causes the stripes to align in a single direction9,20,21.

In addition to soft matter systems, there is growing evidence that stripe and bubble phases occur in hard condensed
matter systems such as 2D electrons in the quantum Hall regime17,22,23 and charge ordering in high temperature
superconductors11–16. Evidence for stripe phases in two-dimensional electron gas (2DEG) systems includes anisotropic
transport curves which have been interpreted as indicating that the stripes have a single preferred orientation22–25.
If the stripes take the form of a charge ordered state, the transport anisotropy implies that the stripes can slide more
easily when the drive is applied parallel to the stripes than when it is applied perpendicular to them. The alignment
of the stripes in the 2DEG systems may be due to small intrinsic biases that form during sample growth26. There
have also been recent 2DEG experiments that show that dc drives or other external driving can dynamically orient the
stripes under certain conditions27,28. Other recent experiments have shown that the stripe direction can be controlled
with a strain, making it possible to alter the anisotropy with a strain field29. Transport experiments in 2DEGs have
revealed sharp conduction thresholds, a series of intricate jumps in the current versus resistance curves, pronounced
hysteresis, and changes in the conduction noise, suggesting that these systems are undergoing depinning transitions
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and dynamic changes in the sliding dynamics27,30,31. Additional evidence for charge ordered states in 2DEGs has
come from resonance measurements32,33.

Another recently described system where stripe patterns occur is in “type-1.5” superconductors, predicted to appear
in two-band superconductors such as MgB2

34. In a type-II superconductor under a magnetic field, the flux in the
sample takes the form of quantized vortices which organize into a uniform triangular lattice as a result of their
repulsive interactions. In contrast, in type-1.5 superconductors, the vortices have both an attractive and a repulsive
component to their interactions34,35, which in principle will lead to the formation of clumps and stripes. Experiments
in the two-band superconductor systems have revealed evidence for disordered clump-like vortex structures; however,
strong pinning in the samples probably prevents the detection of ordered patterned structures34.

In the 2D electron systems and the type-1.5 superconductors, the interplay between the disorder in the sample and
an external drive should produce very rich dynamics with different types of depinning transitions and sliding states. It
should also be possible to subject stripe-forming soft matter systems to both an external drive and quenched disorder.
Experiments have already been conducted on the depinning of purely repulsive colloids interacting with quenched
disorder36. Similar experiments could be performed with colloidal systems that have interactions which lead to stripe
formation. The work we describe here is also relevant to systems exhibiting anisotropic sliding friction due to the
formation of stripe-like surface ordering37. To address how stripe-forming systems behave in the presence of both
driving and quenched disorder, we simulate a collection of particles driven over randomly placed attractive pinning
sites and interacting with a long range repulsion and a short range attraction14,19,21. We show that when the stripes
have a specific orientation, a number of distinct sliding states can occur which have distinct anisotropic transport
signatures, including a peak in the anisotropy produced when the dynamics is plastic for driving transverse to the
stripes but elastic for driving along the stripes.

In our previous work, we have examined the depinning and sliding of disordered bubble, clump, and stripe phases,
and found that for a fixed pinning density, the stripe phase has the highest depinning threshold14,21. In this case, the
stripes did not have a single orientation but instead formed a disordered labyrinth pattern. When plastic depinning
occurred, it was possible to induce a dynamical reordering transition into a stripe state aligned with the driving
direction21. We also found that the dynamically induced reorientation strongly depends on the strength of the
quenched disorder. Only for sufficiently strong quenched disorder are there enough plastic distortions to permit the
formation of the oriented stripes14. When the pinning is weak, the labyrinth structures depin elastically without any
distortions and the aligned stripes never form.

Here we analyze the transition from elastic to plastic depinning and show that for some parameters, the stripe
system exhibits a peak effect phenomenon similar to that observed at the transition from elastic to plastic depinning
in vortex matter. The vortex peak effect is associated with a sharp increase in the depinning force as well as changes
in the transport curves38–41. We show that the peak effect in the stripe system can occur for driving in either direction
and that it is possible to have a peak effect for one direction of drive but not the other. In previous work, we showed
that there is a broad maximum in the depinning force for the stripe phase as a function of the strength of the attractive
term. In this work, we study the peak effect in the stripe phase as a function of disorder and find that it occurs as a
sharp, first-order-like transition which is similar to the peak effect observed in superconductors.

In this work we explicitly focus on the case where the stripes are already in an aligned state rather than in a
disordered labyrinth phase. This permits us to apply a drive in two well-defined directions, along and perpendicular
to the stripes, and to compare the anisotropic response for different strengths of quenched disorder. As noted
previously, many of the 2DEG stripe systems appear to contain oriented stripes. To our knowledge the depinning and
sliding dynamics of an oriented stripe system has not previously been numerically studied. We find several new types
of sliding phases that do not appear for sliding dynamics in isotropic systems such as vortices42–48, colloids40, sliding
charge density waves49, or sliding Wigner crystals50. For example, we find several different types of plastic stripe flow.
In one state, individual structures slide past stationary stripes; in another state, the stripe structure remains intact
but a portion of the particles within the stripes are pinned while other particles flow past in one-dimensional (1D)
channels. For strong disorder the stripe structure breaks apart and the flow is similar to the plastic flow observed
in isotropic vortex systems44,45,48. We also find that the extent to which the stripes reorient is strongly sweep rate
dependent. This affects measurements of the depinning thresholds and features in the transport curves.

The paper is organized as follows. In Section II we describe our simulation method. In Section III we employ pulse
drive measurements to study metastable and transient behavior of the system. Section III A demonstrates the use of
a pulse drive technique to measure transient times as a function of driving force in a system with strong pinning, while
in Section III B we show observations of elastic depinning using the pulsed drive. Our careful characterization of the
transient behavior permits us to turn to continuously swept drives in Section IV, where we make all measurements at
each drive increment in the steady state regime and exclude all transient behavior. Section IV A shows that applying
a swept drive to a sample with strong pinning produces plastic flow that is able to erase some memory of the initial
state. Section IV B details the peak effect that appears at the transition from ordered to disordered stripe flow. We
provide dynamical phase diagrams for swept drives applied along and transverse to the stripes in Section IV C, and
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FIG. 1: The particle positions (black dots) for a system with competing long-range repulsion and short-range attraction. For
this density of ρ = 0.36 we obtain a stripe state with the stripes aligned along the y-direction. The external drives are applied
either along the stripe direction, F y

D, or perpendicular to the stripes, F x
D.

consider the effects of changing disorder density and radius on these phases in Section IV D. Section V describes the
velocity noise that occurs near the depinning transition. In Section VI we study the effects of temperature, including
a thermally induced ordering transition which is illustrated in Section VI A. We conclude with a summary in Section
VII.

II. SIMULATION

In Fig. 1 we show a snapshot of our system containing stripes oriented in the y-direction. The easy driving direction
is along y, parallel to the stripes, while the hard driving direction is along x, perpendicular to the stripe pattern.
Our simulation box has periodic boundary conditions with sides Ly = L and Lx = 1.097L. We consider N = 380
particles with a density given by ρ = N/(LxLy). Here we fix ρ = 0.36. The particles interact with a long range
Coulomb repulsion and a short range exponential attraction. The resulting interaction potential is repulsive at very
short ranges due to the Coulomb term, attractive at intermediate range, and repulsive at long range. The dynamics
of the particles are determined by integrating the following equation of motion:

η
dRi

dt
= −

Ni∑

j 6=i

∇V (Rij) + FP
i + FDC

i + FT
i . (1)

Here Ri is the position of particle i and we take η = 1.
The first term on the right hand side of Eq. (1) is the particle-particle interaction potential

V (Rij) =
1

Rij

− B exp(−κRij) (2)

with Rij = |Ri − Rj|, B = 2.0, and κ = 1.0. To avoid the divergence from the Coulomb term at small Rij we
place a constant-force cutoff at Rij < 0.1. The Coulomb term does not permit a long range interaction cutoff so for
computational efficiency we employ a Lekner summation method to calculate the long range Coulomb force51. The
second term of the interaction potential is a phenomenological short range attractive interaction.
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FIG. 2: (a) The average steady state velocity 〈Vy〉 vs F y

D for pulse driving in the y-direction. We use the same parameters
as in Fig. 1 with Fp = 0.9 and ρp = 0.38. Here the drive is suddenly increased from zero to FD and the system settles into
a steady state after a transient time τ . (b) The corresponding d〈Vy〉/dF y

D, with a sharp peak indicating the transition to a
moving stripe phase for F y

D ≥ 0.165. (c) 〈Vx〉 vs F x
D for the same system. (d) The corresponding d〈Vx〉/dF x

D vs F x
D showing a

sharp peak at the transition to a perpendicularly translating stripe state.

The second term on the right in Eq. (1) is the force from the quenched disorder, modeled as Np non-overlapping
randomly placed parabolic pinning sites with density ρp = Np/(LxLy) and with

FP
i =

Np∑

k=1

(Fp/Rp) R
(p)
ik Θ(Rp − R

(p)
ik )R̂

(p)
ik . (3)

Here, R
(p)
k is the location of pinning site k, Rp is the pinning radius which is set to Rp = 0.2 unless otherwise noted,

Fp is the maximum force from a pinning site, R
(p)
ik = |Ri − R

(p)
k |, R̂

(p)
ik = (Ri − R

(p)
k )/R

(p)
ik , and Θ is the Heaviside

step function. We average our results over several realizations of the quenched disorder when we construct the phase
diagrams.

The force FDC
i in Eq. 1 arises from an external dc drive applied unidirectionally to all the particles in either the

y or x direction, FDC
i = F y

Dŷ or FDC
i = F x

Dx̂. We measure the depinning threshold and transport curves for each

driving direction by summing over the velocities of the particles, 〈Vα〉 =
∑N

i vi · α̂ with α = x, y.
The final term on the right hand side of Eq. (1) represents the forces from randomly distributed thermal kicks with

the following properties: 〈FT
i (t)〉 = 0 and 〈FT

i (t)FT
j (t′)〉 = 2ηkBTδijδ(t − t′), where kB is the Boltzmann constant.

In previous equilibrium studies of this system, we identified the densities at which different clump, stripe, and bubble
phases occur52. Here we work at ρ = 0.36 corresponding to the case of stripes containing approximately three particles
per row as shown in Fig. 1. The initial particle positions were obtained from a very slow simulated annealing from
a high T to T = 0.0. The stripes align in the y-direction during the anneal, and the pinning potential is not applied
until after the annealing process is completed.

III. PULSE MEASUREMENTS AND METASTABILITY FOR STRONG DISORDER

We first examine the dynamical response when different strengths of external drive are suddenly applied to the
system. Pulse measurements have been used extensively to characterize the plastic depinning dynamics of vortex
systems53 but have not to our knowledge been applied previously to study the depinning dynamics of stripe-forming
systems. When the external drive is slowly increased from zero, the system passes through several different dynamical
phases. In contrast, for the sudden pulse drive, the system can pass directly from a pinned state to a sliding state,
and an ordered moving state may appear that cannot be reached by slowly increasing the driving force. For strong
pinning, the stripe structure breaks up or fragments near depinning, and the anisotropy of the two driving directions
is reduced for a slow ramp of the driving force; however, for the pulse measurements, a pronounced anisotropy can be
preserved.
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FIG. 3: The particle positions (black dots) and particle trajectories (black lines) for the system in Fig. 2(a,b) for pulse driving
in the y-direction. The particle trajectories are traced over equal times in panels (a), (c), and (e). (a) At F y

D = 0.05 there is a
filamentary flow pattern along the stripes. (b) A snapshot of only the particle positions from (a) shows that the stripe structure
is partially preserved. (c) At F y

D = 0.125, fluctuating plastic flow occurs in which channels of moving particles intertwine and
mix while other particles remain pinned. (d) The particle positions only for the system in (c) indicate that the stripe structures
are completely disordered. (e) At F y

D = 0.2, above the peak in d〈Vy〉/dF y

D shown in Fig. 2(b), all the particles are moving in
an ordered stripe phase. (f) A plot of only the particle positions from (e) shows the ordered stripes.

We conduct a series of pulse drive simulations at Fp = 0.9 and ρp = 0.38. For these parameters, slow driving ramps
would produce a breakup of the stripe structure for driving in either the x or y direction. After we apply the pulse
drive, the system typically passes through a transient state and the velocity relaxes to a steady state value after a
characteristic time τ . We construct a pulsed-drive velocity-force curve by plotting the average steady state velocity
〈V 〉 versus the magnitude of the pulse drive FD. This is shown in Fig. 2(a) and Fig. 2(c) for driving along y and
x, respectively. For driving in the easy or y-direction, the critical force F y

c is lower than for driving in the hard or
x-direction.

There is a sharp jump to a higher value of 〈Vy〉 just above F y
D = 0.165 in Fig. 2(a). For F y

D < 0.165, the pinned
stripe state undergoes plastic distortion when it moves, but for F y

D ≥ 0.165, the pinned stripe is able to depin directly
into an ordered moving stripe state, resulting in the jump in mobility. An example of the ordered motion is shown
in Fig. 3(e) and Fig. 3(f) for F y

D = 0.2. For F y
D < 0.165, the stripe structures are partially destroyed when plastic

flow occurs at depinning. For weakly plastic flow, the moving stripes persist transiently for a period of time before
breaking apart and repinning, as in Fig. 3(a) and Fig. 3(b) at F y

D = 0.05. In contrast, the stripes are disordered in
the strongly fluctuating plastic flow phase when a portion of the particles are pinned while other particles are mobile,
as illustrated in Fig. 3(c) and Fig. 3(d) for F y

D = 0.125. The transition from the disordered plastic flow regime to the
ordered moving stripe regime appears as a pronounced peak in d〈Vy〉/dF y

D at F y
D = 0.165, as shown in Fig. 2(b).
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FIG. 4: (Color online) The velocity Vy in the y-direction averaged over every 200 simulation time steps vs time in simulation
time steps for pulse drives of F y

D = 0.11, 0.125, 0.15, and 0.17, from bottom to top. In the lower three curves, which fall in
the strongly fluctuating plastic flow regime, the transition from a higher to a lower velocity occurs when the ordered stripe
structure breaks apart, such as when the structure seen in Fig. 3(f) turns into a fragmented structure of the type shown in
Fig. 3(d). The upper curve is at a drive above the transition to the moving ordered stripe regime.

For the strongly fluctuating plastic flow regime found for 0.1 < F y
D < 0.165, the initial transient motion consists of

an elastically moving stripe state in which all the particles are moving. To characterize the time τ required before the
system reaches a steady state after application of a pulse drive, we analyze the time series of Vy such as those plotted
in Fig. 4 for F y

D = 0.11, 0.125, 0.15, and 0.17, where each point is averaged over 200 simulation time steps. The
system starts with a higher value of Vy which persists for a time that increases with increasing F y

D before dropping to
the lower steady state value of Vy. The initial motion associated with the higher value of Vy is a metastable moving
ordered stripe. After the transient time τ , the stripe breaks apart and a portion of the particles become pinned,
producing the drop to the lower value of Vy. The particle positions shown in Fig. 3(d) at F y

D = 0.125 are illustrated
at a point in time after the transient ordered stripe state broke apart. In the strongly fluctuating plastic flow regime,
transverse diffusion of the particles can occur in which the particles can wander from one stripe to another along the
x direction. The nature of this non-thermal diffusion, such as whether it is normal or anomalous, will be the subject
of a future study.

For F y
D ≥ 0.165, the system remains in the ordered moving stripe state within the entire simulation time window,

which includes simulations ten times longer than shown in Fig. 4. For F y
D < 0.165, the transient time τ during

which the metastable ordered moving stripe exists increases with increasing F y
D. It is possible that after extremely

long times, even for F y
D ≥ 0.165 the stripe state could break apart, resulting in a shift of the peak in d〈Vy〉/dF y

D

to higher F y
D. Figure 2(b) shows that there is a linear increase in d〈Vy〉/dF y

D for 0.1 < F y
D < 0.16, below the large

peak. Within this range of F y
D, the steady state flow is strongly fluctuating as shown in Fig. 3(c) and Fig. 3(d). For

0.04 < F y
D < 0.1, the 〈Vy〉 versus F y

D curve increases very slowly above the depinning transition, as also indicated by
the small value of d〈Vy〉/dF y

D in Fig. 2(b). In this range of F y
D, the flow is still plastic and a portion of the particles

remain immobile while others flow past; however, the character of the plastic flow differs from the strongly fluctuating
flow found for 0.1 < F y

D < 0.16. The low drive plastic flow takes the form of filamentary flow along the stripes, as
illustrated in Fig. 3(a) for F y

D = 0.05 where one river of particles flows along the stripe. Figure 3(b) shows that the
particles still retain much of the stripe structure, in contrast to the strongly fluctuating flow illustrated in Fig. 3(d)
where the stripe structure is nearly lost. Another difference is that the plastic flow in Fig. 3(c) involves a significant
transverse diffusion of particles in the x-direction, so that over time the particles can mix throughout the system.
For the low drive plastic flow in Fig. 3(a), there are some early time particle jumps transverse to the drive from one
stripe to another; however, these events vanish in the long time limit and there is no steady state diffusion in the
x-direction, even though the shape of the filamentary flow within one stripe may change slightly over time.

In Fig. 2(c) we plot 〈Vx〉 versus F x
D for the same system in Fig. 2(a), while the corresponding d〈Vx〉/dF x

D appears
in Fig. 2(d). For the x-direction pulse drive, we do not find any regime where the stripes can dynamically reorient
and align themselves in the x direction. Instead, the system passes directly into a moving stripe phase in which the
stripe orientation remains perpendicular to the direction of stripe motion, as shown in Fig. 5(c,d). The transition
into the sliding stripe phase occurs at the peak in d〈Vx〉/dF x

D shown in Fig.2(d) at F x
D = 0.224. This peak falls at a

higher value of F x
D than the value of F y

D of the peak in Fig. 2(b). This is because stripes moving perpendicular to
their orientation are much more susceptible to breaking apart than stripes moving parallel to their orientation. A
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FIG. 5: The particle positions (black dots) and particle trajectories (black lines) for the system in Fig. 2(c,d) for pulse driving
in the x-direction. The particle trajectories are traced over equal times in panels (a) and (c). (a) At F x

D = 0.125, fluctuating
plastic flow occurs in which channels of moving particles intertwine and mix while other particles remain pinned. (b) The
particle positions only for the system in (a) indicate that the stripe structures are completely disordered. (c) At F x

D = 0.23,
above the peak in d〈Vx〉/dF x

D shown in Fig. 2(d), all the particles are moving in an ordered transverse moving stripe phase.
(d) A plot of only the particle positions from (c) shows the ordered stripes.

higher pulse driving force reduces the effectiveness of the pinning and reduces the tendency for plastic flow, so a stripe
moving perpendicular to its orientation is stabilized at a higher drive than a stripe moving parallel to its orientation
for the same pinning strength.

Figure 2(d) also shows a smaller maximum in d〈Vx〉/dF x
D near F x

D = 0.135, corresponding to a change in the char-
acter of the plastic flow. For 0.135 ≤ F x

D < 0.224, the steady state flow is dominated by strong plastic rearrangements
where the stripe structure completely breaks apart, as illustrated in Fig. 5(a,b). In contrast, for 0.06 < F x

D < 0.135,
the flow is more filamentary and is composed of a small number of slowly changing channels. For 0.17 < F x

D < 0.22,
we also find a metastable effect similar to that shown in Fig. 4 for driving in the y-direction. An ordered stripe can
slide perpendicular to the direction of the stripe orientation for a period of time which increases with increasing F x

D

before the stripe breaks apart.
In Fig. 2(a) and (c), for 0.15 < F x,y

D < 0.224, the velocity is higher for driving along the easy y direction. In
contrast, for 0.08 < F x,y

D < 0.15, 〈Vy〉 falls below 〈Vx〉. This occurs because the pulse drive measurements preserve
some of the initial structure of the oriented stripes. In the low drive regime 0.08 < F x,y

D < 0.15, much of the flow is
filamentary. For driving along the stripe, F y

D, the filamentary flow settles quickly into a few nonfluctuating channels,
while for driving against the stripe, F x

D, the filamentary flow forms fluctuating plastic channels which generally have
large velocity pulses, producing a larger average velocity 〈Vx〉. For 0.025 < F x,y

D < 0.04, anisotropy appears due to
the differing critical depinning forces in the two directions; here, flow only occurs in the y-direction but is absent in
the x-direction.

A. Transient Times

We next analyze in detail the time required for the system to achieve steady state flow under a pulse drive.
This time grows rapidly near the transition between the disordered and ordered flow states, as shown in Fig. 4.
Recent experiments and simulations of periodically sheared particle assemblies under suddenly applied shear have
shown evidence for a diverging time to reach a steady state upon approaching a dynamic phase transition54. Recent
simulations of the plastic depinning of repulsively interacting particles also revealed that the transient time to reach
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FIG. 6: The time τ in simulation time steps required for the system to reach a steady state velocity after an applied pulse drive
for the system in Fig. 2. (a) τ vs F y

D for driving in the y-direction. The first peak at F y

D = 0.04 corresponds to the depinning
transition, the second peak centered at F y

D = 0.1 appears at the transition from the filamentary flow illustrated in Fig. 3(a,b) to
the fluctuating flow state shown in Fig. 3(c,d), and the third peak at F y

D = 0.165 is associated with the transition to a moving
ordered stripe state. (b) τ vs F x

D for driving in the x-direction.

a steady state under a pulsed drive diverges as a power law as the depinning transition is approached from either
side55. This suggests that analyzing the transient time required to reach a steady state can be a useful diagnostic for
probing changes in dynamical states.

In Fig. 6(a) we plot the transient time τ taken by the system in Fig. 2(a) to reach a steady state after the application
of a pulse drive in the y-direction. For F y

D < 0.04, below the critical depinning force F y
c , there is still a finite transient

time during which the system organizes into a pinned state. The time required to reach the pinned state increases as
F y

c is approached from below, while the time required to reach a steady moving state increases as F y
c is approached

from above. For F y
D ≥ 0.165, when the system passes directly into a moving ordered stripe state, the steady state

velocity is reached very quickly and τ is very small. In the region 0.1 < F y
D < 0.165, the system depins into a

metastable moving ordered stripe state that breaks apart after a time τ as shown in Fig. 4. As F y
D approaches

F y
D = 0.165 from below, τ increases since it takes increasingly longer times to trigger the instability that results in

the fragmentation of the stripes. The rapid increase of τ suggests that τ may diverge at the transition to the moving
stripe phase; however, our results are not accurate enough to establish whether this divergence has a power law form.
We find that the peak in τ at F y

D = 0.165 is asymmetric. In comparison, the dynamic phase transitions studied in
the shearing systems produced symmetric diverging time scales on both sides of the transition54,55. Fig. 6(a) also
shows a peak in τ centered near F y

D = 0.09, which corresponds to the location of the change in slope of 〈Vy〉 versus
F y

D in Fig. 2(a). At this drive, there is a change from the filamentary plastic flow channels shown in Fig. 3(a,b) to the
rapidly fluctuating disordered plastic flow channels shown in Fig. 3(c,d). The fact that τ also increases in this region
is further evidence that there can be dynamical phase changes even within the plastic flow regime. Finally, there is
another peak in τ near F y

D = 0.04 at the depinning transition. These results show that peaks in the transient time
can be used to detect changes in the flow characteristics of these systems.

In Fig. 6(b) we plot τ for pulse driving in the x-direction. Near F x
D = 0.225 there is a peak in τ associated with

the transition to the moving perpendicular stripe phase. Within the range 0.21 < F x
D ≤ 0.225, where the value of τ
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FIG. 7: (Color online) Solid line: Vy vs time for F y

D = 0.085 for the system from Fig. 2, showing the decay of the system into
the filamentary plastic flow state. Dashed line: a power law fit to Vy(t) ∝ t−α with α = 0.35 ± 0.05.

is locally enhanced, the system forms a metastable state of stripes moving perpendicular to their length. Eventually,
the stripes break apart, and the time required for this to occur increases with increasing F x

D until for high enough
F x

D the moving perpendicular stripe structure becomes stable rather than metastable and τ drops back to a small
value. The peak in τ at F x

D = 0.225 in Fig. 6(b) is similar to the peak found for driving in the y-direction in Fig. 6(a)
near F y

D = 0.165. Figure 6(b) shows that there is another peak in τ centered at F x
D = 0.06 corresponding to the

transition from filamentary plastic flow to strongly disordered plastic flow. Overall, the transient times for driving in
the x-direction are smaller than for driving in the y-direction. For driving along the y-direction, plastic flow channels
can form which do not distort the aligned stripe pattern, permitting the system to remain in a metastable state for
longer times before falling into the disordered steady state stripe structure. For driving along the x-direction, the
stripe structure is more strongly disordered even at lower drives, so the system is closer to the disordered steady state
stripe structure from the beginning and spends a shorter amount of time in the metastable state.

The filamentary plastic flow regime that appears for 0.04 < F y
D < 0.1 is associated with large values of τ as shown

in Fig. 6(a). In this regime, the time decay of Vy to its steady state value differs from the decay in the strongly
fluctuating plastic flow regime shown in Fig. 4, where Vy remained roughly constant before dropping relatively rapidly
to a lower value. Instead, in the filamentary regime Vy follows a continuous stretched exponential form or power law,
as illustrated in Fig. 7 for F y

D = 0.085. The dashed line is a power law fit performed for t < τ to Vy ∝ t−α with
α = 0.35± 0.05. For t > τ , Vy ceases to decay and reaches a steady state. We find an equally good fit of the decaying
portion of the curve to a stretched exponential form. The exponents from the fits do not appear to be universal and
change when we take measurements from the other plastic flow regimes. We note that in other dynamical regions, the
velocity decays exponentially to a steady state. Our results indicate that within the filamentary plastic flow phases,
very long transient times can occur.

The order-disorder transition at F y
D = 0.165 between the lower drive strongly fluctuating plastic flow phase shown

in Fig. 3(d) and the higher drive moving ordered stripe phase shown in Fig. 3(f) exhibits metastability and has a
diverging time scale only on the low drive side of the transition, as indicated in Fig. 6(a). These features strongly
suggest that this transition is first order in nature and that the details of the transition are strongly affected by the
initial conditions of the moving state. For example, it is possible to obtain a reversed metastability by starting the
system in a disordered configuration and applying a pulse drive F y

D > 0.165. In this case, the moving system remains
disordered and travels at a lower velocity until an instability causes the stripe structure to form with a corresponding
increase in the velocity. This reversed metastability shows diverging transient times as the transition is approached
from above, but has no diverging time scales when the transition is approached from below. The metastability of
the ordered and disordered states resembles the superheating or supercooling recently observed for systems with first
order phase transitions. Very similar dynamical superheating and supercooling effects were found in superconducting
vortex systems in experiments56 and three-dimensional (3D) simulations57. The vortex system undergoes a disorder-
induced first order phase transition, and the effective disorder changes when the system is prepared in different states.
Computational studies of 2D vortex systems interacting with disorder have shown that there is either a continuous
order to disorder transition or a crossover, so hysteresis, superheating and supercooling do not appear. For many stripe
forming systems in two dimensions, transitions from ordered to disordered states in equilibrium and in the absence
of quenched disorder are first order in nature4,5. Our results suggest that the first order nature of the equilibrium
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FIG. 8: (Color online) (a) 〈Vy〉 vs F y

D for a pulse drive system with ρp = 0.38 and a lower pinning force of Fp = 0.125. A
two step depinning occurs, with uncoupled stripes depinning initially followed by the depinning of coupled stripes. (b) The
corresponding d〈Vy〉/dF y

D has a double peak indicating the two step depinning process. (c) 〈Vx〉 vs F x
D for the same system.

Inset: Plot of 〈Vx〉 vs F x
D − F x

c for the data in the main panel with F x
c = 0.00345. The dashed line indicates a power law fit

with an exponent of β = 0.35. (d) The corresponding d〈Vx〉/dF x
D shows a single step elastic depinning of the stripes.
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FIG. 9: (Color online) A combined plot of 〈Vx〉 vs F x
D (dark line) and 〈Vy〉 vs F y

D (light line) for the system in Fig. 8 with
Fp = 0.125 highlighting the transport anisotropy. Inset: The particle positions (dots) and trajectories (lines) for the system in
Fig. 8(a) in the decoupled stripe regime at F y

D = 0.0025 where a portion of the stripes are moving while others are pinned.

transitions persists for some of the transitions between nonequilibrium states.
At the transition between the low drive filamentary plastic flow phase and the higher drive strongly fluctuating

plastic flow phase, Fig. 6(a) indicates that there are diverging transient times on both sides of the transition. This
behavior is similar to the diverging transient times found for 2D plastic depinning. There is evidence that the
plastic depinning is an absorbing phase transition falling in the directed percolation class55. Determining whether the
depinning of the stripe system or the filamentary plastic flow to strongly fluctuating plastic flow transition are also
nonequilibrium phase transitions falling in the directed percolation class is beyond the scope of this work; however,
our results suggest that the stripe system may be an ideal system in which to examine the nature of nonequilibrium
transitions since it exhibits several different types of flow phases.

B. Pulse Measurements for Weak Disorder

We next consider pulse drive measurements for a system with the same pinning density ρp = 0.38 but with a weaker
disorder strength of Fp = 0.125. In Fig. 8(c) we plot 〈Vx〉 versus F x

D and in Fig. 8(d) we show the corresponding
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FIG. 10: (Color online) A combined plot of 〈Vx〉 vs F x
D (dark line) and 〈Vy〉 vs F y

D (lighter line) for a system with Fp = 0.9
and the same parameters as in Fig. 2 but with a continuously swept drive. There are several steps in 〈Vy〉 that appear below
the drive F x,y

D = 0.32 at which the two curves meet. Inset: A blow-up of the region near F x,y

D = 0.24 shows a crossing of the
〈Vx〉 and 〈Vy〉 curves, indicating that 〈Vy〉 has a smaller slope and that therefore fewer particles are moving for driving in the
y-direction than for driving in the x-direction. The crossing of 〈Vx〉 and 〈Vy〉 does not occur for the pulse drive measurements
shown in Fig. 2.

d〈Vx〉/dF x
D. For this value of Fp, the stripe structure remains ordered. The single step depinning for x-direction

driving is elastic and has 〈Vx〉 ∝ (F x
D − F x

c )β , with β = 0.35, as shown in the inset of Fig. 8(c). This is followed by
a crossover to 〈Vx〉 ∝ F x

D at higher drives. The behavior agrees well with the depinning of a harmonic elastic string
driven over a random substrate, where an exponent β = 0.33 is observed58. For driving in the y-direction, as shown
in Fig. 8(a), 〈Vy〉 versus F y

D indicates that a two step depinning process occurs. The initial depinning involves the
flow of individual stripes, while other stripes remain pinned or move at different velocities, as illustrated in the inset
of Fig. 9 for F y

D = 0.0025. At higher drives, the remaining stripes depin and become coupled to the other moving
stripes, resulting in an elastic flow. The two peaks in d〈Vy〉/dF y

D shown in Fig. 8(b) fall at the locations of the two
depinning transitions. A similar type of two step, layered depinning transition was predicted for anisotropic charge
density wave (CDW) systems, where CDWs first depin separately and flow independently from one layer to the next,
and then recouple at higher drives59. Mean field models also predict that layered systems should show a coupling-
decoupling transition60,61, while two-layer models predict that coexistence of moving and pinned phases should occur
in 2D systems62. In the main panel of Fig. 9, we plot 〈Vx〉 versus F x

D and 〈Vy〉 versus F y
D together in order to highlight

the transport anisotropy which disappears for F x,y
D > 0.04 when fully elastic flow is established. The transient times

τ for the Fp = 0.125 system are much shorter than those in the Fp = 0.9 system, where plastic depinning occurred.
We find an increase in τ just below each depinning transition in the Fp = 0.125 system for both x and y direction
driving. For x-direction driving, there is a single peak in τ below the depinning threshold which is associated with a
small amount of roughening of the stripe structure that occurs just before depinning. Above each depinning transition
in the weak pinning system, τ is extremely small. For y-direction driving, the peak in τ is broader within the sliding
plastic flow phase found below the second depinning transition. In systems with even weaker pinning, Fp < 0.05, the
depinning is elastic for both driving directions and the transport anisotropy is significantly reduced.

IV. CONTINUOUS FORCE SWEEP MEASUREMENTS

A. Strong Disorder

We now examine the case where the applied drive is slowly incrementally increased in a single sweep as opposed to the
sudden application of the drive discussed in the previous section. We use a driving force increment of ∆FD = 0.00025
applied every 25000 simulation time steps in a system with Fp = 0.9 and ρp = 0.38. In Fig. 10 we plot the resulting
〈Vx〉 versus F x

D and 〈Vy〉 versus F y
D together. Many of the transport features are the same as those shown for the pulse

drive in Fig. 2, such as the lower depinning threshold for driving in the y-direction and the anisotropic flow centered
near F x,y

D = 0.2. The transition to the flowing stripe state remains sharp for the continuous sweep drive in the
y-direction, but for the x-direction driving the state in which the stripes flow perpendicular to their orientation is lost.
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D = 0.27 in the swept drive system from Fig. 10. In addition
to the stripe structure, there are some scattered particles pinned between the stripes. (b) Image of particle positions in the
reordered phase at F x

D = 0.27 in the same system. The stripes have reoriented in the x-direction and there are no pinned
particles between the stripes.

Instead, the system reorders into a stripe state oriented along the x-direction, as shown in Fig. 11(b) for F x
D = 0.27.

In the pulse drive system, the perpendicular moving stripe state can be stabilized by dynamical quenching, but for
the swept drive, the system passes through an extensive plastic flow phase which destroys any memory of the initial
perpendicular stripe orientation.

The inset of Fig. 10 highlights that under the swept drive, a crossing of 〈Vy〉 and 〈Vx〉 occurs near F x,y
D = 0.24.

There is no such crossing for the pulse drive, as shown in Fig. 2. The crossing of the curves indicates that although
the system is in the moving stripe state for both drive directions, the slope of 〈Vy〉 is smaller than that of 〈Vx〉 in this
regime. This is because a fraction of the particles remain pinned for the y-direction drive, while all of the particles are
moving for the x-direction drive. When fewer particles are moving, the slope of the velocity-force curve is reduced.
Particles are able to remain pinned for the y-direction drive because they can be captured in pinning sites that are
sufficiently far away from the neighboring stripes that they experience only repulsion from the particles in the stripes,
and are out of the range of the attractive part of the particle-particle interaction potential. This does not happen for
the x-direction drive because during the stripe reorientation process, all pinned particles are eventually swept up into
a moving stripe. In Fig. 11(a), the reordered stripe phase for F y

D = 0.27 contains pinned particles that sit between
the stripes rather than flowing with the stripes. In contrast, in the moving stripe phase for a y-direction pulse drive
shown in Fig. 3(f), there are no pinned particles between the moving stripes. In the x-direction swept drive moving
stripe phase, all of the particles are moving and there are no pinned particles between the moving stripes, as shown
in Fig. 11(b) for F x

D = 0.27. The transition into the moving stripe phase for swept y-direction driving is rapid, as
indicated by the jump in 〈Vy〉 at F y

D = 0.185 in Fig. 10. For x-direction driving, the reordering transition is more
continuous, permitting more meandering of the stripe pattern during the stripe formation process. This allows all of
the pinned particles to be attracted gradually into the moving stripe structure.

Once the driving force becomes strong enough, the pinned particles surrounding the moving stripes for the y-
direction swept drive depin and join the moving stripe structures. The depinning of the individual particles produces
the step features in 〈Vy〉 near F y

D = 0.28 in Fig. 10. For drives above the depinning threshold of all of the pinned
particles, the velocity response is isotropic, as shown in Fig. 10 for F x,y

D > 0.32. Our results indicate that even for
pinning strengths strong enough to induce plastic flow and a subsequent reordering of the stripe structure, some
memory of the initial ordering of the stripe phase is retained up to relatively large values of the driving force. We
note that based on the extended transient behavior found in the plastic flow regimes for the pulse drives, it is possible
that if the swept drives were applied with even slower drive increments, the anisotropic response could be lost at lower
drives if the system is given more time to slowly mix in the plastic flow state.

B. Pinning Strength Dependence and Peak Effect

When we perform swept drive measurements on a system with the weaker pinning strength of Fp = 0.125, we obtain
velocity-force curves that are nearly identical to those shown in Fig. 8 for a pulse drive measurement. We attribute
this to the lack of plastic flow in the weakly pinned system. Without plastic flow, the stripe structure never breaks
apart and memory of the initial stripe orientation is never lost, so the same stripe orientation appears, regardless of
whether the drive is slowly swept or suddenly applied. By increasing Fp slightly, we reach a state where the x-direction
depinning is plastic and accompanied by the breaking apart of the stripe structure, while the y-direction depinning
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FIG. 12: (Color online) A combined plot of 〈Vx〉 vs F x
D (dark line) and 〈Vy〉 vs F y

D (lighter line) for a system with ρp = 0.38,
a lower Fp = 0.225, and a swept drive. The depinning in the x-direction is accompanied by plastic distortions and the partial
breaking apart of the stripe structure. Depinning in the y-direction occurs by the sliding of stripes past one another in a
manner similar to that illustrated in the inset of Fig. 9.

occurs by the sliding of some of the stripes, with the stripe structure maintained intact. This situation is illustrated
in Fig. 12, where we plot 〈Vx〉 versus F x

D and 〈Vy〉 versus F y
D for a swept drive system with Fp = 0.225.

By conducting a series of simulations for varied Fp, we map the anisotropy in the depinning thresholds F x
c and F y

c ,
as shown in Fig. 13(a). For x-direction driving, F x

c increases monotonically with increasing Fp for 0 < Fp < 0.175.
Within this range of Fp, the depinning is elastic and the stripes move perpendicularly to their orientation. Each particle
maintains its position in its original stripe. Just above Fp = 0.175, there is a sudden increase in F x

c corresponding to
the onset of plastic distortions of the stripe structure at depinning. For driving in the y-direction, F y

c continuously
increases with increasing Fp for 0 < Fp < 0.25. Over this range of Fp, the stripes depin elastically and either all depin
simultaneously for Fp < 0.05, or depin as individual sliding stripes for 0.05 ≤ Fp < 0.25 via the mechanism illustrated
in the inset of Fig. 9. For Fp < 0.05, where our system behaves elastically, we find that F y

c increases approximately
quadratically with Fp which is the expected behavior for elastic depinning63. Just above Fp = 0.25 there is a sharp
increase in F c

y when the stripes begin to depin plastically along individual stripes in the manner shown in Fig. 3(a).
For Fp > 0.4, both F y

c and F x
c begin to saturate, as shown by the anisotropy ratio R = F c

x/F c
y plotted in Fig. 13(c).

The saturation arises due to the fact that the number of pinning sites Np is only slightly higher than the number of
particles N . As a result, when Fp is large enough, the initial depinning is dominated by interstitially pinned particles.
These particles are not trapped by one of the randomly located pins, but are instead held in place by interactions
with neighboring pinned particles. The critical force for the depinning of particles trapped by pins increases linearly
with increasing Fp, but the critical force for the depinning of interstitially pinned particles is determined only by the
particle-particle interaction potential and is not altered by increasing Fp. In a system with a much higher pinning
density, every particle would be trapped by a pin and the depinning threshold would show the expected linear increase
with increasing Fp.

The sharp increases in the depinning thresholds associated with transitions from elastic to plastic flow or from
weakly plastic flow to a more strongly plastic flow resemble the phenomenon observed for depinning of vortices in
type-II superconductors, where a peak in the depinning threshold has been connected with the disordering of the
vortex lattice38–41,56,57,64,65. In the disordered or plastically flowing systems, the particles can more readily adjust
their positions to take advantage of the energy of a randomly located pinning site without paying the large energy
cost required to distort an elastic or ordered particle lattice. In studies of 2D vortex systems, as the vortex lattice is
softened the system becomes more disordered and the depinning threshold increases continuously, producing a peak
effect that is continuous rather than sharp66. This may be related to the fact that 2D systems of particles with
repulsive long range interactions lack first order melting or disordering transitions. Many 3D vortex systems have a
first order transition from an ordered vortex structure to a disordered one, and the peak effect phenomena observed
in these systems is very sharp. Even through the stripe system described here is 2D, the pairwise particle interactions
are not strictly repulsive. Previous studies in the absence of quenched disorder using the same model produced results
that suggest that the thermal melting of the stripe and clump systems is a first order transition. Other 2D studies of
stripe-forming systems with competing interactions also find first order melting transitions for many of the phases4.
These results suggest that the first order peak effect phenomenon found for vortex systems may also generically occur
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FIG. 13: (Color online) (a) The critical depinning forces F x
c (filled circles) and F y

c (open squares) for driving in the x and
y-directions, respectively, plotted vs Fp. The sharp jumps in the depinning forces are associated with changes from elastic flow
to plastic flow and from plastic flow to sliding ordered flow. (b) The corresponding dF x

c /dFp vs Fp (dark line) and dF y
c /dFp

vs Fp (light line) curves more clearly show the onset of the different depinning phases. (c) The anisotropy ratio R = F x
c /F y

c vs
Fp shows that the change in anisotropy can be associated with different depinning regimes.

for stripe and pattern forming systems in the presence of quenched disorder. We note that one of the features of the
peak effect in superconducting systems is that at fields or temperatures above the sharp increase in the depinning
force, the critical current or critical depinning force decreases again. The decrease results from the changes in the
penetration depth and coherence length that occur as the system approaches Tc or Hc2. The peak effect itself is
associated with a pinning-induced transition from ordered or elastic flow to disordered or plastic flow, which is exactly
what we observe in our stripe system.

To further characterize the changes in Fc we plot dF x
c /dFp and dF y

c /dFp vs Fp in Fig. 13(b). There is a peak
in dF x

c /dFp near Fp = 0.185 corresponding to the transition from ordered stripe flow to partially plastic flow. A
second, much broader peak appears near Fp = 0.35 at the point where the stripes break apart completely. For
0.185 < Fp < 0.35, the stripes driven in the x-direction reorder into a perpendicularly moving stripe state at high
F x

D in spite of the fact that weakly plastic flow occurs above depinning. For Fp ≥ 0.35, the plasticity at depinning
becomes much stronger and the stripes reorder into a parallel moving state at high F x

D. For driving in the y-direction
we find a single sharp peak in dF y

c /dFp near Fp = 0.25 corresponding to the appearance of plastic flow along the
stripes. We note that the transition at Fp = 0.075 into the pinned-sliding phase illustrated in the inset of Fig. 9 is
not associated with any sharp features in dF y

c /dFp.
The appearance of different flow phases can also be detected in the plot of the anisotropy ratio R in Fig. 13(c). For

example, the peak in R over the range 0.185 < Fp < 0.3 occurs when the flow for x-direction driving is plastic, while
the flow for y-direction driving remains elastic in the stripe sliding state. The increase in R at Fp = 0.06 corresponds
to the transition from elastic depinning in both directions to elastic depinning for x-direction driving and individual
stripe sliding for y-direction driving. For Fp > 0.6, the anisotropy begins to saturate.
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D vs Fp. The dashed line indicates the change from sliding stripe plastic
flow to plastic flow in which the stripe structure breaks apart.

C. Dynamic Phase Diagram

By identifying features in the velocity force curves and associating them with different moving states, we construct
a dynamic phase diagram for both x and y direction driving. In Fig. 14(a) we plot the phase diagram for F x

D vs Fp,
indicating the location of the depinning curve and the transition into an ordered stripe state. For Fp < 0.185, the
stripes depin elastically into a perpendicular moving stripe state, while for 0.185 ≤ Fp < 0.35, the stripes depin with
a small amount of plastic distortion into the same perpendicular moving stripe state. The line in Fig. 14(a) marking
the transition from plastic flow to reoriented ordered parallel moving stripes increases roughly linearly with Fp for
Fp > 0.4.

In Fig. 14(b) we plot the phase diagram of F y
D versus Fp for driving in the y-direction. In this case the stripes are

always oriented in the direction of the drive. The range of the plastic flow regime grows with increasing Fp and in
general the onset of the moving stripe phase occurs at lower drives than those at which the parallel moving stripes
form for x-direction driving. The small dashed line indicates the transition from the plastic flow in which the stripe
structure is destroyed for Fp ≥ 0.275 to the state where moving stripes slide past pinned stripes for 0.075 < Fp < 0.275.

The dynamic phase diagram for the stripe system contains a larger number of phases than dynamic phase diagrams
observed in systems with purely repulsive particle-particle interactions moving over random disorder. For example,
in 2D vortex systems the dynamic phases consist only of a pinned state, a plastic flow state, and a moving partially
ordered state, and the transitions between these states are continuous. In the partially ordered moving state, the
particles are not fully crystallized but develop a smectic type of ordering and flow in evenly spaced channels aligned
with the direction of the drive. The channels of flow may be coupled or partially coupled42–46. This is similar to the
state we observe in which the stripes reorient in the direction of drive for sufficiently high drive and sufficiently strong
pinning. In the stripe system, the stripe reordering transition is more consistent with a first order phase transition
rather than the continuous or crossover behavior found for particles with purely repulsive interactions. Studies of
driven systems with quenched disorder, where the particle-particle interactions are more complicated than the purely
repulsive case, have shown that it is possible to have a coexistence of different moving phases, which is consistent
with having first order phase transitions between the moving phases67.
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FIG. 16: (Color online) (a) F x
c (filled circles) and F y

c (open squares) vs Rp for a system with Fp = 0.225 and ρp = 0.38. (b)
The ratio R = F x

c /F y
c vs Rp showing that the anisotropy increases with increasing Rp and saturates at high Rp.

D. Changing Disorder Density and Radius

In Fig. 15(a) we plot F x
c and F y

c versus ρp for a system with Fp = 0.225 and Rp = 0.3, and in Fig. 15(b) we show
the resulting anisotropy ratio R = F x

c /F y
c versus ρp. Here F x

c and F y
c both increase monotonically with increasing

ρp. We work with Rp = 0.3 rather than Rp = 0.2 in order to more easily access the steady state for low values of ρp.
Empty pinning sites with smaller Rp are more easily screened by occupied neighboring pinning sites when an unpinned
particle is unable to reach the empty pinning site due to the long-range repulsion of the nearby pinned particle. The
empty pins can eventually be occupied after a lengthy transient time. We find that the transient times for low ρp

are reduced to manageable levels when we take Rp = 0.3 instead of Rp = 0.2. Fig. 15(b) shows that at low ρp the
anisotropy R is strongly reduced and the two depinning curves come together when the depinning becomes elastic for
both x and y-direction drives. A similar effect appears in Fig. 13(c) for low Fp, where the onset of elastic depinning
for both driving directions results in a reduced value of R. The anisotropy in Fig. 15(b) passes through a maximum
near ρp = 0.2 before gradually falling back to 1.0 for increasing ρp. The pinning density plays a more important
role in determining the anisotropy of the depinning for pre-formed stripe states than the pinning strength. When the
average distance between pinning sites is greater than the inter-stripe distance, depinning for y-direction driving in a
system with strong pinning occurs via a combination of plastic flow of particles along some stripes while other stripes
remain completely pinned. As a result, F y

c is generally lower than F x
c for the low density, strong pinning limit. This

is shown in Fig. 15(c) where we plot F y
c and F x

c versus ρp for Fp = 0.7. For higher values of ρp, the plastic depinning
along the stripes for y-direction driving is suppressed and the behavior becomes more isotropic. For systems with
small ρp and Fp > 0.35, the anisotropy persists down to much lower values of ρp than shown in Fig. 15(a); however,
for ρp > 1.0 the anisotropy vanishes completely.

We next consider a system with Fp = 0.225 and ρp = 0.38 with varied pinning radius Rp. We plot F x
c and F y

c
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FIG. 17: (Color online) (a) The time series of Vy for a system with Fp = 0.9, ρp = 0.36, Rp = 0.2, and F y

D = 0.04. For
these parameters, the particles move in stationary plastic filaments, producing a periodic time-of-flight signal. (b) The power
spectrum S(f) of the time series in (a) showing the characteristic peaks from the periodic signal. Here, f is in units of inverse
simulation time steps. (c) Time series of Vy for the same system at F y

D = 0.12 in the strongly fluctuating plastic flow regime.
(d) The corresponding S(f) has a 1/f feature at low frequencies as indicated by the dashed line.

versus Rp in Fig. 16(a), and the anisotropy ratio R = F x
c /F y

c in Fig. 16(b). Both F x
c and F y

c increase with increasing
Rp. For low Rp, F x

c increases faster with increasing Rp than F y
c does, and for high Rp, the anisotropy R saturates.

V. VELOCITY FLUCTUATIONS

The dynamic phases can also be characterized by measuring the velocity fluctuations. Experiments on stripe forming
systems previously demonstrated that narrow band noise, characterized by a periodic noise signal, and broad band
noise, which lacks any characteristic frequencies, can occur and showed evidence for transitions between the different
types of noise31,68. Previous simulations of clump and stripe forming systems showed the presence of a 1/f noise
characteristic in the nonlinear portion of the velocity-force curve associated with the fluctuating plastic flow phase.
At high drives where the stripes or clumps reorder, the noise becomes white with a weak narrow band or washboard
frequency similar to that observed for a driven vortex lattice in the dynamically reordered regime45.

Here we show that the stripe system exhibits many additional noise features near depinning. For y-direction driving
near depinning, there can be filamentary plastic flow channels along the stripe with no particle diffusion from stripe
to stripe, as shown in Fig. 3(a). Within this filamentary plastic flow regime, it is possible for the particle flow to be
limited to one or a small number of individual winding channels which do not change over time and which have a
characteristic time-of-flight for crossing the sample. This results in a periodic velocity signal such as that shown in
Fig. 17(a) for a system with Fp = 0.9 and F y

D = 0.04. Similar periodic filamentary plastic motion has been observed
in vortex simulations performed just at depinning. Here one or two stable channels of moving particles form while
the rest of the particles are immobile69. Evidence for filamentary flow has also been found in vortex experiments,
where a series of jumps and dips in the current-voltage curve were interpreted as indicating the opening of individual
channels of vortex flow70. There are also several simulations of vortex systems showing transitions from narrow band
filamentary flow to chaotic flow as the drive is increased71. The power spectrum S(f) of the velocity time series
in Fig. 17(a) is shown in Fig. 17(b), and has characteristic narrow band noise peaks produced by the time-of-flight
signature. As we increase F y

D and permit the system to settle into a steady state, we observe a series of transitions
from ordered flows to fluctuating flows with broad band noise signatures. This behavior is very similar to that found in
2DEG transport measurements31. We observe filamentary plastic flow from the depinning transition up to F y

D = 0.1.
Above this drive, the system transitions into the strongly fluctuating plastic flow regime shown in Fig. 3(c) in which
the stripe structure is destroyed. In Fig. 17(c) we plot the time series of Vy for the same system in Fig. 17(a) at a
drive of F y

D = 0.12 in the strongly fluctuating plastic flow regime. The corresponding S(f) appears in Fig. 17(d).
Here, Vy(t) is strongly fluctuating since the number of pinned particles in the system is continuously changing, and
the power spectrum shows a 1/f noise characteristic at low frequencies. As the drive is further increased, the system
reorders into a moving stripe state and the low frequency 1/f spectral signal is lost. It is replaced by a weak narrow
band noise signal similar to that observed in previous simulations for stripe reordering45.
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FIG. 18: (Color online) (a) The time series Vy for a system with Fp = 0.125 and F y

D = 0.0025, in the sliding phase. (b)
The corresponding power spectrum S(f). A strong narrow band noise signal appears. (c) Time series Vx for the same system
under driving in the x-direction at F x

D = 0.0375, just above depinning. (d) The corresponding S(f). The velocity signal is
not periodic; however, the power spectrum in (d) has a Lorentzian shape with a flat spectrum at lower frequencies and a 1/f2

spectra at higher frequencies, indicated by the dashed line. For high values of F x
D, the power spectrum develops a narrow band

noise characteristic.

For driving in the x-direction at Fp = 0.9, the filamentary motion along the stripes of the type seen for driving along
the y-direction is strongly suppressed. Instead, the strongly fluctuating plastic flow states with 1/f noise signatures
are more prevalent. When the stripes reorder by reorienting into the x-direction, we find the same weak narrow band
noise feature observed above the stripe reordering transition for driving in the y-direction.

Near depinning in a system with weaker pinning of Fp = 0.125, the sliding stripe phase produces a periodic signal
as shown in Fig. 18(a) for F y

D = 0.0025. The periodic signal also appears in the corresponding power spectrum S(f)
shown in Fig. 18(b). In this regime, the stripes are decoupled, so individual stripes are moving at slightly different
velocities. This results in a more complex velocity signal composed of several similar frequencies. For higher drives,
the moving stripes couple and the noise is more characteristic of a single periodic signal. In larger systems, near
depinning there could be larger numbers of frequencies present since there are a larger number of stripes which can
each move at different velocities. This would broaden the power spectrum; however, at larger drives, where the stripes
couple, a strong narrow band noise signature should appear.

In the weak pinning system of Fp = 0.125, x-direction driving produces elastic depinning. Just above the depinning
transition, the noise signal is not periodic as shown by the plot of Vx in Fig. 18(c) for F x

D = 0.0375. There is,
however, a characteristic noise frequency, as shown by the Lorentzian shape of S(f) in Fig. 18(d). At higher drives,
the spectrum broadens and the Lorentzian peak frequency shifts to higher frequency with increasing drive.

VI. THERMAL EFFECTS

We next consider the effects of thermal fluctuations. In previous work for a stripe-forming system at the same
density considered here but with no quenched disorder, we used diffusion and specific heat measurements to identify
a well-defined disordering temperature Tm above which the stripe structures were completely destroyed52. Below Tm,
there was liquid-like particle motion along the length of the stripes, but the system behaved like a solid in the direction
perpendicular to the stripes. This suggests that in the presence of quenched disorder, the stripe system might show
considerable creep in the easy flow direction but no creep in the hard direction for a finite temperature at applied
drives below the zero temperature depinning thresholds. To examine this, we consider a system with ρp = 0.36 and
Fp = 0.7. At drives of F x

D = 0.09 or F y
D = 0.09, the system is pinned in both directions at T = 0.0. In Fig. 19(a)

we plot 〈Vy〉/V0 and 〈Vx〉/V0 versus T/Tm. Here V0 is the velocity at which the particles would move in the absence
of pinning. For T/Tm < 0.25, there is almost no creep for x-direction driving but there is considerable creep for
y-direction driving. As a result, at low temperatures the anisotropy of the velocity response diverges, as indicated by
the plot of 〈Vy〉/〈Vx〉 in Fig. 19(b).

In Fig. 20(a) we plot the particle positions and trajectories for this system with F y
D = 0.09 at T/Tm = 0.25. Here

there is liquid-like motion of the particles along the stripes but there is no diffusion perpendicular to the stripes. The
stripe structure remains ordered although plastic creep is occurring. In the creep process, some particles along the
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FIG. 19: (Color online) (a) 〈Vx〉/V0 (filled circles) and 〈Vy〉/V0 (open squares) vs T/Tm for a system with ρp = 0.36, Rp = 0.2,
and Fp = 0.7 at applied drives of F x

D = 0.09 and F y

D = 0.09, respectively. Here Tm is the temperature at which the stripes
melt in the absence of pinning and V0 is the velocity at which the particles would move in the absence of pinning. Anisotropic
transport occurs for T/Tm < 1.0. (b) Velocity anisotropy ratio 〈Vy〉/〈Vx〉 vs T/Tm for the same system shows a diverging
anisotropy at low temperatures.
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FIG. 20: The particle positions (dots) and trajectories (lines) at different temperatures for the system in Fig. 19 with F y

D = 0.09.
(a) At T/Tm = 0.25, there is creep only along the y-direction and no creep in the x-direction. (b) At T/Tm = 0.76, the stripe
structure is still present. There is considerable diffusion along the stripes and a smaller amount of diffusion across the stripes.
(c) At T/Tm = 1.266, the motion is no longer anisotropic, as indicated in Fig. 19, and the diffusion is isotropic. (d) The particle
positions only from panel (c) show that the stripe structure is destroyed.
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FIG. 21: (Color online) Phase diagram of T/Tm vs Fp for a system with ρp = 0.38, Rp = 0.2, and a y-direction drive of
F y

D = 0.22. Here Tm is the melting temperature for the system without quenched disorder. The lower solid line separates the
plastic flow phase from the moving stripe phase and the upper solid line separates the moving stripe phase from the moving
liquid phase. The dashed line separates the plastic flow phase from the moving liquid phase. The phase diagram shows that for
intermediate pinning strength, increasing the temperature can produce a transition from a disordered plastic flow phase into
an ordered moving stripe phase.

stripe remain pinned while other particles move around them along the length of the stripe. For 0.25 < T/Tm < 1.0,
creep occurs for both directions of drive but there is a larger amount of creep for driving in the y-direction. The
anisotropy of the creep gradually diminishes as T approaches Tm. In Fig. 20(b) we plot the particle positions and
trajectories for F y

D = 0.09 and T/Tm = 0.76. The stripe structure is still present but some hopping of particles from
stripe to stripe occurs in the x-direction. For T/Tm > 1.0, the creep anisotropy vanishes. Here the stripe structure
is completely disordered and there is diffusion through the entire sample as shown in Fig. 20(c) and Fig. 20(d) for
T/Tm = 1.266. There is still some temporary trapping of particles by the pinning sites, indicated by the fact that
〈Vx,y〉/V0 < 1.0. For higher temperatures, 〈Vx,y〉/V0 gradually approaches 1.0 as the effectiveness of the pinning is
diminished. In general we find that the creep anisotropy persists longer at lower pinning densities and that at higher
pinning densities the creep anisotropy disappears.

A. Thermally Induced Ordering

We find an interesting effect in which thermal noise induces the formation of stripe order. At low temperature and
for sufficiently strong disorder, the stripe structures are fragmented and destroyed. As the temperature is increased,
it is possible for the thermal fluctuations to wash out the effectiveness of the pinning before the melting temperature
of the stripe structure is reached. The result is a floating ordered stripe. A similar effect has been observed for
two-dimensional vortex72 and colloid73 systems interacting with periodic and random substrates. In the floating solid
transition found in these studies, the vortices or colloids are pinned to the substrate at low temperatures, while at
higher temperatures they float free of the substrate and form a triangular lattice. At still higher temperatures, the
lattice disorders thermally. When the substrate pinning is strong enough, the floating solid phase disappears and the
system passes directly from a pinned solid to a liquid state.

To illustrate the formation of a floating stripe phase in our system in the presence of random disorder, in Fig. 21
we plot a phase diagram of T/Tm versus Fp for a system with ρp = 0.38, Rp = 0.2, and F y

D = 0.22. Here Tm is the
melting temperature of the stripes in the absence of quenched disorder. For low temperature and weak disorder of
Fp ≤ 0.3, the system is in a moving stripe phase. For 0.3 < Fp < 1.75, at low temperatures the system is in the
strongly disordered plastic flow state illustrated in Fig. 22(a) for Fp = 0.9 and T/Tm = 0.1. As the temperature is
increased, the effectiveness of the quenched disorder is thermally destroyed and the system organizes into a moving
stripe state aligned with the direction of drive, such as that shown in Fig. 22(b) for T/Tm = 0.75. The system melts
into a liquid for T/Tm > 1.0 as shown in Fig. 22(c) for T/Tm = 1.3. The phase diagram in Fig. 21 indicates where
these three phases occur. For Fp > 1.6 the system goes directly from a partially pinned plastic flow phase to an
unpinned disordered liquid phase, as indicated by the dashed line. This result suggests that in systems with strong
disorder, it is possible that the anisotropy may be weak at low temperatures but could increase for intermediate
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FIG. 22: The particle positions (dots) for the system in Fig. 21 at Fp = 0.9 for different temperatures. (a) At T/Tm = 0.1,
the system is undergoing plastic flow and the particles are disordered. (b) At T/Tm = 0.75, the temperature has reduced the
effectiveness of the pinning, permitting the formation of a moving stripe phase. (c) At T/Tm = 1.3, the temperature is large
enough to melt the stripe structure.

temperatures when the floating moving stripe structure forms.
The ability of the system to form a floating stripe depends on the length scale of the quenched disorder as well as

the disorder strength. If the disorder is composed of small well localized pins, as in our model, a floating solid phase
is possible. In contrast, for long range quenched disorder the thermal noise will not be effective in washing out the
pinning and a floating solid phase will not occur. The presence of a floating solid phase makes it impossible to observe
a thermally induced peak effect phenomena of the type found in superconducting vortex systems. In this peak effect, a
thermally melted vortex lattice is softer and is able to better couple to the quenched disorder, increasing the depinning
force40. If the thermal fluctuations destroy the effectiveness of the quenched disorder below the temperature at which
the disorder-free equilibrium particle structure melts, a thermally induced peak effect can not occur. It is possible
that adding long range correlations to the pinning would permit the appearance of a thermally induced peak effect
in the stripe forming system.

VII. SUMMARY

We have examined the anisotropic dynamics of oriented stripes in a system with competing interactions. We focus
on the regime where stripe structures form in equilibrium and in the absence of quenched disorder. After adding a
random substrate, we drive the system parallel or perpendicular to the original orientation of the stripes. We find
anisotropic depinning thresholds and nonlinear velocity force curves.

Under the sudden application of an external drive, the system settles into a steady state flow after a transient time
that is determined by the structure of the steady state flow, such as a plastically flowing state or a moving ordered
state. The transient time passes through peaks at the transitions between different dynamical states, such as from
pinned to filamentary flow or from strongly fluctuating plastic flow to ordered flow. In addition to the stripe system,
this type of transient measurement after a sudden application of a drive could also be used in other driven systems
such as superconducting vortices with quenched disorder, friction, and sliding charge density waves.

We observe different types of plastic flow which are determined by the direction of the drive relative to the stripe
orientation. For driving parallel to the stripes, there is a phase in which the stripes remain ordered but are decoupled
and can slide past one another. For stronger quenched disorder, plastic flow can occur within individual stripes while
the overall stripe structure remains intact. In this case, the flow is filamentary and involves only a portion of the
particles within the stripe. For stronger or denser quenched disorder, the stripes break apart and we find a strongly
fluctuating plastic flow phase in which the transport properties are isotropic. For driving perpendicular to the stripe
orientation, in addition to plastic flow phases there can be elastic depinning of the stripes perpendicular to the drive
for sufficiently weak disorder.

As a function of disorder strength we find a sharp order to disorder transition in which the state above depinning
changes from an ordered moving stripe structure to a plastic flow regime which tears apart the stripes. This order-
disorder transition is accompanied by a sharp increase in the depinning threshold which is similar to the peak effect
phenomenon observed near order-disorder transitions for vortex matter in type-II superconductors. In the stripe
system the order-disorder transition occurs at different disorder strengths for the two different driving directions,
producing regimes of enhanced anisotropy in which the system depins plastically in one direction but elastically in
the other.

In the plastic flow regime near depinning, we observe a series of velocity jumps and transitions which correspond to
transitions between filamentary flow states associated with narrow band time-of-flight velocity noise signatures and
strongly fluctuating plastic flow states exhibiting broad band noise signatures. These transitions are very similar to
recent experimental observations in this class of system.



22

The anisotropic transport can be enhanced by thermal fluctuations. Thermal disorder induces an anisotropic
melting of the stripes, with a lower temperature stripe liquid in which particles can move easily along the length of
the stripe but remain confined perpendicular to the stripe, and a higher temperature isotropic liquid in which the
stripe structure is destroyed. For intermediate quenched disorder strength, the stripe structure is disordered at low
temperatures but can undergo a thermally induced stripe ordering into a floating stripe phase when the thermal
fluctuations reduce the effectiveness of the quenched disorder.

We expect that these results should be generic to any type of stripe forming system driven over quenched disorder.
Particular systems where the pulse measurements and transient times could be analyzed include two-dimensional
electron gasses or the recently studied type-1.5 superconductors in which the vortices interact via competing repulsive
and attractive interactions. Other relevant systems include stripe or labyrinth patterns in soft matter systems driven
with electric or magnetic fields over a rough surface or through obstacle arrays.

This work was carried out under the auspices of the NNSA of the U.S. DoE at LANL under Contract No. DE-
AC52-06NA25396.
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27 J. Göres, G. Gamez, J.H. Smet, L. Pfeiffer, K. West, A. Yacoby, V. Umansky, and K. von Klitzing, Phys. Rev. Lett. 99,

246402 (2007).
28 Y. Horibe, C.H. Chen, S.-W. Cheong, and S. Mori, Europhys. Lett. 70, 383 (2005).
29 S.P. Koduvayur, Y. Lyanda-Geller, S. Khlebnikov, G. Csathy, M.J. Manfra, L.N. Pfeiffer, K.W. West, and L.P. Rokhinson,

arXiv:1005.3327.
30 K.B. Cooper, M.P. Lilly, J.P. Eisenstein, L.N. Pfeiffer, and K.W. West, Phys. Rev. B 60, R11285 (1999).
31 K.B. Cooper, J.P. Eisenstein, L.N. Pfeiffer, and K.W. West, Phys. Rev. Lett. 90, 226803 (2003).
32 G. Sambandamurthy, R.M. Lewis, H. Zhu, Y.P. Chen, L.W. Engel, D.C. Tsui, L.N. Pfeiffer, and K.W. West,

Phys. Rev. Lett. 100, 256801 (2008).
33 H. Zhu, G. Sambandamurthy, L.W. Engel, D.C. Tsui, L.N. Pfeiffer, and K.W. West, Phys. Rev. Lett. 102, 136804 (2009).
34 V. Moshchalkov, M. Menghini, T. Nishio, Q.H. Chen, A.V. Silhanek, V.H. Dao, L.F. Chibotaru, N.D. Zhigadlo, and

J. Karpinski, Phys. Rev. Lett. 102, 117001 (2009); E.H. Brandt and S.-P. Zhou, Physics 2, 22 (2009); T. Nishio, V.H. Dao,
Q. Chen, L.F. Chibotaru, K. Kadowaki, and V.V. Moshchalkov, Phys. Rev. B 81, 020506(R) (2010).



23

35 E. Babaev and M. Speight, Phys. Rev. B 72, 180502(R) (2005).
36 C. Reichhardt and C.J. Olson, Phys. Rev. Lett. 89, 078301 (2002); A. Pertsinidis and X.S. Ling, ibid. 100, 028303 (2008).
37 J. Tekic, O.M. Braun, and B. Hu, Phys. Rev. E 71, 026104 (2005).
38 A.B. Pippard, Philos. Mag. 19, 217 (1969).
39 S. Bhattacharya and M.J. Higgins, Phys. Rev. Lett. 70, 2617 (1993); Phys. Rev. B 49, 10005 (1994).
40 X.S. Ling, S.R. Park, B.A. McClain, S.M. Choi, D.C. Dender and J.W. Lynn, Phys. Rev. Lett. 86, 712 (2001).
41 S. Mohan, J. Sinha, S.S. Banerjee and Y. Myasoedov, Phys. Rev. Lett. 98, 027003 (2007).
42 A.E. Koshelev and V.M. Vinokur, Phys. Rev. Lett. 73, 3580 (1994).
43 T. Giamarchi and P. Le Doussal, Phys. Rev. Lett. 76, 3408 (1996); S. Scheidl and V.M. Vinokur, Phys. Rev. E 57, 2574

(1998); L. Balents, M.C. Marchetti, and L. Radzihovsky, Phys. Rev. B 57, 7705 (1998).
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