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We present a method for discovering dense packings of general convex hard particles and apply
it to study the dense packing behavior of a one-parameter family of particles with tetrahedral sym-
metry representing a deformation of the ideal mathematical tetrahedron into a less ideal, physical,
tetrahedron and all the way to the sphere. Thus, we also connect the two well studied problems
of sphere packing and tetrahedron packing on a single axis. Our numerical results uncover a rich
optimal-packing behavior, compared to that of other continuous families of particles previously
studied. We present four structures as candidates for the optimal packing at different values of
asphericity, providing an atlas of crystal structures which might be observed in systems of nano-

particles with tetrahedral symmetry.

PACS numbers: 02.70.-¢,61.50.Ah, 45.70.-n

Impenetrable (hard) mathematical bodies (e.g.
spheres, spheroids, superballs, and polyhedra) have
received much attention as models for the equilibrium
behavior of systems of nano-particles and for the wealth
of equilibrium and non-equilibrium structures they
exhibit [1-6]. For the tetrahedron alone, quasicrystal
structures, novel crystal structures, and glassy struc-
tures have been reported in numerical simulations [5-9].
However, in all cases, the tetrahedral particles studied
were mathematically ideal (polyhedral) tetrahedra. By
contrast, in an experiment which found that regular
tetrahedra have random packings that are denser than
observed for any other body, the tetrahedral macro-
particles (dice) used had rounded edges and vertices
[10, 11]. Tetrahedral nano-particles used as colloids are
not only imperfectly-shaped tetrahedra, but are also
sometimes soft, in the sense that the interactions beyond
hard-core repulsion are significant [12-15]. In this paper,
we attempt to characterize the packing behavior of phys-
ical, rather than mathematical, tetrahedra by studying
a one-parameter family of particles with tetrahedral
symmetry that interpolates between the mathematical
tetrahedron on one end of the parameter’s range and the
sphere on the other end. We explore the effect of this
parameter by constructing, using a de novo numerical
search, candidate structures for the optimal packing of
the different particles in the family.

A particle interpolating between the sphere and the
regular tetrahedron can be achieved by a variety of con-
structions. The simplest construction, probably, is to
place the centers of four unit spheres at the vertices of
a regular tetrahedron with edges of length a and con-
sider the volume at the intersection of all four spheres.
We call the resulting figure a tetrahedral puff (Figure
1). For a special value of a, the tetrahedral puff is the
Reuleaux tetrahedron (a three-dimensional version of the
Reuleaux triangle, but not a solid of constant width) [16].
A more convenient parameter than this edge length is
the asphericity ~, which is the ratio between the radii
of the particle’s circumscribing and inscribed spheres.
The value v = 1 obtained when the four spheres coin-
cide corresponds to a sphere. The value v = 3, which

FIG. 1: (Color online) tetrahedral puffs of varying asphericity.
From left to right, the asphericities of the puffs shown are
v =4/3,2,8/3.

is the largest asphericity possible for a convex particle
with tetrahedral symmetry and corresponds to a regular
tetrahedron, is obtained in the limit that the four spheres
intersect at a point. The Reuleaux tetrahedron is the puff
with asphericity v = (3 + v/24)/5 ~ 1.58.

To efficiently search for candidate optimal packing
structures we run a numerical search for packings at in-
creasing densities. To prevent overlaps between differ-
ent particles in the structure we employ an overlap res-
olution step. In a packing of congruent particles, every
particle can be obtained from a single primitive particle
K by a rotation and a translation: Ky = RyK +r; =
{Rix + r1|x € K}, where Ry, a rotation matrix, and
r1, a translation vector, parameterize the configuration
of the particle K. We call an exclusion projection the
operation of, for any two particles K7 and K5 that over-
lap, identifying the new set of configuration parameters
(R}, RS, 1), 1) that resolves the overlap while minimiz-
ing the distance in configuration-space from the original
configuration, (R1,Ra,r1,r2). This is the projection in
configuration-space to the set of non-overlapping config-
urations. Below we give the method of implementing this
projection.

At high densities, however, we may have to resolve
overlaps of a particle with multiple other particles, and
the projection that applies to pairs cannot be used di-
rectly. Therefore, we introduce multiple independent
copies (replicas) of the configuration parameters of each
particle, so that after an exclusion projection, any pair of



particles will have at least one overlap-free pair of repli-
cas. Another projection ensures that in the final struc-
ture obtained from the search all replicas of a single par-
ticle agree on its configuration. The two projections are
not applied alternately, but instead composed with lin-
ear combinations to give the difference map iteration [17].
This scheme, called divide and concur (D — C'), has pre-
viously allowed us to study dense packings of a variety of
polyhedral and high-dimensional spherical particles, and
is here generalized to any convex particle. Apart from
the exclusion projection, described here, the rest of the
application of the scheme to dense periodic packing dis-
covery is described in Ref. [18].

Given a pair of particles (or replicas) in a configuration
(R1,Re,r1,r2) which overlaps, the exclusion projection
resolves the overlap by identifying a new set of config-
uration parameters (R}, R5,r},r}) while minimizing the
distance to the original configuration as defined by

d* = [lrs = ri|* + [|R: - Ri||%, (1)

i=1,2

where the matrix norm is the Frobenius norm. The pro-
jection algorithm for a general convex particle is most
easily expressed in terms of the particle’s support func-
tion h(u) = maxxerxu - x. If the support function
h(u) of K is known, then the support function of K;
is hi(u) = maxyex u-Rix+u-r; = h(RFu) +u-r; [19].

By the separating plane theorem, K; and K3 do not
overlap if and only if a vector u exists such that Ah(u) =
hi(u)+ha(—u) < 0[19]. We can determine if such a vec-
tor exists by numerically minimizing Ah(u)/||u||, which
is bounded and attains a minimum over u. If the mini-
mum value of Ah(u)/||u]| is positive, we must make the
minimal change possible to the configuration parameters
so that

Ry (u) + hi(—u) = 0 for some u. (2)

If we relax the condition that R} is a rotation ma-
trix, then we can reduce this constrained optimization
problem to a simple unconstrained optimization problem
in three vector variables. Namely, these vectors are u,
vi = R{fu, and vo = R 'u. Given these three vec-
tors, the new configuration parameters which minimize
(1) and satisfy (2) are given by

¥ =1 — o (3a)
' 2[ul[?

¥y =1y + ——Ah (3b)
’ 2[ul[?

R; =R;+ ﬁ(vfp —u'Ry), (3¢)

where Ah = h(vi) + h(—vz) + (r1 — r2) - u and the con-
figuration distance is given by

A2 Ry P R vl
Tl '

And so, we have reduced the problem, as promised, to an
unconstrained minimization of (4) over three vector vari-
ables. Note that (4) is invariant under uniform positive
rescaling of u, vi, and vy, and the resulting vanishing
gradient direction must be taken into account when per-
forming the minimization.

The restriction on R; to be a rotation matrix, i.e. the
requirement on the rigidity of the particle, as in Ref.
[18], is restored in the concurrence constraint of the D —
C scheme. The projection of a general matrix into the
subset of orthogonal matrices is as simple as taking its
singular value decomposition and setting all the singular
values to unity [20].

As a method for exploring dense configurations of
general hard particles, we believe our projection-based
method to be more direct and efficient when compared
to event-driven MD simulations and stochastic MC meth-
ods [2]. Partly, the D — C scheme draws its power from
temporarily allowing non-physical configurations, with
overlaps, non-concurring replicas, and non-rigid parti-
cles, but then systematically acting to minimize these
non-physicalities. In MC simulations, such temporary al-
lowance has also been observed to be critical in efficiently
exploring structures at high density [8].

For a selection of puffs of different asphericities, we use
the D — C scheme to perform repeated de novo searches
for periodic packings with p = 1,2, 3,4, 6, and 8 puffs per
unit cell. The densest packing found for each value of v
is reported here as a candidate for the optimal packing
structure. Every packing density that is reported here as
putatively optimal for a puff of some asphericity has been
reproduced by the numerical search at least 3 times from
random initial conditions and if the structure has two
puffs in the primitive unit cell, it has been reproduced in
searches with both p =2 and p = 4.

As suggested by the results of our numerical searches,
four different packing structures are optimal at differ-
ent asphericities, separated by one continuous structural
transition and two abrupt ones. Of most interest are the
structures of the optimal packing for puffs of small as-
phericity and large asphericity in the parameter ranges
near the sphere and the tetrahedron respectively. The
optimal packing structure for small asphericity, which
we call the Sp-structure (for simple double lattice), is a
tetragonal double lattice — that is, the union of two lat-
tices (with one particle per unit cell) that are related to
each other by an inversion about a point (Figure 2) [21].
In the Sp-structure, the puffs are arranged into square
layers so that from each layer, the puffs stick out on one
side in parallel ridges running in one direction and on
the other side in parallel ridges running in a perpendicu-
lar direction. By stacking each consecutive layer with
a 90° rotation, the ridges of one layer align with the
ridges of the layer above it. In the limit v — 1, each
layer approaches a square packing of spheres, and the
So-structure approaches the face-centered cubic sphere
packing structure.

For large asphericities, the optimal packing structure,



FIG. 2: (Color online) a unit cell of each of the four structures described, (from left to right) the So-, D1-, Si-, and Dop-structures.
For the So- and Si-structure, a unit cell consisting of two primitive unit cells is shown. In all cases, the purple (top-left) and
pink (bottom-left) puffs are related by inversion to the green (bottom-right) and teal (top-right) puffs respectively. The So-
structure is a body-centered tetragonal crystal where the body-centered puff is inverted in orientation from the corner puffs.
The D;-structure occurs when next-nearest square layers of the Sp-structure come into contact, and its symmetry is broken by
a re-orientation of different puffs of the same layer in different directions. By contrast, the Si-structure arises by an abrupt
transition at both ends of the parameter interval on which it is optimal. In the Dg-structure the mirror planes of the green and
teal puffs, which form a dimer, are not aligned, so that both can be in contact with the purple puff. In the limit v — 3, the
green and teal puffs become aligned and form a bipyramidal dimer. The structure becomes the dimer double lattice structure
reported in Refs. [7, 9] as the densest known packing of regular tetrahedra.

which we call the Dy-structure, is a dimer double lattice
(i.e. each of the two inversion-related lattices is a lat-
tice of dimers). The unit cell contains four puffs, two
of which, which are in contact and form a shape simi-
lar to a triangular bipyramid, are related by inversion to
the other two (Figure 2). We call each of the two in-
version related pairs a dimer, in analogy with the dimer
double lattice of Refs. [7, 9], which is the limit of the
Dy-structure as v — 3, and is the densest known pack-
ing of regular tetrahedra. In this limit, each dimer ex-
actly forms a triangular bipyramid. Note that away from
~v = 3, the mirror planes of the two puffs constituting the
dimer are not aligned with each other, making the dimer
look twisted. This allows both puffs to form a contact
with a nearby puff (see Figure 2), which in the limit of
the bipyramidal dimer is facilitated simply by a contact
along a common edge or vertex.

The Sp-structure appears to be the optimal packing
structure from v = 1 to v &~ 1.63. On the other end of the
asphericity scale, the Dy-structure appears to be optimal
from v =~ 2.19 to v = 3. However, in the intermediate
range it appears that both of these structures are subop-
timal and different structures take over. For vy < 1.63,
the density of the Sp-structure increases monotonically
with asphericity. However, for the puff with v ~ 1.63,
contacts between next-nearest layers of the Sp-structure
appear, and start to constrain the layer spacing. As-
suming no change to the orientations of the puffs and to
the construction of the layers, this constraint leads to a
sharp drop in the density of the Sp-structure. However,
the structure found by the numerical searches shows a

re-orientation of the puffs so that each layer is now com-
posed of puffs of two different orientations (Figure 2).
This structure, dubbed the D;-structure, still leads to a
decline in the packing density, but a less dramatic one.
Therefore, we have a local maximum in the packing den-
sity at the transition from the Sy-structure to the D;-
structure. This transition seems to arise by a continuous
deformation of the Sp-structure and is not abrupt. The
re-orientation of the puffs suggests the beginning of a ten-
dency towards the dimerization seen in the Dy-structure.
However, an intermediate structure is encountered be-
tween the Dj-structure and the Dy-structure, produc-
ing another local maximum in the optimal density. This
structure, to be called the S;-structure, is a simple (non-
dimer) double lattice without the tetragonal symmetries
of the Sp-structure (Figure 2), and is reminiscent of the
simple double lattice structure reported in Ref. [7]. This
structure appears to be separated from the others by an
abrupt transition. Figure 3 plots out the densities of the
different structures as obtained by the numerical search.

The proper context for the results obtained here for
tetrahedral puffs is in comparison to two other one-
parameter families of particles that include the sphere as
a special case and whose dense packing structures have
been investigated vigorously, namely spheroids [1] and
superballs [2]. The putative optimal packing of spheroids
and superballs becomes monotonically denser the less
sphere-like they become. By contrast, the optimal pack-
ing density of puffs does not exhibit such monotonicity,
although it is always higher than that of the sphere (con-
sistently with a conjecture by Ulam that the sphere is the
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FIG. 3: Highest densities ¢ (filled markers) achieved for pack-
ings of tetrahedral puffs of varying asphericity . Densities
are obtained and reproduced to an accuracy of 0.0005, much
smaller than the marker size. The empty markers represent
the density attained by a structure at an asphericity where it
is suboptimal, as determined either by runs where the search
got trapped away from the optimal structure or by runs where
the number of particles per unit cell was incompatible with
the optimal structure. The two abrupt structural transitions
can be easily seen here where the density line for the Si-
structure crosses the lines for the other structures at critical
asphericities at which the Si-structure coexists with them.
On the other hand, the continuous structural transition be-
tween the Sp- and D;-structures is associated with a broken
symmetry instead: the line corresponds to an analytic con-
struction of the Sp-structure, imposing its tetragonal symme-
try. At v =~ 1.63, next-nearest layers come into contact with
each other, leading to a sharp decline in density (dashed line).
If we allow the tetragonal symmetry to be broken, but still
allow only two particle orientations, the D — C search pro-
duces slightly higher packing densities (empty disks). The
D -structure obtains higher densities by continuously break-
ing that symmetry as well.

worst-packing three-dimensional convex solid [22]). Un-
like superballs, but like spheroids, the optimal packing
of puffs is in all cases (besides the sphere) not a lattice
packing, and the crystal unit cell includes at least two

particles of different orientations. However, like super-
balls, and unlike spheroids, the optimal packing struc-
ture of puffs goes through an abrupt transition, where
two dissimilar structures obtain an equal, optimal den-
sity.

A major difference of tetrahedral puffs in comparison
to spheroids and superballs is the lack of inversion sym-
metry. However, not only do the putative optimal pack-
ings of puffs in all cases have such a symmetry (Figure
2), it is in some cases the only symmetry of the pack-
ing besides its lattice translations. Presumably, inver-
sion symmetry plays an important role in forming close-
packed structures of particles with tetrahedral symmetry
and maybe even of other particles, a result already ob-
served in the plane by Kuperberg and Kuperberg [21].

The tetrahedral puffs exhibit a much richer optimal
packing behavior than either spheroids or superballs, and
this richness is likely to be mirrored in the behavior of
tetrahedral nano-particles. The variety of qualitatively
different dense packing structures observed for mathe-
matical tetrahedra is compounded when a physical shape
parameter is added. A possible way to experimentally ac-
cess the parameter investigated here, which describes a
swollen tetrahedron, is by using colloidal particles that
swell as a function of their temperature [23]. Thus, a
variety of structures and structural transitions could be
explored. We have attempted here to provide an atlas of
the possible crystal structures which might be observed
in systems of particles with tetrahedral symmetry. Our
candidates for optimal tetrahedral puff packings provide
a starting point for the study of the phase behavior of sys-
tems of particles with tetrahedral symmetry, both hard
and soft, away from the limit of the mathematical tetra-
hedron. The method presented here, applicable to any
hard convex particle, could also be useful in characteriz-
ing possible structures of many other particulate systems.
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