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Abstract

We apply a Langevin model by imposing additive and multiplicative noises to study thermally

activated diffusion over a fluctuating barrier in underdamped case. The barrier fluctuation is char-

acterized by Gaussian colored noise with exponential correlation. We present the exact solutions

for the first and second moments. Furthermore, we calculate asymptotic probability for a Brownian

particle passing over the fluctuating barrier by direct simulations. The results indicate that the

correlation of fluctuating barrier is crucial for barrier crossing dynamics.
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I. INTRODUCTION

The problem of thermally activated diffusion over various subsets of barrier potential

is ubiquitous in physical contexts, chemical reactions, and biological transport [1, 2]. For

past decades, dynamic processes across a fluctuating barrier potential have attracted much

attention (for a review see [2]). In many complex environments, e.g., in dye lasers with pump

noise [3], and chemical reactions in contact with fluctuating environment [4], the barrier

height of the potential fluctuates over time stochastically instead of remaining static. Within

Langevin equation description, the dynamics across a fluctuating barrier is usually modeled

as an open system driven simultaneously by additive and multiplicative noises [1, 2, 5–9].

The internal thermal fluctuation is described by the additive noise and the fluctuation in the

barrier height is characterized by multiplicative noise. Unlike the presence of additive noise

only, the multiplicative noise with various correlation time may induce nontrivial results

such as noise-induced nonequilibrium phase transition [10, 11], anomalous diffusion [12],

and stochastic activation (SA) in stochastically fluctuating barrier systems [13].

It is noteworthy that much of abovementioned work focused mostly on the dynamic

process in overdamped limit for sake of simplicity [2, 5–9, 11, 13]. However, barrier crossing

dynamics have shown a significant difference between low and high friction limits [14–17]. In

heavy-ion fusion reaction, compound nucleus can be formed if two colliding nuclei surmount

the Coulomb barrier. The fusion probability increases with the increasing friction at low

friction limit, while it decreases with the increasing friction in overdamped case owing to

fast thermal equilibration and slowed diffusion [16, 17]. This leads to an evident peak

value of fusion probability in the intermediate friction regime which divides two distinct

dynamic behaviors. In the present work, we study analytically and numerically the problem

of diffusion over a fluctuating barrier potential at underdamped limit. Barrier crossing

processes in linear systems with time-dependent potential have been theoretically studied

by several authors using Gaussian white noise [18–20], anomalous diffusion and interesting

probability distribution have been shown in overdamped region.

Besides theoretical extension, our model has more practical consideration. Recently, a

number of experimental data in synthesis of superheavy nuclei have shown remarkable en-

hancement of fusion cross sections at the energies below and near the barrier potential, which

has been explained by the coupled-channel models by introducing a barrier distribution [21–
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24]. It is considered that the barrier height encountered by each fusion event is stochastically

distributed as a consequence of couplings of the relative motion to other degrees of freedom

such as nuclear shape deformations [23, 24]. Due to the complex factors in heavy-ion colli-

sions, such as neck fluctuation during neck formation [25], a time-dependent coupling which

may lead to a fluctuating barrier is conceivable. Motivated by this assumption, in this work

we consider a Langevin system similar to the one in [16], except a time-dependent barrier

with random fluctuation described by Gaussian colored noise with exponential correlation.

This more general description provides better understanding of barrier crossing dynamics in

heavy-ion fusion reactions.

This paper is organized as follows: In Sec. II, we present a Langevin system subjected

to additive and multiplicative noises to model the dynamics over a fluctuating barrier. In

Sec. III, we study the stationary probability surmounting the fluctuating barrier by direct

simulations for various situations. Finally the conclusion is given in Sec. IV.

II. THE STOCHASTIC DYNAMICS OVER A FLUCTUATING BARRIER

The dynamics of a Brownian particle in a fluctuating barrier potential is governed by the

following Langevin equation,

d2x

dt2
+ γ

dx

dt
− [1 + η(t)]Ω2x = ξ(t), (1)

where γ is the damping parameter. The additive noise ξ(t) comes from the environment in

thermal equilibrium, satisfying fluctuation-dissipation theorem with the following statistical

properties [16]

〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = 2Dδ(t − t′), (2)

where D = γkBT/m. The multiplicative noise η(t) represents a time-dependent fluctuation

in barrier height with

〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = Q exp (−|t − t′|/τ), (3)

where τ is the correlation time and Q is the variance of the colored noise, respectively. Eq. (3)

defines an exponentially correlated Gaussian noise, which has been a typical consideration

for barrier fluctuation [7, 9, 14, 26, 27]. Here, Gaussian colored noise η(t) is assumed to be

uncorrelated with Gaussian white noise ξ(t).
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The stochastic variable η(t) can be described by the auxiliary stochastic equation [7, 9,

14, 26–28]

dη(t)

dt
= −1

τ
η(t) +

√

2Q

τ
ζ(t), (4)

where ζ(t) is a standard Gaussian white noise with 〈ζ(t)ζ(t′)〉 = δ(t − t′). The probability

distribution has a form

P (η(t)) =
1√
2πQ

exp

[

−η(t)2

2Q

]

, (5)

which corresponds to a fluctuating barrier in Gaussian distribution. The variance Q and the

correlation time τ dominate the power spectrum of the colored noise

Sη(ω) =
Qτ

π(1 + τ 2ω2)
. (6)

For the case of small τ , a Gaussian white noise with weak noise intensity is revisited. The

barrier height fluctuates fast within a finite interval, and hence the moving particle expe-

riences an average barrier height. While the large value limit τ → ∞ (Sη(ω) → Q

π
δ(ω))

characterizes slow fluctuation in barrier height of the potential.

A. Exact solutions

To obtain the first moment of x, we rewrite Eq. (1) as two first-order differential equations

ẋ = v,

v̇ = −γv + Ω2[1 + η(t)]x + ξ(t). (7)

Taking the average of the above equations over the ensemble, one can obtain

˙〈x〉 = 〈v〉,
˙〈v〉 = −γ〈v〉 + Ω2〈x〉 + Ω2〈ηx〉, (8)

which contains a new correlator 〈ηx〉. To find this correlator, we use Shapiro-Loginov theo-

rem [29, 30] which reads
d〈ηg〉

dt
=

〈

η
dg

dt

〉

− λ〈ηg〉 (9)

for exponentially correlated noise η(t) where λ = 1/τ . Here g is any differential function

relevant to η(t). Thus, by substituting g = x or g = v into Eq. (9), one can obtain the

following linear matrix equation

dF

dt
= A · F, (10)
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with

F =















〈x〉
〈v〉
〈ηx〉
〈ηv〉















, A =















0 1 0 0

Ω2 −γ Ω2 0

0 0 −λ 1

Ω2Q 0 Ω2 −(γ + λ)















. (11)

Thus a closed system is found for four variables of the first moment, and it is solvable for

given initial condition. Similar scheme has been used in Refs. [31–33] to complete the system

dynamics. To simplify the procedure, we have used the simplest version of the splitting of

high order correlators in this paper, i.e. 〈η2x〉 = 〈η2〉〈x〉 = Q〈x〉.
The second moments can be obtained by similar procedure. Starting from Eq. (7) and

making appropriate transformation, the differential equations for the second moments and

cross correlation are written as

d〈x2〉
dt

= 2〈xv〉,
d〈v2〉
dt

= −2γ〈v2〉 + 2Ω2〈xv〉 + 2Ω2〈ηxv〉 + 2〈ξv〉,
d〈xv〉

dt
= −γ〈xv〉 + Ω2〈x2〉 + 〈v2〉 + Ω2〈ηx2〉 + 〈ξx〉. (12)

Notice there are some high order correlators 〈ηxv〉 and 〈ηx2〉 in the above equations, which

can been treated by Shapiro-Loginov theorem, just like in the previous case. Similarly, two

new correlators 〈ξx〉 and 〈ξv〉 need to be supplemented. We apply Shapiro-Loginov theorem

again and find 〈ξx〉 = 0 and 〈ξv〉 = D for Gaussian white noise ξ. The details of the

derivation are provided in Appendix. Hence, the resulting dynamic system is six-component

linear matrix equation in the form

dG

dt
= BG + K, (13)

where

G =



























〈x2〉
〈v2〉
〈xv〉
〈ηx2〉
〈ηv2〉
〈ηxv〉



























, K =



























0

2D

0

0

0

0



























, (14)
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and B is 6 × 6 drift matrix

B =



























0 0 2 0 0 0

0 −2γ 2Ω2 0 0 2Ω2

Ω2 1 −γ Ω2 0 0

0 0 0 −λ 0 2

0 0 2Ω2Q 0 −(2γ + λ) 2Ω2

Ω2Q 0 0 Ω2 1 −(γ + λ)



























. (15)

The formal solutions of linear matrix Eqs. (10) and (13) are given by

F(t) = eAtF(0), (16)

G(t) = eBtG(0) −
[

I − eBt
]

B
−1 · K, (17)

where I is 6 × 6 unit matrix.

As an example, we discuss a special case of static barrier potential with no barrier fluc-

tuation (Q = 0). In this situation, the system is driven by the additive noise only. Eq. (10)

is reduced to

d

dt





〈x〉
〈v〉



 =





0 1

Ω2 −γ









〈x〉
〈v〉



 , (18)

which is linear and exactly solvable. The first component of the vector in the above equation

is given by

〈x〉 = a1e
p1t + a2e

p2t, (19)

where p1 > 0 and p2 < 0 are eigenvalues of the drift matrix in Eq. (18)

p1 =
1

2
(γ′ − γ),

p2 = −1

2
(γ′ + γ), (20)

and

a1 =
−p2x0 + v0

γ′
,

a2 =
p1x0 − v0

γ′
. (21)

Here γ′ =
√

γ2 + 4Ω2, x0 and v0 are initial position and velocity of the particle. At large

time t → ∞, the mean position 〈x〉 is dominated mostly by the first term of Eq. (19) due

to positive p1.
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Similarly, Eq. (13) in static potential field reads

d

dt











〈x2〉
〈v2〉
〈xv〉











=











0 0 2

0 −2γ 2Ω2

Ω2 1 −γ





















〈x2〉
〈v2〉
〈xv〉











+











0

2D

0











. (22)

To determine the variance of the motion of the particles, we use the covariance matrix [34, 35]

σ =





σxx σxv

σvx σvv



 =





〈x2〉 − 〈x〉2 〈xv〉 − 〈x〉〈v〉
〈xv〉 − 〈x〉〈v〉 〈v2〉 − 〈v〉2



 . (23)

The linear equation for the elements of covariance matrix from Eqs. (18) and (22) takes the

form

d

dt











σxx

σvv

σxv











=











0 0 2

0 −2γ 2Ω2

Ω2 1 −γ





















σxx

σvv

σxv











+











0

2D

0











. (24)

The component of interest in the above equation is

σxx =
kBT

mΩ2
(c1e

q1t + c2e
q2t + c3e

q3t − 1), (25)

where q1 > 0, q2 < 0 and q3 < 0 are eigenvalues of the drift matrix in Eq. (24) with

q1 = −γ + γ′,

q2 = −γ − γ′,

q3 = −γ, (26)

and

c1 =
γ2 + γγ′

2γ′2
,

c2 =
γ2 − γγ′

2γ′2
,

c3 =
4Ω2

γ′2
. (27)

In Eq. (25), the first term in right hand is the leading one since q1 > 0, which is divergent

in the large time limit. The equations (19) and (25) are in good agreement with the results

in [16]. Other components such as 〈v〉, σvv and σxv are easily obtained if needed.
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In what follows we discuss the PDF of particle position. For the case where the system

is subjected to additive noise only, namely, Q = 0, the time-evolutionary PDF has Gaussian

form [10, 16, 20, 36]

p(x, t; x0, v0) =
1

√

2πσxx(t)
exp

{

− [x(t) − 〈x(t)〉]2
2σxx(t)

}

, (28)

with the initial condition p(x, t = 0) = δ(x − x0)δ(v − v0).

When the barrier fluctuation can not be neglected, we restrict our consideration to the

overdamped case for simplicity. Thus, the stochastic system in the large γ limit reads

γ
dx

dt
= [1 + η(t)]Ω2x + ξ(t). (29)

According to the result given by [9, 37], we get effective Fokker-Planck equation (FPE)

corresponding to Eq. (29) in the form

∂

∂t
p(x, t) = −Ω2

γ

∂

∂x
xp(x, t) + D0

∂2

∂x2
p(x, t) + D1

∂

∂x
x

∂

∂x
xp(x, t), (30)

where

D0 =
D

γ2
=

kBT

γm
,

D1 =
QτΩ4

γ2
. (31)

Here D0 and D1 attribute to additive and multiplicative noises, respectively. So far, it is

difficult to find out the exact expression of the PDF in Eq.(30), especially the non-stationary

solution [10].

B. Numerical simulations

In order to find out the nonstationary PDF of the system subjected to additive and

multiplicative noises, We perform numerical integration of Eq. (1) by Heun’s method [38, 39].

The exponentially correlated noise η(t) is generated by integrating Eq. (4), which is driven

by a Gaussian white noise ζ [40]. The time step ∆t is set to 0.001 for simulations. The

Brownian particles start at the left of the fluctuating barrier potential x0 = −2 and the

simulations are performed by averaging over 200 000 trajectories to calculate the dynamical

properties. For simplicity, we have set Boltzmann constant kB and the particle mass m
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as unity. The parameter Ω = 1 is set. The friction coefficient γ = 0.1 is taken in the

simulations, unless otherwise stated.

The numerical results of non-stationary PDF are shown in Fig. 1. One can see clearly a

non-Gaussian distribution, even in this linear Langevin system but driven by additive and

multiplicative noises simultaneously [9, 41]. The non-Gaussian PDF indicates that it can

not be determined by the first and second moments only.

We calculate the time-evolutionary ratio of average position and the variance, r =

−〈x〉/√σxx. For Gaussian distribution, the ratio approaches constant at large times,

which indicates a stable spreading with respect to the center of the Gaussian distribution.

As expected, this non-Gaussian distribution results in a nonstable ratio which decreases

monotonously, as shown in Fig. 2. For the case of large correlation time and low friction

coefficient, the ratio allows a fast decaying, implying a sharp spreading of the distribution.

III. PROBABILITY PASSING OVER THE BARRIER

A. the static barrier

Barrier crossing problem has been considered as a simplified model to describe fusion

mechanism of the synthesis of the heavy elements in heavy-ion reactions [16, 36, 42]. For

the static barrier potential with Q = 0, Eq. (1) results in a Gaussian PDF (28) for particle

position. The asymptotic probability for a particle passing over the static barrier has been

given in Refs. [16, 17, 20, 43–45]

P (t → ∞) =

∫

∞

0

p(x, t; x0, v0)dx =
1

2
erfc

[

− 1√
T

√

1 − y2
(
√

B − y
√

K)

]

, (32)

where y = p1/Ω is a dimensionless parameter, with p1 is the positive eigenvalue in Eq. (20).

Here B = 1

2
mΩ2x2

0
is the barrier height measured from the initial position, and K = 1

2
mv2

0

the initial kinetic energy.

The critical kinetic energy Kc, which is defined as the energy necessary for half of the

particles passing over the barrier, has the form [16, 42]

Kc

B
=

1

y2
=

[

γ̃

2
+

√

(
γ̃

2
)2 + 1

]2

. (33)
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FIG. 1: Normalized PDF in the presence of additive and multiplicative noises. The initial position

x0 = −2 and initial velocity v0 = 1.5. B = 1

2
mΩ2x2

0
is the barrier height measured from the initial

position. Here T/B = 0.5, γ = 0.1, Q = 0.1 and τ = 1. (a) t = 5. (b) t = 10.

Notice that the ratio of critical kinetic energy to the barrier height is just determined by the

dimensionless friction coefficient γ̃ = γ/Ω, regardless of the environment temperature T .

We are interested in temperature effect on the over-passing probability. The asymptotic
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FIG. 2: (Color online) Log-log plot of time-dependent ratio r = −〈x〉/√σxx in the system with

static barrier Q = 0 and fluctuating barrier of Q = 0.1, τ = 0.1 and τ = 1, respectively. The

lines are the analytical results of Eqs. (16) and (17), and the scatters denote numerical integration

results. Other parameters are same as those in Fig. 1.

probability Eq. (32) as a function of the environment temperature T is shown in Fig. 3. In

weak friction coefficient regime, there are clearly three distinct behaviors. For low initial

kinetic energy K < Kc, a monotonously increasing probability with increasing temperature

is observed, and close to the asymptotic value P = 0.5 in the high temperature limit. For

the case of K > Kc, the over-probability decreases as the temperature increases, which is

not expected intuitively. In fact, all particles with initial kinetic energy larger than barrier

height will pass over the barrier in nondissipative system of γ̃ = 0. For the system with small

γ̃, most of the particles can surmount the barrier due to low energy dissipation, and thus

a large over-passing probability P > 0.5 is exhibited. When the environment temperature

T rises, on an average some of the particles which have passed over the barrier potential

will return back to the starting side, resulting in a reduced over-passing probability, namely,

negative dP/dT . When K = Kc, the asymptotic probability takes the uniform value of

P = 0.5 regardless of the environment temperature. Thus, the energy regimes can be

divided into three parts, as shown in Fig. 4. In this figure one can find dP/dT < 0 for
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K > Kc, dP/dT > 0 for K < Kc, and dP/dT = 0 at K = Kc.
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FIG. 3: Temperature dependence of the probability (32) for weak friction case of γ = 0.1. Here the

critical kinetic energy Kc/B = 1.1051. The initial kinetic energy from upper to bottom correspond

to K/B = 1.5625, 1.1051, 0.5625 respectively. The barrier height B = 2. For fluctuating barrier,

Q = 0.1 and τ = 0.1.

B. the fluctuating barrier

Now we consider the probability of the particles passing over a fluctuating barrier, their

motion is described by Eqs. (1−3). The fluctuating barrier has Gaussian distribution domi-

nated by two parameters, the variance Q and the correlation time τ . For Q = 0, the barrier

remains static, corresponding to the situation of no barrier fluctuation. While large Q, such

as Q ∼ 1, might lead to temporarily harmonic oscillator potential. On the other hand, τ → 0

corresponds to Gaussian white noise, and therefore, a moving particle feels fast fluctuation

in barrier height. While slow fluctuation of barrier height is shown for τ → ∞. In the latter

case, each particle starting at initial position feels almost a fixed barrier when moving along

its trajectory, which is stochastically distributed in the form

P (η) =
1√
2πQ

exp

(

− η2

2Q

)

. (34)
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FIG. 4: The energy regimes with completely different characteristics of temperature dependence.

The solid line is the result of Eq. (33), acting as the boundary of the two regimes. The barrier

height B = 2 is taken.

Here η is time-independent stochastic value. At the first sight one might take it for granted

that Eq. (34) is intuitively same as Eq. (5). Actually, Eq. (5) is true for a wide range of τ ,

leading to a time-dependent barrier, while Eq. (34) is only appropriate for τ → ∞, implying

a time-independent barrier encountered by each particle.

Next we turn to numerical simulations to study the over-passing probability. We have

investigated the time evolutionary probability extensively and have demonstrated a station-

ary probability after a period of time for either small Q or small τ , as shown in Fig. 5 (a). In

addition for large Q and large τ , the probability evolves to the asymptotic value of P = 0.5

after a very long time, as plotted in Fig. 5 (b).

The asymptotic probability as a function of Q for small τ in low friction regime is shown

in Fig. 6. If the initial kinetic energy is below or near the barrier potential, K < B, the

over-probability is less than the value of 0.5 and increases slowly with growing variance Q.

While for K > B the probability is larger than 0.5, implying overwhelming majority of

particles have surmounted the fluctuating barrier, as in expected. Furthermore, larger Q,

and hence large barrier fluctuation, will not help more particles to pass over the fluctuating

barrier. On the contrary, part of the particles returned to starting point if Q increases, and
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FIG. 5: (Color online) The probability passing over a fluctuating barrier as a function of time. The

temperature T/B = 0.5 and friction γ = 0.1 are taken in the simulations. (a) Stationary probability

obtained after a time for either small Q or small τ . Three lines from bottom to upper are Q = 0.1

and τ = 0.1 (small Q and small τ), Q = 0.1 and τ = 10 (small Q), Q = 1.0 and τ = 0.1 (small τ),

respectively. The initial kinetic energy K/B = 0.5 is adopted. (b) Non-stationary probability for

large Q and large τ . Notice the time scale in this figure is dozens of times as compared to (a).

hence a decreasing probability with increasing Q is observed in large K and low γ.

In what follows we restrict our consideration to the case of Q ≪ 1 to ensure a barrier

potential, avoiding a harmonic oscillator, even temporarily. Extensive numerical simulations

show completely distinct behaviors in three energy regimes with respect to the case of static

barrier: the enhanced probability in energy area K < Kc, a suppressed one for K > Kc,

and invariable one at K = Kc, as shown in Fig. 3. It is interesting that the energy regimes

in Fig. 4 are still in effect even in the presence of fluctuating barrier. Hence we come to a

conclusion that neither the environment temperature nor the fluctuating barrier will affect

critical kinetic energy.

Finally, it is instructive to study the effect of correlation time τ on the asymptotic prob-

ability. A wide range of correlation times have been used in our simulations to catch the

characteristics. The over-probability as a function of initial kinetic energy is shown in Fig. 7.
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FIG. 6: (Color online) The asymptotic probability passing over a fluctuating barrier as a function

of the variance Q for three cases. Small correlation time τ = 0.1 is taken to ensure a stationary

probability within simulation time. Other parameters are same as those in Fig. 5.

Large τ leads to dozens of times enhancement of probability at the energies well below the

barrier. At the energies near the barrier, a prominently increasing probability can still be

seen when τ increases. Whereas a slight suppression happens at high energies, even for the

case of large τ , see the inset in Fig. 7. The results are qualitatively consistent with those of

previous work on the enhanced fusion cross sections for heavy-ion synthesis by introducing

barrier distribution, especially at deep sub-barrier energies [21–24, 46], and reduced one at

high energies with respect to barrier potential [46, 47]. Indeed, the fusion cross section is

dominated by fusion probability [42, 48] and realistic fusion reaction includes more complex

potential and specific parameters. Our results have demonstrated that both enhancement

and suppression of the fusion probability are relevant to not only barrier distribution, but

the correlation time of fluctuating barrier as well.
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FIG. 7: (Color online) Semi-logarithmic plot of over-passing probability as a function of initial

kinetic energy. The temperature T/B = 0.5. The solid line is the result of Eq. (32), corresponding

to the static barrier potential (Q = 0), and the scatters from bottom to upper correspond to fluc-

tuating barrier with the variance Q = 0.1 and the correlation time τ = 0.1, 1.0, 10.0, respectively.

The arrow indicates average barrier height. The inset: the probability at higher energies in a linear

scale.

IV. CONCLUSION

In conclusion, we have proposed a Langevin model subjected to additive and multiplica-

tive noises to describe thermally activated diffusion over a fluctuating barrier. The analytical

predictions of the first and second moments and relevant dynamical characteristics have been

obtained by two linear matrix equations. Numerical analysis of the Langevin model provides

a nonstationary PDF in non-Gaussian form. Our results can also be applied to stochasti-

cally modulated harmonic oscillators (Kubo oscillator) only if the inverted parabolic barrier

is replaced by harmonic oscillator potential.

We also showed interesting dynamics in underdamped region where the exchange of energy

with the environment is limited due to the low friction. For the case of static barrier with

Q = 0, there are three regimes depending on initial kinetic energy with respect to the critical

energy Eq. (33). For K < Kc, the asymptotic probability P passing over a static barrier
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is less than 0.5 and increases with the increasing temperature. In contrast, the asymptotic

probability stands above the value of 0.5 and reduces with the increasing temperature for

K > Kc. This indicates that higher temperatures are not always helpful for the particles to

surmount the barrier, contrary to one’s expectation. At the energy K = Kc, the probability

keeps unchanged at P = 0.5 with varying environment temperatures. Furthermore, the

simulations also showed this holds true even for fluctuating barrier. Consequently, it implies

that the critical kinetic energy Kc has nothing to do with the environment temperature as

well as the stochastic modulation of the barrier.

We have explored the influence of barrier fluctuation in relevant scales of correlation

time on the probability passing over the fluctuating barriers. For large correlation time τ ,

the over-passing probability is enhanced remarkably at sub-barrier energies, while a slight

suppression takes place at high energies, as compared to the case of the static barrier. Similar

enhancement of fusion cross sections has been found in previous work on experimental studies

in heavy-ion fusion reactions and explained by theoretical analysis of coupled-channel effect

using barrier distribution. It should be noted that our model presents a qualitative prediction

of dynamics in fluctuating barrier with various scales of correlation. Our results indicates

that the correlation time of fluctuating barrier plays an important role in barrier crossing

dynamics. We hope this model will provide a better understanding of the barrier crossing

problem in heavy-ion fusion reactions, particularly at energies below and near the Coulomb

barrier.

Appendix

For the stochastic variables x and v described by two-component Langevin equation (7),

one can not find directly the correlators 〈ξx〉 and 〈ξv〉 using Shapiro-Loginov theorem for

Gaussian white noise ξ. In Stratonovich representation, which supposed δ-correlated process

as an approximation to a colored one with zero mean and finite correlation time 〈ξ(t)ξ(t′)〉 =

(D/τG) exp (−|t − t′|/τG). In the very small time scale τG, Gaussian white noise ξ with noise

intensity D is revisited [10, 27, 28, 49]. This is considered as appropriate interpretation for

most physical situations. With such assumption, applying Shapiro-Loginov theorem yields
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two differential equations,

d〈ξx〉
dt

= −(1/τG)〈ξx〉 + 〈ξv〉,
d〈ξv〉

dt
= Ω2〈ξx〉 − [γ + (1/τG)]〈ξv〉 + D/τG, (35)

where the approximation of 〈ξηx〉 = 〈ξη〉〈x〉 = 0 has been used. Eq. (35) is exactly solvable

but in a very complicated form. Here we give a concise result of 〈ξx〉 → 0 and 〈ξv〉 → D in

the limit of τG → 0.
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