aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Geometry of nonlinear least squares with applications to
sloppy models and optimization
Mark K. Transtrum, Benjamin B. Machta, and James P. Sethna
Phys. Rev. E 83, 036701 — Published 3 March 2011
DOI: 10.1103/PhysRevE.83.036701

http://dx.doi.org/10.1103/PhysRevE.83.036701

EX10567

Geometry of nonlinear least squares, with applications to sloppy models and
optimization

Mark K. Transtrum,! Benjamin B. Machta,! and James P. Sethna!
! Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA

Parameter estimation by nonlinear least squares minimization is a common problem that has an
elegant geometric interpretation: the possible parameter values of a model induce a manifold within
the space of data predictions. The minimization problem is then to find the point on the manifold
closest to the experimental data. We show that the model manifolds of a large class of models,
known as sloppy models, have many universal features; they are characterized by a geometric series of
widths, extrinsic curvatures, and parameter-effects curvatures, which we describe as a hyper-ribbon.
A number of common difficulties in optimizing least squares problems are due to this common
geometric structure. First, algorithms tend to run into the boundaries of the model manifold,
causing parameters to diverge or become unphysical before they have been optimized. We introduce
the model graph as an extension of the model manifold to remedy this problem. We argue that
appropriate priors can remove the boundaries and further improve the convergence rates. We show
that typical fits will have many evaporated parameters unless the data are very accurately known.
Second, ‘bare’ model parameters are usually ill-suited to describing model behavior; cost contours
in parameter space tend to form hierarchies of plateaus and long narrow canyons. Geometrically, we
understand this inconvenient parameterization as an extremely skewed coordinate basis and show
that it induces a large parameter-effects curvature on the manifold. By constructing alternative
coordinates based on geodesic motion, we show that these long narrow canyons are transformed
in many cases into a single quadratic, isotropic basin. We interpret the modified Gauss-Newton
and Levenberg-Marquardt fitting algorithms as an Euler approximation to geodesic motion in these
natural coordinates on the model manifold and the model graph respectively. By adding a geodesic
acceleration adjustment to these algorithms, we alleviate the difficulties from parameter-effects
curvature, improving both efficiency and success rates at finding good fits.

PACS numbers: 02.60.Ed, 02.40.Ky, 02.60.Pn, 05.10.-a

I. INTRODUCTION ability distribution function of the residuals is then

volves estimating parameter values from observational ’ 2 A
m=

data. One of the most common approaches to the prob-

lem is to minimize a sum of squares of the deviations of

M
An ubiquitous problem in mathematical modeling in- P(7,0) = (Qﬂ)lM/2 exp (_l Z Tm(9)2> 7 (2)

where M is the number of residuals. The stochastic part

predictions from observations. A typical problem may
be stated as follows: given a regressor variable, ¢, sam-
pled at a set of points {¢,,} with observed behavior {y,,}
and uncertainty {o,,}, what values of the parameters, 6,
in some model f(t,8), best reproduce or explain the ob-
served behavior? This optimal value of the parameters
is known as the best fit.

To quantify how good a fit is, the standard approach
is to assume that the data can be reproduced from the
model plus a stochastic term that accounts for any dis-
crepancies. That is to say

Ym = f(tmae) + Cmu

where (,,, are random variables assumed to be indepen-
dently distributed according to N(0,0,,). Written an-
other way, the residuals given by

Tm(o) — Ym — f(tmvo)

Om

; (1)

are random variables that are independently, normally
distributed with zero mean and unit variance. The prob-

of the residuals is assumed to enter through its depen-
dence on the observed data, while the parameter depen-
dence enters through the model. This distinction implies
that while the residuals are random variables, the matrix
of derivatives of the residuals with respect to the param-
eters is not. We represent this Jacobian matrix by Jp,,:

Imp = OuTm.

In this paper, we employ the convention that Greek let-
ters index parameters, while Latin letters index data
points, model points, and residuals.

For a given set of observations {y,,}, the distribution
in Eq. @) is a likelihood function, with the most likely, or
best fit, parameters being those that minimize the cost
function, C, defined by

() = 23 rn(6)2, (3)

m

which is a sum of squares. Therefore, if the noise is Gaus-
sian (normally) distributed, minimizing a sum of squares
is equivalent to a maximum likelihood estimation.

If the model happens to be linear in the parameters it
is a linear least squares problem and the best fit values
of the parameters can be expressed analytically in terms
of the observed data and the Jacobian. If, however, the
model is nonlinear, the best fit cannot be found so eas-
ily. In fact, finding the best fit of a nonlinear problem
can be a very difficult task, notwithstanding the many
algorithms that are designed for this specific purpose.

For example, a nonlinear least squares problem may
have many local minima. Any search algorithm that is
purely local will at best converge to a local minima and
fail to find the global best fit. The natural solution is to
employ a search method designed to find a global minima,
such as a genetic algorithm or simulated annealing. We
will not address such topics in this paper, although the
geometric framework that we develop could be applied
to such methods. We find, surprisingly, that most fitting
problems do not have many local minima. Instead, we
find a universality of cost landscapes, as we discuss later
in section [Tl consisting of only one, or perhaps very few,
minima.

Instead of difficulties from local minima, the best fit
of a nonlinear least squares problem is difficult to find
because of sloppiness, particularly if the model has many
parameters. Sloppiness is the property that the behavior
of the model responds very strongly to only a few com-
binations of parameters, known as stiff parameter com-
binations, and very weakly to all other combinations of
parameters, which are known as sloppy parameter combi-
nations. Although the sloppy model framework has been
developed in the context of systems biology |1H1], models
from many diverse fields have been shown to lie within
the sloppy model universality class [§].

In this paper we present the geometric framework for
studying nonlinear least squares models. This approach
has a long, interesting history, originating with Jeffreys in
1939 |9, and later continued by Rao |10, [L1] and many
others |12, [13]. An equivalent, alternative formulation
began with Beale in 1960 [14], and continued with the
work of Bates and Watts [18-18] and others [19-21].
The authors have used this geometric approach previ-
ously to explain the extreme difficulty of the data fitting
process |22]; of which this work is a continuation.

In section [[l we present a review of the phenomenon
of sloppiness and describes the model manifold, i.e. the
geometric interpretation of a least squares model. The
geometric picture naturally illustrates two major diffi-
culties that arise when optimizing sloppy models. First,
parameters tend to diverge or drift to unphysical values,
geometrically corresponding to running off the edge of
the manifold, as we describe in section [Tl This is a con-
sequence of the model manifold having boundaries that
give it the shape of a curving hyper-ribbon in residual
space with a geometric hierarchy of widths and curva-
tures. We show, in section [Vl that the model graph, the
surface formed by plotting the residual output versus the
parameters, can help to remove the boundaries and im-
prove the fitting process. Generalizing the model graph

suggests the use of priors as additional residuals, as we do
in section [Vl We see there that the natural scales of the
experiment can be a guide to adding priors to the cost
function that can significantly improve the convergence
rate.

The second difficulty is that the model’s ‘bare’ param-
eters are often a poor coordinate choice for the manifold.
In section Ml we construct new coordinates, which we call
extended geodesic coordinates. The coordinates remove
the effects of the bad coordinates all the way to the edge
of the manifold. The degree to which extended geodesic
coordinates are effective at facilitating optimization is
related to the curvature of the manifold. Section [T
discusses several measures of curvature and explores cur-
vature of sloppy models. We show that the parameter-
effects curvature is typically the dominant curvature of
a sloppy model, explaining why extended geodesic coor-
dinates can be a huge simplification to the optimization
process. We also show that typical best fits will usually
have many evaporated parameters and then define a new
measure of curvature, the optimization curvature, that is
useful for understanding the limitation of iterative algo-
rithms.

We apply geodesic motion to numerical algorithms in
section [VIIl where we show that the modified Gauss-
Newton method and Levenberg-Marquardt method are
an Euler approximation to geodesic motion. We then
add a geodesic acceleration correction to the Levenberg-
Marquardt algorithm and achieve much faster conver-
gence rates over standard algorithms and more reliability
at finding good fits.

II. THE MODEL MANIFOLD

In this section we review the properties of sloppy mod-
els and the geometric picture naturally associated with
least squares models. To provide a concrete example of
sloppiness to which we can apply the geometric frame-
work, consider the problem of fitting three monotonically
decreasing data points to the model

y(t,0) = e™"" 7',

where 6; > 0. Although simple, this model illustrates
many of the properties of more complicated models. Fig-
ure [k is an illustration of the data and several progres-
sively better fits. Because of the noise, the best fit does
not pass exactly through all the data points, although
the fit is within the errors.

A common tool to visualize the parameter dependence
of the cost is to plot contours of constant cost in param-
eters space, as is done for our toy model in Figure [Ob.
This view illustrates many properties of sloppy models.
This particular model is invariant to a permutation of the
parameters, so the plot is symmetric for reflections about
the 61 = 65 line. We refer to the 6; = 65 linear as the
“fold line” for geometric reasons that will be apparent
in section ¥l Around the best fit, cost contours form

il Déta
— Best Fit
. -- FitA
/ . . FitB
1) R
b | [N,
D ‘- ___________________________________
a)
0 i 2 3

FIG. 1: (Color online) (a) Fitting a nonlinear function to data, in this case the sum of two exponentials to three data
points. Fit A has rate constants which decay too quickly, resulting in a poor fit; B is an improvement over Fit A, although the
rates are too slow; the best fit minimizes the cost (the sum of the squares of the residuals, which are deviations of model from
data points) (b) Contours of constant Cost in parameter space. Note the “plateau” in the region of large rates where
the model is essentially independent of parameter changes. Note also the long, narrow canyon at lower rates, characteristic of
a sloppy model. The sloppy direction is parallel to the canyon and the stiff direction is against the canyon wall. (c) Model
predictions in data space. The experimental data is represented by a single point. The set of all possible fitting parameters
induce a manifold of predictions in data space. The best fit is the point on the manifold nearest to the data. The plateau in (b)

here is the small region around the short cusp near the corner. To help visualize the three dimensional structure, an animation
of this manifold rotating in three dimensions in available in the online supplemental material m]

a long narrow canyon. The direction along the length
of the canyon is a sloppy direction, since this parameter
combination hardly changes the behavior of the model,
and the direction up a canyon wall is the stiff direction.
Because this model has few parameters, the sloppiness
is not as dramatic as it is for most sloppy models. It is
not uncommon for real-life models to have canyons with
an aspect ratios much more extreme than in Fig. b,

typically 1000 : 1 or more for models with 10 or more
parameters [d].

Sloppiness can be quantified by considering the
quadratic approximation of the cost around the best fit.
The Hessian (second derivative) matrix, H,, , of the cost

at the best fit has eigenvalues that span many orders
of magnitude and whose logarithms tend to be evenly
spaced, as illustrated in Fig. Bl Eigenvectors of the Hes-
sian with small eigenvalues are the sloppy directions,
while those with large eigenvalues are the stiff directions.
In terms of the residuals, the Hessian is given by

Exponentials Polynomials PC12

10°

10"
<
>
i3

1012

10716

a) b) <)

FIG. 2: Hessian eigenvalues for three sloppy models. Note
the extraordinarily large range of eigenvalues (15-17 orders of
magnitude, corresponding to to valley aspect ratios of 107-
10°) in Fig. @b. Notice also the roughly equal fractional spac-
ing between eigenvalues—there is no clean separation between
important (stiff) and irrelevant (sloppy) direction in parame-
ter space. a) The model formed by summing six exponential
terms with rates and amplitudes. We use this model to in-
vestigate curvature in section [VIIl and as a test problem to
compare algorithms in section [VTITEl b) The linear prob-
lem of fitting polynomials is sloppy with the Hessian given
by the Hilbert matrix. ¢) A more practical model from sys-
tems biology of signaling the epidermal growth factor in rat
pheochromocytoma (PC12) cells |2], which also has a sloppy
eigenvalue spectrum. Many more examples can be found in
d, 8.

Em
[

0,,0,C
Z OurmOyrm + Z T'mO0u0y T (4)

Z Ourm Oy, (5)

— (7))

Q

pv

In the third and fourth line we have made the approx-
imation that at the best fit the residuals are negligible.
Although the best fit does not ordinarily corresponds to
the residuals being exactly zero, the Hessian is usually
dominated by the term in Eq. (H) when evaluated at
the best fit. Furthermore, the dominant term, J7.J, is
a quantity important geometrically which describes the
model-parameter response for all values of the parame-
ters independently of the data. The approximate Hessian
is useful to study the sloppiness of a model independently
of the data at points other than the best fit. It also shares
the sloppy spectrum of the exact Hessian. We call the
eigenvectors of J7.J the local eigenparameters as they
embody the varying stiff and sloppy combinations of the
‘bare’ parameters.

In addition to the stiff and sloppy parameter com-
binations near the best fit, Fig. [Mb also illustrates an-
other property common to sloppy models. Away from

the best fit the cost function often depends less and less
strongly on the parameters. The contour plot shows a
large plateau where the model is insensitive to all pa-
rameter combinations. Because the plateau occupies a
large region of parameter space, most initial guesses will
lie on the plateau. When an initial parameter guess does
begin on a plateau such as this, even finding the canyon
can be a daunting task.

The process of finding the best fit of a sloppy model,
usually consists of two steps. First, one explores the
plateau to find the canyon. Second, one follows the
canyon to the best fit. One will search to find a canyon
and follow it, only to find a smaller plateau within
the canyon that must then be searched to find another
canyon. Qualitatively, the initial parameter guess does
not fit the data, and the cost gradient does not help much
to improve the fit. After adjusting the parameters, one
finds a particular parameter combination that can be ad-
justed to fit some clump of the data. After optimizing
this parameter combination (following the canyon), the
fit has improved but is still not optimal. One must then
search for another parameter combination that will fit an-
other aspect of the data, i.e. find another canyon within
the first. Neither of these steps, searching the plateau or
following the canyon, is trivial.

Although plotting contours of constant cost in param-
eter space can be an useful and informative tool, it is
not the only way to visualize the data. We now turn to
describing an alternative geometric picture that helps to
explain why the the processes of searching plateaus and
following canyons can be so difficult. The geometric pic-
ture provides a natural motivation for tools to improve
the optimization process.

Since the cost function has the special form of a sum
of squares, it has the properties of a Euclidean distance.
We can interpret the residuals as components of an M-
dimensional residual vector. The M-dimensional space
in which this vector lives is a Euclidean space which we
refer to as data space. By considering Eq. (), we see that
the residual vector is the difference between a vector rep-
resenting the data and vector representing the model (in
units of the standard deviation). If the model depends
on N parameters, with N < M, then by varying those
N parameters, the model vector will sweep out an N-
dimensional surface embedded within the M-dimensional
Euclidean space. We call this surface the model man-
ifold, it is sometimes also known as the expectation or
regression surface [18, 24]. The model manifold of our
toy model is shown in Fig.[llc. The problem of minimiz-
ing the cost is thus translated into the geometric problem
of finding the point on the model manifold that is closest
to the the data.

In transitioning from the parameter space picture to
the model manifold picture, we are now faced with the
problem of minimizing a function on a curved surface.
Optimization on manifolds is a problem that has been
given much attention in recent decades [25-34]. The gen-
eral problem of minimizing a function on a manifold is

much more complicated than our problem; however, be-
cause the cost function is linked here to the structure of
the manifold the problem at hand is much simpler.

The metric tensor measures distance on the manifold
corresponding to infinitesimal changes in the parameters.
It is induced from the Euclidean metric of the data space
and is found by considering how small changes in param-
eters correspond to changes in the residuals. The two are
related through the Jacobian matrix,

dry, = 0yrmd0" = Jp,,do",

where repeated indices imply summation. The square of
the distance moved in data space is then

dr? = (JTJ),,do"do" . (7)

Eq. (@) is known as the first fundamental form, and the
coefficient of the parameter infinitesimals is the metric
tensor,

Guv = (JTJ)W = Z OurmOyTm,.

The metric tensor corresponds to the approximate Hes-
sian matrix in Eq. ([); therefore, the metric is the Hessian
of the cost at a point assuming that the point exactly re-
produced the data.

Qualitatively, the difference between the metric tensor
and the Jacobian matrix is that the former describes the
local intrinsic properties of the manifold while the lat-
ter describes the local embedding. For nonlinear least
squares fits, the embedding is crucial, since it is the em-
bedding that defines the cost function. To understand
how the manifold is locally embedded, consider a singu-
lar value decomposition of the Jacobian

J=Uxv7T,

where V is an N x N unitary matrix satisfying V'V =1
and ¥ is an N x N diagonal matrix of singular values.
The matrix U is almost unitary, in the sense that it is
an M x N matrix satisfying UTU = 1; however, UUT
is not the identity [35]. In other words, the columns of
U contain N residual space vectors that are orthonormal
spanning the range of J and not the whole embedding
space. In terms of the singular value decomposition, the
metric tensor is then given by

g=VyvT,

showing us that V is the matrix whose columns are the
local eigenparameters of the metric with eigenvalues \; =
¥Z.

The singular value decomposition tells us that the Ja-
cobian maps metric eigenvectors onto the data space vec-
tor U; and stretched by an amount /);. We hence de-
note the columns of U the eigenpredictions. The product
of singular values describes the mapping of local volume

elements of parameter space to data space. A unit hyper-
cube of parameter space is stretched along the eigen-
predictions by the appropriate singular values to form
a skewed, hyper-parallelepiped of volume \/m .

The Jacobian and metric contain the first derivative
information relating changes in parameters to changes in
residuals or model behavior. The second derivative in-
formation is contained in the connection coefficient. The
connection itself is a technical quantity describing how
basis vectors on the tangent space move from point to
point. The connection is also closely related to geodesic
motion, introduced properly in section [Vl Qualitatively
it describes how the metric changes from point to point
on the manifold. The relevant connection is the Riemann,
or metric, connection; it is calculated from the metric by

(0% 1 «
i =359 B(augﬁu + Ovgsu — Opguv);

2
or in terms of the residuals
0, =g " 05rm0u0urm, (8)

where g = (¢~ 1)*”. One could now also calculate the
Riemann curvature by application of the standard for-
mulae; however, we postpone a discussion of curvature
until section [VIIl For a more thorough discussion of con-
cepts from differential geometry, we refer the reader to
any text on the subject [36-39).

We have calculated the metric tensor and the connec-
tion coefficients from the premise that the cost function,
by its special functional form, has a natural interpreta-
tion as a Euclidean distance which induces a metric on
the model manifold. Our approach is in the spirit of
Bates and Watts’ treatment of the subject [15-1&]. How-
ever, the intrinsic properties of the model manifold can
be calculated in an alternative way without reference to
the embedding through the methods of Jeffreys, Rao and
others [9-13]. This approach is known as information
geometry. We derive these quantities using information
geometry in Appendix A.

Given a vector in data space we are often interested in
decomposing it into two components; one lying within the
tangent space of the model manifold at a point and one
perpendicular to the tangent space. For this purpose, we
introduce the projection operators P” and P which act
on data-space vectors and project into the tangent space
and its compliment respectively. From the Jacobian at a
point on the manifold, these operators are

Pt =5—-PN =J(gHJ7, (9)

where ¢ is the identity operator. It is numerically more
accurate to compute these operators using the singular
value decomposition of the Jacobian:

PT =puT.

Turning to the problem of optimization, the parameter
space picture leads one initially to follow the naive, gradi-
ent descent direction, —V,C. An algorithm that moves

in the gradient descent direction will decrease the cost
most quickly for a given change in the parameters. If the
cost contours form long narrow canyons, however, this
direction is very inefficient; algorithms tend to zig-zag
along the bottom of the canyon and only slowly approach
the best fit [35].

In contrast, the model manifold defines an alterna-
tive direction which we call the Gauss-Newton direction,
which decreases the cost most efficiently for a change in
the behavior. If one imagines sitting on the surface of the
manifold, looking at the point representing the data, then
the Gauss-Newton direction in data space is the point di-
rected toward the data but projected onto the manifold.
Thus, if ¥ is the Gauss-Newton direction in data space,
it is given by

-PTy

= —J(g 7

= —J(g Hve

= —Jug""V.C, (10)

<L
Il

where we have used the fact that VC = JTr. The com-
ponents of the vector in parameter space, v* are related
to the vector in data space through the Jacobian

-

¥ = Jyot (11)

therefore, the direction in parameter space v* that de-
creases the cost most efficiently per unit change in be-
havior is

v = —g"'V,C. (12)

The term ’Gauss-Newton’ direction comes from the
fact that it is the direction given by the Gauss-Newton
algorithm described in section [VIITAl Because the
Gauss-Newton direction multiplies the gradient by the
inverse metric, it magnifies motion along the sloppy di-
rections. This is the direction that will move the pa-
rameters along the canyon toward the best fit. The
Gauss-Newton direction is purely geometric and will be
the same in data space regardless of how the model is
parametrized. The existence of the canyons are a conse-
quence of bad parameterization on the manifold, which
this parameter independent approach can help to rem-
edy. Most sophisticated algorithms, such as conjugate
gradient and Levenberg-Marquardt attempt to follow the
Gauss-Newton direction as much as possible in order to
not get stuck in the canyons.

The obvious connection between sloppiness and the
model manifold is through the metric tensor. For sloppy
models, the metric tensor of the model manifold (the ap-
proximate Hessian of Eq. () has eigenvalues spread over
many decades. This property is not intrinsic to the man-
ifold however. In fact, one can always reparametrize the
manifold to make the metric at a point any symmetric,
positive definite matrix. This might naively suggest that
sloppiness has no intrinsic geometric meaning, and that

Parameter Space

Data Space

e

b)

FIG. 3: Skewed Coordinates. A sloppy model is charac-
terized by a skewed coordinate mesh on the manifold. The
volume of the parallel-piped is given by the determinant of
the metric, which is equal to the product of the eigenvalues.
Because sloppy models have many tiny eigenvalues, these vol-
umes can be very small with extremely skewed coordinates.
Our toy model has extremely skewed coordinates where the
parameters are nearly equal (near the fold line). Most of the
manifold is covered by regions where the coordinates are less
skewed which corresponds to a very small region in parameter
space.

it is simply a result of a poor choice of parameters. The
coordinate grid on the model manifold in data space is
extremely skewed as in Figure By reparametrizing,
one can remove the skewedness and construct a more
natural coordinate mesh. We will revisit this idea in
section [Vl We will argue in this manuscript that on
the contrary, there is a geometrical component to sloppy
nonlinear models that is independent of parameterization
and in most cases that the human-picked ‘bare’ parame-
ters naturally illuminate the sloppy intrinsic structure of
the model manifold.

In the original parameterization, sections of parame-
ter space are mapped onto very tiny volumes of data
space. We remind the reader that a unit volume of pa-
rameter space is mapped into a volume of data space
given by \/m . Because many eigenvalues are nearly zero
for sloppy models, the model manifold necessarily occu-
pies a tiny sliver of data space. In fact, if a region of
parameter space has larger eigenvalues by even a small
factor, the cumulative effect on the product is that this
region of parameter space will occupy most of the model
manifold. We typically find that most of the model man-
ifold is covered by a very small region of parameter space
which corresponds to the volumes of (slightly) less skewed
meshes.

We will see when we discuss curvature, that the large
range of eigenvalues in the metric tensor usually corre-
spond to a large anisotropy in the extrinsic curvature.
Another geometric property of sloppy systems relates
to the boundaries that the model imposes on the mani-
fold. The existence of the boundaries for the toy model
can be seen clearly in Fig. lc. The surface drawn in
the figure corresponds the patch of parameters within
0 < 604,05 < 0. The three boundaries of the surface oc-
cur when the parameters reach their respective bounds.
The one exception to this is the fold line, which corre-
sponds to when the parameters are equal to one another.
This anomalous boundary (1 = 62) is called the fold
line and is discussed further in section [Vl Most nonlin-
ear sloppy models have boundaries.

In the next section we will discuss how boundaries
arise on the model manifold and why they pose problems
for optimization algorithms. Then, in section [M] we de-
scribe another surface, the model graph, that removes the
boundaries. The surface described by the model graph
is equivalent to a model manifold with a linear Bayesian
prior added as additional residuals. In section [Vl we show
that introducing other priors can be even more helpful for
keeping algorithms away from the boundaries.

III. BOUNDED MANIFOLDS

Sloppiness is closely related to the existence of bound-
aries on the model manifold. This may seem to be a
puzzling claim because sloppiness has previously been
understood to be a statement relating to the local lin-
earization of model space. Here we will extend this idea
and see that it relates to the global structure of the man-
ifold and how it produces difficulties for the optimization
process.

To understand the origin of the boundaries on model
manifolds, consider first the model of summing several
exponentials

y(t,0) = Z e Out,
"

We restrict ourselves to considering only positive argu-
ments in the exponentials, which limits the range of be-
havior for each term to be between 0 and 1. This restric-
tion already imposes boundaries on the model manifold,
but those boundaries become much more narrow as we
consider the range the model can produce by holding just
a few time points fixed.

Fixing the output of the model at a few time points
greatly reduces the values that the model can take on for
all the remaining points. Fixing the values that the model
takes on at a few data points is equivalent to considering
a lower-dimensional cross section of the model manifold,
as we have done in Fig. @l The boundaries on this cross
section are very narrow; the corresponding manifold is
long and thin. Clearly, an algorithm that navigates the

FIG. 4: (Color online) Fixing a few data points greatly re-
stricts the possible range of the model behavior between those
data points (lower). This is a consequence of interpolation of
analytic functions. In this case, f(t) is a sum of three expo-
nentials with six parameters (amplitudes and rates). Shown
above is a three dimensional slice of possible models plot-
ted in data space, with the value of f(0) fixed to 1 and the
value of f(1) fixed to 1/e. With these constraints we are left
with a four dimensional surface, meaning that the manifold
of possible data shown here is indeed a volume. However,
from a carefully chosen perspective (upper right) this volume
can be seen to be extremely thin—in fact most of its appar-
ent width is curvature of the nearly two dimensional sheet,
evidenced by being able to see both the top (green) and bot-
tom (black) simultaneously. (An animation of points in this
volume rotating in three dimensional space is available in the
online supplemental material |23].) Generic aspects of this
picture illustrate the difficulty of fitting nonlinear problems.
Geodesics in this volume are just straight lines in three di-
mensions. Although the manifold seems to be only slightly
curved, its extreme thinness means that geodesics travel very
short distances before running into model boundaries, necessi-
tating the diagonal cutoff in Levenberg-Marquardt algorithms
as well as the priors discussed in section [V

model manifold will quickly run into the boundaries of
this model unless it is actively avoiding them.

In general, if a function is analytic, the results pre-
sented in Fig. @ are fairly generic, they come from gen-
eral theorems governing the interpolation of functions.
If a function is sampled at a sufficient number of time
points to capture its major features, then the behavior of
the function at times between the sampling can be pre-
dicted with good accuracy by an interpolating function.
For polynomial fits, as considered here, a function, f(t),
sampled at n time points, (t1,t2,...,t,), can be fit ex-
actly by a unique polynomial of degree n — 1, P,,_1(¢).
Then at some interpolating point, ¢, the discrepancy in
the interpolation and the function is given by

w(t) f™M ()

F(8) = Paca(t) = L, (13)

where f(")(t) is the n-th derivative of the function and
¢ lies somewhere in the range 1 < £ < ¢, |40]. The
polynomial w(t) has roots at each of the interpolating

tl § t2 tS t4

FIG. 5: (Color online) The possible values of a model at inter-
mediate time points are restricted by interpolating theorems.
Taking cross sections of the model manifold corresponds to
fixing the model values at a few time points, restricting the
possible values at the remaining times. Therefore, the model
manifold will have a hierarchy of progressively thinner widths,
much like a hyper-ribbon.

points
w(t) = (t—t1)(t — ta)...(t — ty,).

By inspecting Eq. (@), it is clear that the discrepancy
between the interpolation and the actual function will be-
come vanishingly small if higher derivatives of the func-
tion do not grow too fast (which is the case for analytic
functions) and if the sampling points are not too widely
spaced (see Fig. H).

The possible error of the interpolation function bounds
the allowed range of behavior, §f,, of the model at tg
after constraining the nearby n data points, which corre-
sponds to measuring cross sections of the manifold. Con-
sider the ratio of successive cross sections,

5fn+1 fnJrl (5)
6.fn e’
if n is sufficiently large, then

O 1
e R

=(t—tpy1)(n+1)

therefore, we find that

5fn+1 ~ t— tn+1
5fn R

<1

by the ratio test. Each cross section is thinner than the
last by a roughly constant factor A = §t/R, predicting a
hierarchy of widths on the model manifold. We describe
the shape of a model manifold with such a hierarchy as
a hyper-ribbon. We will now measure these widths for a
few sloppy models and see that the predicted hierarchy
is in fact present.

As a first example, consider the sloppy model of fitting
polynomials

FE0) = O0mt™. (14)

If the parameters of the model are allowed to vary over
all real values, then one can always fit M data points
exactly with an (M — l)th degree polynomial. However,
we wish to artificially restrict the range of the parameters
to imitate the limited range of behavior characteristic
of nonlinear models. A simple restriction is given by
>, 02, < 1. This constraint enforces the condition that
higher derivatives of the function become small (roughly
that the radius of convergence is one) and corresponds to
the unit hyper-sphere in parameter space. If this function
is sampled at time points (1, t2,...,t,) then the model
vector in data space can be written as

1t 2 .- 6o

o 1 ty t% 01

f=1. . .. 02 |- (15)
1 t, t2 .-

The matrix multiplying the vector of parameters is an
example of a Vandermonde matrix. The Vandermonde
matrix is known to be sloppy and, in fact, plays an im-
portant role in the sloppy model universality class. The
singular values of the Vandermonde matrix are what pro-
duce the sloppy eigenvalue spectrum of sloppy models.
Reference [&] shows that these singular values are indeed
broadly spaced in log. For this model, the Vandermonde
matrix is exactly the Jacobian.

By limiting our parameter space to a hypersphere for
the model in Eq. ([[d), the corresponding model manifold
is limited to a hyper-ellipse in data space. The principal
axes of this hyper-ellipse are the eigenpredictions direc-
tions we discussed in section [l The lengths of the prin-
cipal axes are the singular values. Consequently, there
will be a hierarchy of progressively thinner boundaries
on the model manifold due to the wide ranging singu-
lar values of the Vandermonde matrix. For this model,
the purely local property of the metric tensor eigenvalue
spectrum is intimately connected to the global property
of the boundaries and shape of the model manifold.

As a second example, consider the model consisting of
the sum of eight exponential terms, y = Z# Aue_‘gﬂt.
We use log-parameters, ¢, = logf, and r4, = logA4,,
to make parameters dimensionless and enforce positiv-
ity. We numerically calculate the several widths of the
corresponding model manifold in Fig. Bh, where we see
that they are accurately predicted by the singular values
of the Jacobian. The widths in Fig. [l were calculated
by considering geodesic motion in each of the eigendi-
rections of the metric from some point located near the
center of the model manifold. We follow the geodesic mo-
tion until it reaches a boundary; the length in data space
of the geodesic is the width. Alternatively, we can choose

M — N orthogonal unit vectors that span the space per-
pendicular to the tangent plane at a point and a single
unit vector given by a eigenprediction of the Jacobian
which lies within the tangent plane. The M — N + 1
dimensional hyper-plane spanned by these unit vectors
intersects the model manifold along a one-dimensional
curve. The width can be taken to be the length of that
intersection. The widths given by these two methods are
comparable.

We can show analytically that our exponential fitting
problem has model manifold widths proportional to the
corresponding singular values of the Jacobian in the limit
of a continuous distribution of exponents, 6, using an
argument provided to us by Yoav Kallus. In this limit,
the sum can be replaced by an integral,

y(t) = / d6AB)e " = L{AD)},

where the model is now the Laplace transform of the am-
plitudes A(f). In this limit the data can be fit without
varying the exponential rates, leaving only the linear am-
plitudes as parameters. If we assume the data has been
normalized according to y(t = 0) < 1, then it is natu-
ral to consider the hyper-tetrahedron of parameter space
given by by A, >0 and > A, < 1. In parameter space,
this tetrahedron has a maximum aspect ratio of 1/2/M,
but the mapping to data space distorts the tetrahedron
by a constant Jacobian whose singular values we have
seen to span many orders of magnitude. The resulting
manifold thus must have a hierarchy of widths along the
eigenpredictions equal to the corresponding eigenvalues
within the relatively small factor /2/M.

As our third example, we consider a feed-forward ar-
tificial neural network [41]. For computational ease, we
choose a small network consisting of a layer of four in-
put neurons, a layer of four hidden neurons, and an out-
put layer of two neurons. We use the hyperbolic tangent
function as our sigmoid function and vary the connection
weights as parameters. As this model is not known to re-
duce to a linear model in any limit, it serves as a test
that the agreement for fitting exponentials is not special.
Fig. [Bb shows indeed that the singular values of the Ja-
cobian agree with geodesic widths again for this model.

The results in Fig. Bl is one of our main results and
requires some discussion. Strictly speaking, the singular
values of the Jacobian have units of data space distance
per unit parameter space distance, while the units of the
widths are data space distance independent of param-
eters. In the case of the exponential model, we have
used log-parameters, making the parameters dimension-
less. In the neural network, the parameters are the con-
nection weights whose natural scale is one. In general,
the exact agreement between the singular values and the
widths may not agree if the parameters utilize different
units or have another natural scale. One must note, how-
ever, that the enormous range of singular values implies
that the units would have to be radically different from
natural values to lead to significant distortions.

g 10"

& 1

g0

0 n-1

S 10

e

g 10

o

g1 4= Widths
-1

010 o0 \/X

a0 73 4 5 6 1
Eigenvalue Number

10!

Q

Q

-

a

a

&

Q

Q

0]

Q

w1y

% +—+ Widths

b - o
) 1075 510 1520 2%

Eigenvalue Number

FIG. 6: (Color online) a) Geodesic cross-sectional widths
of an eight dimensional model manifold along the eigendirec-
tions of the metric from some central point, together with the
square root of the eigenvalues (singular values of the Jaco-
bian) |22]. Notice the hierarchy of these data-space distances
— the widths and singular values each spanning around four
orders of magnitude. To a good approximation, the cross-
sectional widths are given by singular values. In the limit of
infinitely many exponential terms, this model becomes linear.
b) Geodesic cross-sectional widths of a feed-forward artificial
neural network. Once again, the widths nicely track the sin-
gular values.

Additionally, the two models presented in Fig. @ are
particularly easy to fit to data. The fact that from a
centrally located point, geodesics can explore nearly the
entire range of model behavior suggests that the bound-
aries are not a serious impediment to the optimization.
For more difficult models, such as the PC12 model in sys-
tems biology |2], we find that the the widths estimated
from the singular values and from geodesic motion dis-
agree. The geodesic widths are much smaller than the
singular value estimates. In this case, although the spac-
ing between geodesic widths is the same as the spacing
between the singular values, they are smaller by several
orders of magnitude. We believe that most typical start-
ing points of this model lie near a hyper-corner of the
model manifold. If this is the case, then geodesics will be
unable to explore the full range of model behavior with-
out reaching a model boundary. We argue later in this
section that this phenomenon is one of the main difficul-
ties in optimization, and in fact, we find that the PC12

model is a much more difficult fitting problem than either
the exponential or neural network problem.

We have seen that sloppiness is the result of skewed
coordinates on the model manifold, and we will argue
later in section [Vl that algorithms are sluggish as a re-
sult of this poor parameterization. Fig. B tells us that the
‘bare’ model parameters are not as perverse as one might
naively have thought. Although the bare-parameter di-
rections are inconvenient for describing the model behav-
ior, the local singular values and eigenpredictions of the
Jacobian are useful estimates of the model’s global shape.
The fact that the local stiff and sloppy directions coincide
with the global long and narrow directions is a nontrivial
result that seems to hold for most models.

To complete our description of a typical sloppy model
manifold requires a discussion of curvature, which we
postpone until section VIl We will see that in addition
to a hierarchy of boundaries, the manifold typically has
a hierarchy of extrinsic and parameter-effects curvatures
whose scales are set by the smallest and widest widths
respectively.

We argue elsewhere [22], that the ubiquity of sloppy
models, appearing everywhere from models in systems
biology [6], insect flight []], variational quantum wave
functions, inter-atomic potentials [42], and a model of
the next-generation international linear collider [4], im-
plies that a large class of models have very narrow bound-
aries on their model manifolds. The interpretation that
multiparameter fits are a type of high-dimensional an-
alytic interpolation scheme, however, also explains why
so many models are sloppy. Whenever there are more
parameters than effective degrees of freedom among the
data points, then there are necessarily directions in pa-
rameter space that have a limited effect on the model
behavior, implying the metric must have small eigenval-
ues. Because successive parameter directions have a hi-
erarchy of vanishing effect on model behavior, the metric
must have a hierarchy of eigenvalues.

We view most multiparameter fits as a type of multi-
dimensional interpolation. Only a few stiff parameter
combinations need to be tuned in order to find a rea-
sonable fit. The remaining sloppy degrees of freedom do
not alter the fit much, because they fine tune the inter-
polated model behavior, which, as we have seen, is very
restricted. This has important consequences for inter-
preting the best fit parameters. One should not expect
the best fit parameters to necessarily represent the phys-
ical values of the parameters, as each parameter can be
varied by many orders of magnitude along the sloppy di-
rections. Although the parameter values at a best fit
cannot typically be trusted, one can still make falsifiable
predictions about model behavior without knowing the
parameter values by considering an ensemble of parame-
ters with reasonable fits [1H3, .

For our fitting exponential example, part of the model
boundary was the ‘fold lines‘ where pairs of the exponents
are equal (see Fig. [l). No parameters were at extreme
values, but the model behavior was nonetheless singu-

10

lar. Will such internal boundaries arise generically for
large nonlinear models? Model boundaries correspond
to points on the manifold where the metric is singular.
Typical boundaries occur when parameters are near their
extreme values (such as +oo or zero), where the model
becomes unresponsive to changes in the parameters. For-
mally, a singularity will occur if the basis vectors on the
model manifold given by €, = 0,7 are linearly depen-
dent, which is to say there exist a set of nonzero a*’s for
which

ate, = 0. (16)

In order to satisfy Eq. (If) we may vary 2N parame-
ters (the N values of a* plus the N parameters of the
model) to satisfy M equations. Therefore if M < 2N
there will exist nontrivial singular points of the metric at
non-extreme values of the parameters.

For models with M > 2N, we do not expect Eq. ([0 to
be exactly satisfied generically except at extreme values
of the parameters when one or more of the basis vec-
tors vanish, €, = 0. However, many of the data points
are interpolating points as we have argued above, and
we expect qualitatively to be able to ignore several data
points without much information loss. In general, we ex-
pect that Eq. [[H) could be satisfied to machine precision
at nontrivial values of the parameters even for relatively
small N.

Now that we understand the origin of boundaries on
the model manifold, we can discuss why they are prob-
lematic for the process of optimization. It has been ob-
served in the context of training neural networks, that
metric singularities (i.e. model boundaries) can have a
strong influence on the fitting [43]. More generally, the
process of fitting a sloppy model to data involves the frus-
trating experience of applying a black box algorithm to
the problem which appears to be converging, but then
returns a set of parameters that does not fit the data
well and includes parameter values that are far from any
reasonable value. We refer to this drift of the parameters
to extreme values as parameter evaporation [71]. This
phenomenon is troublesome not just because it causes
the algorithm to fail. Often, models are more compu-
tationally expensive to evaluate when they are near the
extreme values of their parameters. Algorithms will of-
ten not just fail to converge, but they will take a long
time in the process.

After an algorithm has failed and parameters have
evaporated, one may resort to adjusting the parameter
values by hand and then reapplying the algorithm. Hope-
fully, iterating this process will lead to a good fit. Even
if one eventually succeeds in finding a good fit, because
of the necessity of adjusting parameters by hand, it can
be a long and boring process.

Parameter evaporation is a direct consequence of the
boundaries of the model manifold. To understand this,
recall from section [l that the model manifold defines a
natural direction, the Gauss-Newton direction, that most
algorithms try to follow. The problem with blindly fol-

Newtonian Y
Direction A é Y2

Newtonijan

,%u.on A

C

FIG. 7: a) (Color online) Falling off the edge of the model
manifold. The manifold in data space defines a “natural” di-
rection, known as the Gauss-Newton direction, in which an
algorithm will try to follow to the best fit. Often this direc-
tion will push parameters toward the edge of the manifold.
b) Gradient and Gauss-Newton directions in Parame-
ter space. The manifold edge corresponds to infinite values
of the parameters. Following the Gauss-Newton direction to
the edge of the manifold will cause parameters to evaporate
while on the plateau. While in a canyon, however, the Gauss-
Newton direction gives the most efficient direction to the best
fit.

lowing the Gauss-Newton direction is that it is purely
local and ignores the fact that sloppy models have bound-
aries. Consider our example model; the model manifold
has boundaries when the rates become infinite. If an ini-
tial guess has over-estimated or under-estimated the pa-
rameters, the Gauss-Newton direction can point toward
the boundary of the manifold, as does fit A in Fig. [
If one considers the parameter space picture, the Gauss-
Newton direction is clearly nonsensical, pointing away
from the best fit. Generally, while on a plateau region,
the gradient direction is better at avoiding the manifold
boundaries. However, nearer the best fit, the boundary is
less important and the Gauss-Newton direction is much
more efficient than the downhill direction, as is the case
for fit B in Fig. @

Since the model manifold typically has several narrow
widths, it is reasonable to expect that a fit to noisy data
will evaporate many parameters to their limiting values
(such as oo or zero), as we explore in section VILGl We
therefore do not want to prevent the algorithm from evap-

11

orating parameters altogether. Instead, we want to pre-
vent the algorithm from prematurely evaporating param-
eters and becoming stuck on the boundary (or lost on the
plateau). Using the two natural directions to avoid the
manifold boundaries while navigating canyons to the best
fit is at the heart of the difficulty in optimizing sloppy
models. Fortunately, there exists a natural interpolation
between the two pictures which we call the model graph
and is the subject of the next section. This natural in-
terpolation is exploited by the Levenberg-Marquardt al-
gorithm, which we discuss in section [VITI}

IV. THE MODEL GRAPH

We saw in Section [Tl that the geometry of sloppiness
explains the phenomenon of parameter evaporation as
algorithms push parameters toward the boundary of the
manifold. However, as we mentioned in Section [l the
model manifold picture is a view complementary to the
parameter space picture, as illustrated in Fig. [

The parameter space picture has the advantage that
boundaries typically do not exist (i.e. they lie at param-
eter values equal to oo). If model boundaries occur for
parameter values that are not infinite, but are otherwise
unphysical, for example, § = 0 for our toy model, it is
helpful to change parameters in such a way as to map
these boundaries to infinity. For the case of summing
exponentials, it is typical to work in log#, which puts
all boundaries at infinite parameter values and has the
added bonus of being dimensionless (avoiding problems of
choice of units). In addition to removing boundaries, the
parameter space does not have the complications from
curvature; it is a flat, Euclidean space.

The disadvantage of the parameter space picture is
that motion in parameter space is extremely disconnected
from the behavior of the model. This problem arises as
an algorithm searches the plateau looking for the canyon
and again when it follows the winding canyon toward the
best fit.

The model manifold picture and the parameter space
picture can be combined to utilize the strengths of both
approaches. This combination is called the model graph
because it is the surface created by the graph of the
model, i.e. the behavior plotted against the parameters.
The model graph is an N dimensional surface embedded
in an M + N dimensional Euclidean space. The embed-
ding space is formed by combining the M dimensions of
data space with the N dimensions of parameter space.
The metric for the model graph can be seen to be

gl“/ = g;ow +)‘DWA (17)

where 921/ = (JTT) s 1 the metric of the model manifold
and D,, is the metric of parameters space. We discuss
common parameter space metrics below. We have intro-
duced the free parameter A in Eq. () which gives the
relative weight of the parameter space metric to the data

space metric. Most of the work in optimizing an algo-
rithm comes from a suitable choice of A\, known as the
damping parameter or the Levenberg-Marquardt param-
eter.

If D,, is the identity, then we call the metric in
Eq. (@) the Levenberg metric because of its role in the
Levenberg algorithm [44]. Another possible choice for
D, is to populate its diagonal with the diagonal el-
ements of 921/ while leaving the off-diagonal elements
zero. This choice appears in the Levenberg-Marquardt
algorithm [@] and has the advantage that the resulting
method is invariant to rescaling the parameters, e.g. it is
independent of units. It has the problem, however, that if
a parameter evaporates then its corresponding diagonal
element may vanish and the model graph metric becomes
singular. To avoid this dilemma, one often chooses D to
have diagonal elements given by the largest diagonal el-
ement of g° yet encountered by the algorithm [46]. This
method is scale invariant but guarantees that D is always
positive definite. We discuss these algorithms further in
section [VIT1l

It is our experience that the Marquardt metric is
much less useful than the Levenberg metric for prevent-
ing parameter evaporation. While it may seem counter-
intuitive to have a metric (and by extension an algorithm)
that is sensitive to whether the parameters are measured
in inches or miles, we stress that the purpose of the model
graph is to introduce parameter dependence to the man-
ifold. Presumably, the modeler is measuring parameters
in inches because inches are a more natural unit for the
model. By disregarding that information, the Marquardt
metric is losing a valuable sense of scale for the parame-
ters and is more sensitive to parameter evaporation. The
concept of the natural units will be important in the dis-
cussion of priors in section [Wl On the other hand, the
Marquardt method is faster at following a narrow canyon
and the best choice likely depends on the particular prob-
lem.

If the choice of metric for the parameter space is con-
stant, oDy, = 0, then the connection coefficients of the
model graph (with all lowered indices) are the same as
for the model manifold given in Eq. (). The connec-
tion with a raised index will include dependence on the
parameter space metric:

I‘gﬂ = (g~ Z Oy Tm 00037 m,

where g is given by Eq. ().

By considering the model graph instead of the model
manifold, we can remove the problems associated with
the model boundaries. We return to our example prob-
lem to illustrate this point. The embedding space for
the model graph is 3 + 2 = 5 dimensional, so we are re-
stricted to viewing 3 dimensional projections of the em-
bedding space. In Fig. B we illustrate the model graph
(Levenberg metric) for A = 0, which is simply the model
manifold, and for A # 0, which shows that boundaries of
the model manifold are removed in the graph. Since the

12

(b)

FIG. 8: (Color online) The effect of the damping parameter
is to produce a new metric for the surface induced by the
graph of the model versus the input parameters. (a) Model
Graph, A = 0. If the parameter is zero, then the resulting
graph is simply the original model manifold, with no extent
in the parameter directions. Here we see a flat two dimen-
sional cross section; the z-axis is a parameter value multiplied
by VA = 0. (b) Model Graph A\ # 0. If the parame-
ter is increased, the surface is "stretched" into a higher di-
mensional embedding space. This is an effective technique
for removing the boundaries, as no such boundary exists in
the model graph. However, this comes at a cost of removing
the geometric connection between the cost function and the
structure of the surface. For very large damping parameters,
the model graph metric becomes a multiple of the parame-
ter space metric, which rotates the Gauss-Newton direction
into the gradient direction. The damping term therefore in-
terpolates between the parameter space metric and the data
space metric. A three-dimensional animation of this figure is
available in the online supplemental material m]

boundaries occur at # = oo, they are infinity far from
the origin on the model graph. Even the boundary cor-
responding to the fold line has been removed, as the fold
has opened up like a folded sheet of paper. Since generic
boundaries correspond to singular points of the metric,
the model graph has no such boundaries as its metric is
positive definite for any A > 0.

After removing the boundaries associated with the
model manifold, the next advantage of the model graph
is to provide a means of seamlessly interpolating between
the natural directions of both data space and parameter
space. The damping term, A, appearing in Eq. () is well
suited for this interpolation in sloppy models. If we con-

sider the Levenberg metric, the eigenvectors of the model
manifold metric, g°, are unchanged by adding a multiple
of the identity. However, the corresponding eigenvalues
are shifted by the A parameter. It is the sloppy eigenval-
ues that are dangerous to the Gauss-Newton direction.
Since the eigenvalues of a sloppy model span many or-
ders of magnitude, this means that all the eigenvalues
that were originally less than A\ are cutoff at A in the
model graph metric, and the larger eigenvalues are vir-
tually unaffected. By adjusting the damping term, we
can essentially wash out the effects of the sloppy direc-
tions and preserve the Gauss-Newton direction from the
model manifold in the stiff directions. Since the eigen-
values span many orders of magnitude, the parameter
does not need to be finely tuned; it can be adjusted very
roughly and an algorithm will still converge, as we will
see in section [VITIl We demonstrate how A can interpo-
late between the two natural directions for our example
model in Fig.

V. PRIORS

In Bayesian statistics, a prior is an a-priori prob-
ability distribution in parameter space, giving infor-
mation about the relative probability densities for
the model as parameters are varied. For exam-
ple, if one has pre-existing measurements of the pa-
rameters 0, = 6% + 0, with normally distributed
uncertainties, then the probability density would be
[, 1/v/2702, exp [—(0n — 02,)?/(202,] before fitting to
the current data. This corresponds to a negative-log-
likelihood cost that (apart from an overall constant) is
the sum of squares, which can be nicely interpreted as
the effects of an additional set of “prior residuals”

T = (O — 0°)) Om (18)

(interpreting the pre-existing measurements as extra data
points). In this section, we will explore the more general
use of such extra terms, not to incorporate information
about parameter values, but rather to incorporate infor-
mation about the ranges of parameters expected to be
useful in generating good fits.

That is, we want to use priors to prevent parame-
ter combinations which are not constrained by the data
from taking excessively large values — we want to avoid
parameter evaporation. To illustrate again why this is
problematic in sloppy models, consider a linear sloppy
model with true parameters 6y, but fit to data with
added noise &. The observed best fit is then shifted to
0 = 0o+ (JTJ)~1(JT)E. The measurement error in data
space &; is thus multiplied by the inverse of the poorly
conditioned matrix g = J7.J, so even a small measure-
ment error produces a large parameter-space error. In
section MITGl we will see in nonlinear models that such
noise will generally shift the best fits to the boundary (in-
finite parameter values) along directions where the noise
is large compared to the width of the model manifold.

13

Thus for example in fitting exponentials, positive noise
in the data point at ¢y = 0 and negative noise at the
data point at the first time ¢; > 0 can lead to one decay
rate that evaporates to infinity, tuned to fit the first data
point without affecting the others.

In practice, it is not often useful to know that the opti-
mum value of a parameter is actually infinite — especially
if that divergence is clearly due to noise. Also, we have
seen in Fig. [a that, even if the best fit has sensible pa-
rameters, algorithms searching for the best fits can be
led toward the model manifold boundary. If the param-
eters are diverging at finite cost, the model must nec-
essarily become insensitive to the diverging parameters,
often leading the algorithm to get stuck. Even a very
weak prior whose residuals diverge at the model mani-
fold boundaries can prevent these problems, holding the
parameters in ranges useful for fitting the data.

In this section, we advocate the use of priors for help-
ing algorithms navigate the model manifold in finding
good fits. These priors are pragmatic; they are not in-
troduced to buffer a model with ‘prior knowledge’ about
the system, but to use the data to guess the parameter
ranges outside of which the fits will become insensitive to
further parameter changes. Our priors do not have mean-
ing in the Bayesian sense, and indeed should probably be
relaxed to zero at late stages in the fitting process.

The first issue is how to guess what ranges of parame-
ter are useful in fits — outside of which the model behavior
becomes insensitive to the parameter values. Consider,
for example, the Michaelis-Mentin reaction, a saturable
reaction rate often arising in systems biology (for exam-
ple Reference [2]):

de) _ kalylle]
dt 1+ kmg[x]

(19)

Here there are two parameters k,; and km,, governing
the rate of production of [z*] from [z] in terms of the
concentration [y*], where [z]+[2*] = Zmar and [y|+[y*] =
Ymazx-

Several model boundaries can be identified here. If k,
and km,Tq, are both very large, then only their ratio
affects the dynamics. In addition if km, is very small
then it has no effect on the model. Our prior should en-
force our belief that km,[z] is typically of order 1. If it
were much larger than one, than we could have modeled
the system with one less parameter k = k, /km, and if it
were much less than one, the second term in the denom-
inator could have been dropped entirely. Furthermore,
if the data is best fit by one of these boundary cases,
say kMmgzTmaer — 00 , it will be fit quite well by taking
kMg Xmaz >> 1, but otherwise finite. In a typical model
we might expect that km,xqe, = 10 will behave as if it
were infinite.

We can also place a prior on k.. Dimensional analysis
here involves the time scale at which the model is predic-
tive. The prior should match the approximate time scale
of the model’s predictions to the rate of the modeled re-
action. For example, if an experiment takes time series

10

/

VAR A o
F A 4
”

iy

I A
A

/

A X o

L 4

/
/

/
/
/

S T

(A 4
A 4
b b

\¢BEstFit -~

A A A

]
]

7

10
0,

10

T0 15

14

10*"1/1/.¢;
\\"////lli
x “ 2 S B B
\“ A
< 5l NN NN NN
NN N M MmN NN\
N A A TR TR TR R taa
MO A A A A TSR A A
(b) T T T ™ \BéstFit”
s 10 15
6

\

\

e
s
/
/
/
/
&
|

o
D

_;.-_wq_-q-_-‘-.'#-.‘-

- % X

—

>

=
of

;—hq—q—-q—-q—-q—.-q—.-‘—-"-—‘-

FIG. 9: (Color online) (A)Gauss-Newton Directions. The Gauss-Newton direction is prone to pointing parameters toward

infinity, especially in regions where the metric has very small eigenvalues
adding a small damping parameter to the metric, the Gauss-Newton direction is rotated into the gradient direction. The amount

. (B) Rotated Gauss-Newton Directions. By

of rotation is determined by the eigenvalues of the metric at any given point. Here, only a few points are rotated significantly.
(C) Gradient Directions. For large values of the damping parameter, the natural direction is rotated everywhere into the

gradient direction.

data with precision on the order of seconds with intervals
on the order minutes, then a ’fast’ reaction is any that
takes place faster than a few seconds and a slow reaction
is any that happens over a few minutes. Even if the real
reaction happens in microseconds, it makes no sense to
extract such information from the model and data. Sim-
ilarly, a slow reaction that takes place in years could be
well fit by any rate that is longer than a few minutes.
As such we want a prior which prevents kyYmazZTmaz/T
from being far from 1, where 7 is the typical timescale of
the data, perhaps a minute here. In summary, we want

priors to constrain both km,&ma, and kzTmazYmaz/T tO
be of order one.

We have found that a fairly wide range of priors can
be very effective at minimizing the problems associated
with parameter evaporation during fitting. To choose
them, we propose starting by changing to the natural
units of the problem by dividing by constants, such as
time scales or maximum protein concentrations, until all
of the parameters are dimensionless. (Alternatively, pri-
ors could be put into the model in the original units, at
the expense of more complicated book-keeping.) In these

natural units we expect all parameters to be order 1.

The second issue is to choose a form for the prior. For
parameters like these, where both large and near-zero
values are to be avoided, we add two priors for every pa-
rameter, one which punishes high values, and one which
punishes small values:

(20)

Prio) = ().

wl/t?

This prior has minimum contribution to the cost when
6% = L 50 in the proper units we choose wy, = w;. With
these new priors, the metric becomes

G = 0,1%0,r% + 0, Pr(6),Pr(0) (21)
w,
=g, + 6,“,(9—: + wp0M), (22)

which is positive definite for all (positive) values of 6.
As boundaries occur when the metric has an eigenvalue
of zero, no boundaries exist for this new model manifold.
This is reminiscent of the metric of the model graph with
the difference being that we have permanently added this
term to the model. The best fit has been shifted in this
new metric.

It remains to choose wy, and w;. Though the choice is
likely to be somewhat model specific, we have found that
a choice between .001 and 1 tends to be effective. That
weights of order 1 can be effective is somewhat surpris-
ing. It implies that good fits can be found while punish-
ing parameters for differing only an order of magnitude
from their values given by dimensional analysis. That
this works is a demonstration of the extremely ill-posed
nature of these sloppy models, and the large ensemble of
potential good fits in parameter space.

A complimentary picture of the benefit of priors takes
place in parameter space, where they contribute to the
cost:

C=Co+ Y wni/2+wi/(26;). (23)

The second derivative of the extra cost contribution
with respect to the log of the parameters is given by

92 Pr(9)2 _ wpb + wy
dlog(0)> 2 - 2 20 °

and concave, making the entire cost surface large when
parameters are large. This in turn makes the cost surface
easier to navigate by removing the problems associated
with parameter evaporation on plateaus.

To demonstrate the effectiveness of this method, we use
the PC12 model with 48 parameters described in |2]. We
change to dimensionless units as described above. To cre-
ate an ensemble, we start from 20 initial conditions, with
each parameter taken from a Gaussian distribution in its
log centered on 0 (the expected value from dimensional
analysis), with a o = log10 (so that the bare parame-
ters range over roughly two orders of magnitude from .1
to 10). We put a prior as described above centered on
the initial condition, with varying weights. These corre-
spond to the priors that we would have calculated if we

This is positive definite

15

@® p=1,R=52%
@ p=.1, R=66%
@®® p=.01, R=72%
100 @ p=.001, R=59%
° @9 p=0,R=32%
\
° :. I,
° L]
B 70 . /
Qo Se (‘
9 hd o ©° ° \‘
© o ° %
c 50 ° e® .. o. . II A
e o ® S8 o 1
o3 4 Wo"?oo. \ °
25 \‘ °

20 30 50 75 100 150
Jacobian Evaluations

FIG. 10: (Color online) The final cost is plotted against num-
ber of Jacobian evaluations for five strengths of priors. After
minimizing with priors, the priors are removed and a maxi-
mum of 20 further Jacobian evaluations are performed. The
prior strength is measured by p, with p = 0 meaning no
prior. The success rate is R. The strongest priors converge
the fastest, with medium strength priors showing the highest
success rate.

had found those values by dimensional analysis instead.
After minimizing with the priors, we remove them and
allow the algorithm to re-minimize. The results are plot-
ted in Fig. [

Strikingly, even when a strong prior is centered at pa-
rameter values a factor of ~ 100 away from their ‘true’
values, the addition of the prior in the initial stages of
convergence dramatically increases the speed and success
rate of finding the best fit.

In section [Vl we introduced the model graph and
the Levenberg-Marquardt algorithm, whose rationale (to
avoid parameter evaporation) was similar to that moti-
vating us here to introduce priors. To conclude this sec-
tion, we point out that the model graph metric, Eq. ([I),
and the metric for our particular choice of prior, Eq. [22),
both serve to cut off large steps along sloppy direc-
tions. Indeed, the Levenberg-Marquardt algorithm takes
a step identical to that for a model with quadratic priors
(Eq. [[¥)) with o, = 1/V/), except that the center of the
prior is not a fixed set of parameters 6y, but the current
parameter set 8*. (That is, the second derivative of the
sum of the squares of these residuals, " [VA(6 — 6%)]?
gives A, the Levenberg term in the metric.) This Lev-
enberg term thus acts as a ‘moving prior’ — acting to
limit individual algorithmic steps from moving too far
toward the model boundary, but not biasing the algo-
rithm permanently toward sensible values. Despite the
use of a variable A that can be used to tune the algorithm
toward sensible behavior (Fig. @), we shall see in sec-
tion [VITIl that the Levenberg-Marquardt algorithm often
fails, usually because of parameter evaporation. When
the useful ranges of parameters can be estimated before-
hand, adding priors can be a remarkably effective tool.

VI. EXTENDED GEODESIC COORDINATES

We have seen that the two difficulties of optimizing
sloppy models are that algorithms tend to run into the
model boundaries and that model parametrization tends
to form long, curved canyons around the best fit. We
have discussed how the first problem can be improved by
the introduction of priors. We now turn our attention
to the second problem. In this section we consider the
question of whether we can change the parameters of a
model in such a way as to remove this difficulty. We
construct coordinates geometrically by considering the
motion of geodesics on the manifold.

Given two nearby points on a manifold, one can con-
sider the many paths that connect them. If the points
are very far away, there may be complications due to the
boundaries of the manifold. For the moment, we assume
that the points are sufficiently close that boundaries can
be ignored. The unique path joining the two points whose
distance is shortest is known as the geodesic. The param-
eters corresponding to a geodesic path can be found as
the solution of the differential equation

i 4+ TH iqP =0, 24
af

where I' ; are the connection coefficients given by Eq. (§)
and the dot means differentiation with respect to the
curve’s affine parametrization. Using two points as
boundary values, the solution to the differential equa-
tion is then the shortest distance between the two points.
Alternatively, one can specify a geodesic with an initial
point and direction. In this case, the geodesic is inter-
preted as the path drawn by parallel transporting the
tangent vector (also known as the curve’s velocity). This
second interpretation of geodesics will be the most use-
ful for understanding the coordinates we are about to
construct. The coordinates that we consider are polar-
like coordinates, with N — 1 angular coordinates and one
radial coordinate.

If we consider all geodesics that pass through the best
fit with a normalized velocity, v#v, = 1, then each
geodesic is identified by N — 1 free parameters, corre-
sponding to direction of the velocity at the best fit. (The
normalization of the velocity does not change the path
of the geodesic — only the time it takes to traverse the
path.) These N — 1 free parameters will be the angu-
lar coordinates of the new coordinate system. There is
no unique way of defining the angular coordinates. One
can choose N orthonormal unit vectors at the best fit,
and let the angular coordinates define a linear combi-
nation of them. We typically choose eigendirections of
the metric (the eigenpredictions of section M. Having
specified a geodesic with the N — 1 angular coordinates,
the radial coordinate represents the distance moved along
the geodesic. Since we have chosen the velocity vector
to be normalized to one, the radial component is the
parametrization of the geodesic.

16

We refer to these coordinates as extended geodesic
coordinates and denote their Cartesian analog by ~*.
These coordinates have the special property that those
geodesics that pass through the best fit appears as
straight lines in parameter space. (It is impossible for
all geodesics to be straight lines if the space is curved.)

In general, one cannot express this coordinate change
in an analytic form. The quadratic approximation to this
transformation is given by

VY & O + vl 60" + %F;ﬁaeaaeﬁ : (25)
The coordinates given in Eq. ([Z3) are known as Riemann
normal coordinates or geodesic coordinates. Within
the general relativity community, these coordinates are
known as locally inertial reference frames because they
have the property that I'}, (z = 0) = 0, that is, the
Christoffel symbols vanish at the special point around
which the coordinates are constructed [34].

Let us now consider the shape of cost contours for our
example model using extended geodesic coordinates. We
can consider both the shape of the coordinate mesh on
the manifold in data space, as well as the shape of the cost
contours in parameter space. To illustrate the dramatic
effect that these coordinates can have, we have adjusted
the data so that the best fit does not lie so near the
boundary. The results are in Fig. [l

The extended geodesic coordinates were constructed to
make the elongated ellipse that is characteristic of sloppy
models become circular. It was hoped that by making the
transformation nonlinear, it would straighten out the an-
harmonic “banana” shape, rather than magnify it. It ap-
pears that this wish has been granted spectacularly. Not
only has the banana been straightened out within the re-
gion of the long narrow canyon, but the entire region of
parameter space, including the plateau, has been trans-
formed into one manageable, isotropic basin. Indeed, the
cost contours of Fig. [Ib are near-perfect circles, all the
way to the boundary where the rates go to zero, infinity,
or are equal.

To better understand how this elegant result comes
about, let’s consider how the cost changes as we move
along a geodesic that passes through the best fit. The
cost then becomes parametrized by the same parameter
describing the geodesic, which we call 7. The chain rule
gives us,

d der o
sl A 1Y)
dr dr aon 0 9w
where v# = 6~ Applying this twice to the cost gives:
d*C do+ de”

— =" g, + rm PN 0,0,y 26
2 mnH

= prares
The term v*v”g,, in Eq. [Z8) is the arbitrarily chosen
normalization of the velocity vector and is the same at
all points along the geodesic. The interesting piece in
Eq. (Z0) is the expression

PN =5—J(J") "I,

-0.25

b)

-03075 o5 0.0 05 10

FIG. 11: (Color online) a) Extended Geodesic Coordi-
nates. The parameters of a model are not usually well suited
to describing the behavior of a model. By considering the
manifold induced in data space, one can construct more nat-
ural coordinates based on geodesic motion that are more well-
suited to describing the behavior of a model (black grid).
These coordinates remove all parameter-effects curvature and
are known as extended geodesic coordinates. Note that we
have moved the data point so that the best fit is not so near a
boundary in this picture. b) Cost Contours in Extended
Geodesic Coordinates. Although the summing exponen-
tial model is nonlinear, that non-linearity does not translate
into large extrinsic curvature. This type of non-linearity is
known as parameter-effects curvature, which the geodesic co-
ordinates remove. This is most dramatically illustrated by
considering the contours of constant cost in geodesic coordi-
nates. The contours are nearly circular all the way out to the
fold line and the boundary where the rates are infinite.

which we recognize as the projection operator that
projects out of the tangent space (or into the normal
bundle).

Recognizing PV in Eq. [0), we see that any deviation
of the quadratic behavior of the cost will be when the
non-linearity forces the geodesic out of the tangent plane,
which is to say that there is an extrinsic curvature. When
there is no such curvature, then the cost will be isotropic
and quadratic in the extended geodesic coordinates.

If the model happens to have as many parameters as
residuals, then the tangent space is exactly the embed-
ding space and the model will be flat. This can be seen
explicitly in the expression for PV, since J will be a
square matrix if M = N, with a well-defined inverse:

PN = 5—J(J"g) "

— 5—JJ (I
— 0.

17

Furthermore, when there are as many parameters as
residuals, the extended geodesic coordinates can be cho-
sen to be the residuals themselves, and hence the cost
contours will be concentric circles.

In general, there will be more residuals than param-
eters; however, we have seen in section [that many
of those residuals are interpolating points that do not
supply much new information. Assuming that we can
simply discard a few residuals, then we can “force” the
model to be flat by restricting the embedding space. It is,
therefore, likely that for most sloppy models, the man-
ifold will naturally be much more flat than one would
have expected. We will see when we discuss curvature in
section [VIIl that most of the non-linearities of a sloppy
model do not produce extrinsic curvature, meaning the
manifold is typically much more flat that one would have
guessed.

Non-linearities that do not produce extrinsic curva-
ture are described as parameter-effects curvature [E] As
the name suggests these are “curvatures” that can be re-
moved through a different choice of parameters. By us-
ing geodesics, we have found a coordinate system on the
manifold that removes all parameter-effects curvature at
a point. It has been noted previously that geodesics are
linked to zero parameter-effects curvature m]

We believe it to be generally true for sloppy mod-
els that non-linearities are manifested primarily as
parameter-effects curvature as we argue in m] and in
section VIl We find similar results when we consider
geodesic coordinates in the PC12 model, neural networks,
and many other models. Just as for the summing expo-
nential problem that produced Fig. b, cost contours for
this real-life model are nearly circular all the way to the
model’s boundary.

Although the model manifold is much more flat than
one would have guessed, how does that result compare
for the model graph? We observed in section [Vl that
the model graph interpolates between the model mani-
fold and the parameter space picture. If we find the cost
contours for the model graph at various values of A, we
can watch the cost contours interpolate between the cir-
cles in Fig. b and the long canyon that is characteristic
of parameter space. This can be seen clearly in Fig.

With any set of coordinates, it is important to know
what portion of the manifold they cover. Extended
geodesic coordinates will only be defined in some region
around the best fit. It is clear from Fig. [l that for our
example problem the region for which the coordinates are
valid extends to the manifold boundaries. Certainly there
are regions of the manifold that are inaccessible to the
geodesic coordinates. Usually, extended geodesic coordi-
nates will be limited by geodesics reaching the bound-
aries, just as algorithms are similarly hindered in finding
the best fit.

18

0.02 0.02
0.01 0.01
& 0.00 & 0.00
—0.01 —0.01
a)
—0.02 ‘ ‘ ‘ ‘ ‘ ‘ b) —0.02
—-0.03 =0.02 =0.01 0.00 0.01 0.02 0.03 —0.03 —0.02 —0.01 0.00 0.01 0.02 0.03
T Y1
0.6
0.04 04
’/—
0.02/\/ 0.2
& 0.00f < & 0.0/@
—0.02" —0.2
c)
—0.04/ g 04
—0.05 0.00 0.05 =04 —05 0.0 0.5
T gl

FIG. 12: (Color online) By changing the value of the Levenberg-Marquardt parameter, the course of the geodesics on the
corresponding model graph are deformed, in turn distorting the shape of the cost contours in the geodesic coordinates. a)
A = 0 is equivalent to the model manifold. The cost contours for a relatively flat manifold, such as that produced by the sum
of two exponentials, are nearly perfect, concentric circles. The geodesics can be evaluated up to the boundary of the manifold,
at which point the coordinates are no longer defined. Here we can clearly see the stiff, long manifold direction (vertical) and
the sloppy, thin manifold direction (horizontal) b) Small A, (A much smaller than any of the eigenvalues of the metric) will
produce cost contours that are still circular, but the manifold boundaries have been removed. In this case the fold line has
disappeared, and cost contours that ended where parameters evaporated now stretch to infinity. ¢) Moderate X\ creates cost
contours that begin to stretch in regions where the damping parameter significantly affects the eigenvalue structure of the
metric. The deformed cost contours begin to take the plateau and canyon structures of the contours in parameter space. d)
Large)\ effectively washes out the information from the model manifold metric, leaving just a multiple of the parameter space
metric. In this case, the contours are those of parameter space — a long narrow curved canyon around the best fit. This figure
analogous to Fig. [b, although the model here is a more sloppy (and more realistic) example. An animation of the transition
from small to large damping parameter is available in the online supplemental material m]

VII. CURVATURE Curvature has also been used to study confidence re-
gions [16, 20, 48 (], kurtosis (deviations from normality)
in parameter estimation [51], and criteria for determining
if a minimum is the global minimizer E] We will see
below that the large anisotropy in the metric produces
a similar anisotropy in the curvature of sloppy models.
Furthermore, we use curvature as a measure of how far
an algorithm can accurately step (section [VIIH) and to

estimate how many parameters a best fit will typically

In this section, we discuss the various types of curva-
ture that one might expect to encounter in a least-squares
problem and the measures that could be used to quan-
tify those curvatures. Curvature of the model manifold
has had many interesting applications. It has been illus-
trated by Bates and Watts that the curvature is a conve-

nient measure of the non-linearity of a model [13, [16, 1§].
When we discuss the implications of geometry on nu-
merical algorithms this will be critical, since it is the
non-linearity that makes these problems difficult.

evaporate (section [VIT ().

In our discussion of geodesic coordinates in section [V1L
we saw how some of the non-linearity of a model could
be removed by a clever choice of coordinates. We also ar-

gued that the non-linearity that could not be removed by
a coordinate change would be expressed as an extrinsic
curvature on the expectation surface. Non-linearity that
does not produce an extrinsic curvature is not irrelevant;
it can still have strong influence on the model and can
still limit the effectiveness of optimization algorithms.
Specifically, this type of non-linearity changes the way
that distances are measured on the tangent space. They
may cause the basis vectors on the tangent space to ex-
pand, shrink, or rotate. We follow the nomenclature of
Bates and Watts and refer to this type of non-linearity as
parameter-effects curvature |19, [18]. We emphasize that
this is not a “real” curvature in the sense that it does not
cause the shape of the expectation surface to vary from a
flat surface, but its effects on the behavior of the model
is similar to the effect of real curvature. This “curvature”
could be removed through a more convenient choice of
coordinates, which is precisely what we have done by
constructing geodesic coordinates in section VIl A func-
tional definition of parameter-effects curvature would be
the non-linearities that are annihilated by operating with
PN . Alternatively, one can think of the parameter-effects
curvature as the curvatures of the coordinate mesh. We
discuss parameter-effects curvature in section [VITCl

Bates and Watts refer to all non-linearity that cannot
be removed by changes of coordinates as intrinsic cur-
vature |1&]. We will not follow this convention; instead,
we follow the differential geometry community and fur-
ther distinguish between intrinsic or Riemann curvature
(section [VITAl) and extrinsic or embedding curvature |31]
(section VIIB)). The former refers to the curvature that
could be measured on a surface without reference to the
embedding. The latter refers to the curvature that arises
due to the manner in which the model has been embed-
ded. From a complete knowledge of the extrinsic cur-
vature, one could also calculate the intrinsic curvature.
Based on our discussion to this point, one would expect
that both the intrinsic and the extrinsic curvature should
be expressible in terms of some combination of PV and
0,0, This turns out to be the case, as we will shortly
see.

All types of curvature appear in least squares models,
and we will now discuss each of them.

A. Intrinsic (Riemann) Curvature

The embedding plays a crucial role in nonlinear least
squares fits — the residuals embed the model manifold
explicitly in data space — we will be primarily interested
in the extrinsic curvature. However, because most studies
of differential geometry focus on the intrinsic curvature,
we discuss it.

The Riemann curvature tensor, Rgvé is one measure
of intrinsic curvature. Since intrinsic curvature makes no
reference to the embedding space, curvature is measured
by moving a vector, V#, around infinitesimal closed loops
and observing the change the curvature induces on the

19

Y1 y3

Y2

FIG. 13: (Color online) Intrinsic and Extrinsic Curva-
ture. Intrinsic Curvature is inherent to the manifold and
cannot be removed by an alternative embedding. A model
that is the sum of two exponential terms has all types of cur-
vature. This is the same model manifold as in Fig. [k, viewed
from an alternative angle to highlight the curvature. From
this viewing angle, the extrinsic curvature becomes apparent.
This is also an example of intrinsic curvature. An animation
of this surface rotating in three dimensions is available in the
online supplemental material [23].

vector, which is expressed mathematically by
RG VP =V, VsV = VsV, Ve

This expression in turn can be written independently of
V*# in terms of the Christoffel symbols and their deriva-
tives by the standard formula

Rg’y5 - 87Fg5 — 8§Fg,y + F%‘SF?’Y — F;'Y ?5.

From this we can express Rj, s in terms of derivatives of
the residuals. Even though Rj. s depends on derivatives
of I, suggesting that it would require a third derivative
of the residuals, one can in fact represent it in terms of
second derivatives and PY,

Rapys = 0aOyrm Py, 030510 — 0a0smm Py, 030y,

which the Gauss-Codazzi equation extended to the case
of more than one independent normal direction [3§].

The toy model that we have used throughout this work
to illustrate concepts has intrinsic curvature. The curva-
ture becomes most apparent when viewed from another
angle, as in Fig.

Intrinsic or Riemann curvature is an important mathe-
matical quantity that is described by a single, four-index
tensor; however, we do not use intrinsic curvature to
study optimization algorithms. Extrinsic and parameter-
effects curvature in contrast not be simple tensors but will
depend on a chosen direction. These curvatures are the
key to understanding nonlinear least squares fitting.

B. Extrinsic Curvature

Extrinsic curvature is easier to visualize than intrin-
sic curvature since it makes reference to the embedding

FIG. 14: (Color online) A ruled surface has no intrinsic cur-
vature; however, it may have extrinsic curvature. The model
manifold formed from a single exponential rate and amplitude
is an example of a ruled surface. This model could be isomet-
rically embedded in another space to remove the curvature.
An animation of this surface rotating in three dimensional
space is available in the online supplemental material [24].

space, which is where one naturally imagines curved sur-
faces. It is important to understand that extrinsic and in-
trinsic curvature are fundamentally different and are not
merely different ways of describing the same concept. In
differentiating between intrinsic and extrinsic curvature,
the simplest illustrative example is a cylinder, which has
no intrinsic curvature but does have extrinsic curvature.
One could imagine taking a piece of paper, clearly a flat,
two dimensional surface embedded in three dimensional
space, and roll it into a cylinder. Rolling the paper does
not affect distances on the surface, preserving its intrin-
sic properties, but changes the way that it is embedded
in three dimensional space. The rolled paper remains in-
trinsically flat, but it now has an extrinsic curvature. A
surface whose extrinsic curvature can be removed by an
alternative, isometric embedding is known as a ruled sur-
face [53]. While an extrinsic curvature does not always
imply the existence of an intrinsic curvature, an intrinsic
curvature requires that there also be extrinsic curvature.
Our toy model, therefore, also exhibits extrinsic curva-
ture as in Fig. One model whose manifold is a ruled
surface is given by a two parameter model which varies
an exponential rate and an amplitude:

y = Ae .

The manifold for this model with three data points is
drawn in Fig. [[72].

There are two measures of extrinsic curvature that we
discuss. The first is known as geodesic curvature as it
measures the deviation of a geodesic from a straight line
in the embedding space. The second measure is known
as the shape operator. These two measures are compli-
mentary, and should be used together to understand the
way a space is curved. Both geodesic curvature and the
shape operator have analogous measures of parameter-
effects curvature that will allow us to compare the rela-
tive importance of the two types of curvature.

20

Measures of extrinsic and parameter effects curvature
to quantify non-linearities have been proposed previously
by Bates and Watts |14, [14, [1&]. Although the measure
they use is equivalent to the presentation of the next few
sections, their approach is different. The goal of this
section is to express curvature measures of non-linearity
in a more standard way using the language of differential
geometry. By so doing, we hope to make the results
accessible to a larger audience.

1. Geodesic Curvature

Consider a geodesic parametrized by 7, tracing a path
through parameter space, 0 (7), which in turn defines a
path through residual space, #(6(7)). The parametriza-
tion allows us to discuss the velocity, ¥ = g , and the
acceleration, @ = g—f. A little calculus puts these expres-
sions in a more practical form:

U = 0"0,7,

a=6"9"PNo,o,r.

Notice that the normal projection operator emerges nat-
urally in the expression for a.

For any curve that has instantaneous velocity and ac-
celeration vectors, one can find a circle that local approx-
imates the path. The circle has radius

,UZ

R= =0
jal

and a corresponding curvature

_ lal

_ p—1
K=R ‘

(%

Because the path that we are considering is a geodesic,
it will be as near a straight line in data space as possible
without leaving the expectation surface. That is to say,
the curvature of the geodesic path will be a measure of
how the surface is curving within the embedding space,
i.e. an extrinsic curvature. The curvature associated with
a geodesic path is illustrated in Fig.

In our previous discussion of geodesics, we saw that
a geodesic is fully specified by a point and a direction.
Therefore we can define the geodesic curvature of any
point on the surface, corresponding to a direction, v, by

_ |otv” PN, 0,7

VXV

K(v) (27)

At each point an the surface, there is a different value of
the geodesic curvature for each direction on the surface.

Circle fit to
Geodesic path

»

FIG. 15: (Color online) Geodesic Curvature. A direc-
tion on a curved surface define a geodesic. The deviation of
the geodesic from a straight line in the embedding space is
measured by the geodesic curvature. It is the inverse radius
of the circle fit to the geodesic path at the point. A three-
dimensional animation of this surface is available in the online
supplemental material m]

2. Shape Operator

Another measure of extrinsic curvature, complimen-
tary to the geodesic curvature, is the shape operator,
Suv. While the geodesic curvature requires us to choose
an arbitrary direction on the surface, the shape operator
requires us to choose an arbitrary direction normal to the
surface.

To understand the shape operator, let us first consider
the special case of an N-dimensional surface embedded
in an N + 1-dimensional space. If this is the case, then at
any point on the surface there is a unique (up to a sign)
unit vector normal to the surface, n. If this is the case,
Sy s given by

S = it (8,0,7). (28)

S, is known as the shape operator because it describes
how the surface is shaped around the unit normal, n. It
is a symmetric, covariant rank-2 tensor. We are usually
interested in finding the eigenvalues of the shape operator
with a single raised index:

SH = gheS,,.

The eigenvectors of S¥ are known as the principal curva-
ture directions, and the eigenvalues are the extrinsic cur-
vatures in those directions. In the case that there is only
one direction normal to the surface, then the (absolute
value of the) eigenvalues of S¥, are equal to the geodesic
curvatures in the respective eigendirections. The eigen-
values, {k,}, may be either positive or negative. Positive
values indicate that the curvature is toward the direction
of the normal, while negative values indicate that it is
curving away, as illustrated in Fig. I8

In general, there will not be an unique normal vec-
tor. If an N-dimensional surface is embedded in an M-
dimensional space, then there will M — N independent
shape operators, and one is left to perform an eigenvalue

21

n

Principal
Direction 2

FIG. 16: (Color online) Shape Operator. Specifying a di-
rection normal to a curved surface, n, defines a shape opera-
tor. The eigenvalues of the shape operator are the principle
curvatures and the corresponding eigenvectors are the direc-
tions of principle curvature. A three-dimensional animation
of this surface is available in the online supplemental material

).

analysis for each as described above [@] Fortunately,
for the case of a least squares problem, there is a natural
direction to choose: the normal component of the unfit
data, —P" 7, making the shape operator

FPNO, 0,7
S = _#, 29
nv |PNT_'1 ()
where we introduce the minus as convention. In gen-

eral, around an arbitrary vector ‘7, the shape operator
becomes

VPNo,o, 7

(30)

It should now be clear why these two measures of ex-
trinsic curvature (geodesic curvature and the shape op-
erator) are complimentary. The geodesic curvature is
limited by having to choose a direction tangent to the
surface, but gives complete information about how that
direction is curving into the space normal to the surface.
In contrast, the shape operator gives information about
all the directions on the surface, but only tells how those
directions curve relative to a single normal direction.

C. Parameter-effects Curvature

We are now prepared to discuss parameter-effects cur-
vature. We repeat that parameter-effects curvature is
not a curvature of the manifold. Instead, it is a mea-
sure of the curvatures of the coordinate mesh on the
surface. In our experience, parameter-effects curvature
is typically the largest of the three types we have dis-
cussed. By its very nature, this curvature depends on
the choice of the parametrization. By constructing ex-
tended geodesic coordinates in section [VI we were able
to remove the parameter-effects curvature from the model

(at a point). In this section we will discuss how to mea-
sure the parameter-effects curvature and compare it to
the other curvatures that we discussed above.

To understand the meaning of parameter-effects cur-
vature, let us begin by considering a linear model with
no curvature of any type. For simplicity, we consider the
parametrization of the xy-plane given by

r = e+ 0,
Yy = 91—|—€92.

This parametrization will produce a skewed grid ase — 1,
characteristic of linear sloppy models, such as fitting
polynomials. This grid is illustrated in Fig. [for
e = 1/2. By reparametrizing the linear model, we can in-
troduce parameter-effects curvature. For example, if we
replace the parameters with their squares (which may be
useful if we wish to enforce the positivity of the parame-
ters’ effects)

r = €f? + 02
y = 9%—}—69%,

then the corresponding coordinate mesh will become
compressed and stretched, as seen in Fig. [b. Alter-
natively, if we reparametrize the model as

T = (66‘1+92)2
(62 + e62),

in order to limit the region of consideration to the
upper-right quarter plane, then the coordinate mesh will
stretch and rotate into itself, depicted in Fig. . With
more than two parameters, there is additionally a tor-
sion parameter-effects curvature in which the lines twist
around one another. None of these reparametrization
change the intrinsic or extrinsic properties of the model
manifold; they merely change how the coordinates de-
scribe the manifold. The extent to which coordinate
mesh is nonlinear is measured by the parameter-effects
curvature.

We now consider how to quantify parameter-effects
curvature. We have discussed the normal and tangential
projection operators, PV and PT, and argued that the
normal projection operator would extract the extrinsic
and intrinsic curvature from the matrix of second deriva-
tives. Looking back on our expressions for curvature up
to this point, we see that each involves PV. The com-
plimentary parameter-effects curvature can be found by
replacing PV with P7 in each expression. Thus, in anal-
ogy with Eq. 1), we can define the parameter-effects
geodesic curvature by

Y

|vto” PT,0,7]

V¥Vq

KP(v) = (31)

Likewise, we can define a parameter-effects shape opera-

tor by comparison with Eq. 29),

o FPT[)#&,F'
pv |PT7

22

Recall that for an N-dimensional space embedded in
an M-dimensional space, there are M — N independent
shape operators. This is because the space normal to
the tangent space (into which we are projecting the non-
linearity) is of dimension M — N. The parameter-effects
analog must therefore have N independent shape oper-
ators, since the projection space (the tangent space) is
N-dimensional. Therefore, we are naturally led to define
a parameter-effects shape-operator with an additional in-
dex to distinguish among the N possible tangent direc-
tions,

S = Prn0u0yrn.
If we resolve these shape operators into the natural basis
on the tangent space, S:;W = S5 0aTm, we find

She = g*P 0T 0,0,F =T4,,.

Therefore, the parameter-effects curvature is correctly in-
terpreted as the connection coefficients. With this un-
derstanding, it is clear that geodesic coordinates remove
parameter-effects curvature, since they are the coordi-
nates constructed to give I' = 0.

Finally, we note that from a complete knowledge of all
the curvatures (for all directions) one can determine the
matrix of second derivatives completely. Although we do
not demonstrate this here, we note it is a consequence of
having a flat embedding space.

D. Curvature in Sloppy Models

Based on our analysis thus far, we should have two
expectations regarding the curvature of sloppy mod-
els. First, because of the large spread of eigenvalues of
the metric tensor, unit distances measured in parame-
ter space correspond to large ranges of distances in data
space. Conversely, one has to move the parameters by
large amounts in a sloppy direction in order to change
the residuals by a significant amount. Because of this, we
expect that the anharmonicities in the sloppy directions
will become magnified when we consider the curvature
in those directions. We expect strong anisotropies in the
curvatures of sloppy models, with the largest curvatures
corresponding to the sloppiest directions.

Secondly, as we saw in section [VI, by changing coor-
dinates to extended geodesic coordinates, we discovered
that the manifold generated by our sloppy model was sur-
prisingly flat, i.e. had low intrinsic curvature. We have
seen that if the model happens to have equal number of
data points as parameters, then the model will always be
flat. Since many of the data points in a typical sloppy
model are just interpolation points, we believe that in
general sloppy models have lower extrinsic curvature than
one would have naively guessed just by considering the
magnitude of the non-linearities. This explains perhaps
why we will find that the dominant curvature of sloppy
models is the parameter-effects one.

23

FIG. 17: a) Linear Grid. A sloppy linear model may have a skewed coordinate grid, but the shape of the grid is constant,
having no parameter effects curvature. b) Compressed Grid. By reparametrizing the model, the grid may become stretched
or compressed in regions of the manifold. c¢) Rotating, Compressed Grid. Another parametrization may not only stretch
the grid, but also cause the coordinates to rotate. Parameter-effects curvature describes the degree to which the coordinates are
stretching and rotating on the manifold. With more than two parameters, there is also a torsion parameter-effects curvature

(twisting).

We can better understand the size of the various curva-
tures by considering the interpretation presented in sec-
tion [l that sloppy models are a generalized interpola-
tion scheme. If we choose N independent data points as
our parametrization, then the interpolating polynomial,
Pn_1(t) in Eq. (@) is a linear function of the parame-
ters. As discussed below that equation, the manifold in

each additional direction will be constrained to within
€ = 0fny1 of Py_1(t). Presuming that this deviation
from flatness smoothly varies along the jth largest width
W; ~ ¢ f; of the manifold (i.e., there is no complex or sen-
sitive dependence on parameters), the geodesic extrinsic
curvature is

K =¢/W}, (32)

predicting a range of extrinsic curvatures comparable to
the range of inverse eigenvalues of the metric. Further-
more, the ratio of the curvature to the inverse width
should then be e¢/W; ~ §fni1/0f; ~ (6t/R)NT1=I,
where 0t is the spacing of time points at which the model
is sampled and R is the time scale over which the model
changes appreciably (see the argument in section [Tl fol-
lowing Eq. ([@3)).

Since we estimate € = §fy41 to be the most narrow
width if the model had an additional parameter, we can
find the overall scale of the extrinsic curvature to be given
by the narrowest width

Additionally, we can find the scale set by the parame-
ter effects curvature by recalling that parameter effects
curvature is the curvature of the coordinate mesh. If
we ignore all parameter combinations except the stiffest,
then motion in this direction traces out a one-dimensional
model manifold. The parameter-effects curvature of the
full model manifold in the stiffest direction now corre-
sponds to the extrinsic curvature of this one-dimensional
manifold [73], and as such is set by the smallest width
(which in this case in the only width), i.e. the longest
width of the full model manifold. The similar structure
of parameter-effects curvature and extrinsic curvature,
Eqgs. @0 and EIl), suggest that the parameter-effects
curvature also be proportional to the inverse eigenvalues
(squares of the widths) along the several cross sections.
Combining these result, we see that in general the ratio
of extrinsic to parameter-effects curvature to be given by
ratio of the widest to the most narrow width,

~ \/¥ . (33)

In our experience the ratio of extrinsic to parameter-
effects curvature in Eq. [B3) is always very small. When
Bates and Watts introduced parameter-effects curvature,
they considered its magnitude on twenty four models and
found it universally larger than the extrinsic curvature,
often much larger [15]. We have here offered an expla-
nation of this effect based on the assumption that the
deviation from flatness is given by Eq. ([B2).

We explicitly check the assumption of Eq. (B2) by cal-
culating cross sections for a model of several exponentials
and for an artificial neural network. We have already seen
in section [in figure B that these widths span several
orders of magnitude as predicted by the singular values
of the Jacobian. In Fig. [[8 we view the data space image
of these widths (projected into the plane spanned by the
local velocity and acceleration vectors), where we see ex-
plicitly that the deviation from flatness is similar for all
the cross sections. In Fig. [@ we see that that the extrin-
sic curvature is comparable to the narrowest cross section
and the parameter-effects curvature is comparable to the
widest cross section as we argued above, both for fitting
exponentials and for the neural network model.

K Wy
KP = w,

24

0.016
0.014
0.012
0.010
350.008
0.006
0.004
0.002
0.000

=40 —-30 —20 —10 0 10 20
n

0.010

0.008

0.006

0.004

=1.0 —0.5 0.0 0.5 1.0
Y

FIG. 18: a) Cross sections of a summing exponential
model projected into the plane spanned by the two principle
components in data space. Notice the widths of successive
cross sections are progressively more narrow, while the devia-
tions from flatness are uniformly spread across the width. The
magnitude of the deviation from flatness is approximately the
same for each width, giving rise to the hierarchy of curvatures.
b) Cross sections of a feed forward neural network has
many of the same properties as the exponential model. In
both cases, the curvature is much smaller than it appears due
to the relative scale of the two axes. In fact, the sloppiest
directions (narrowest widths) have an aspect ratio of about
one.

We further illustrate the above analysis by explicitly
calculating the curvatures for the sloppy model formed
by summing several exponential terms with amplitudes.
Fig. is a log-plot illustrating the eigenvalues of the
inverse metric, the geodesic curvatures in each of those
eigendirections, as well as the parameter-effects geodesic
curvature in each of those directions. We see the same
picture whether we consider the eigenvalues of the shape
operator or the geodesic curvature. Both measures of cur-
vature are strongly anisotropic with both extrinsic cur-
vature and parameter-effects curvature covering as many
orders of magnitude as the eigenvalues of the (inverse)
metric. However, the extrinsic curvature is smaller by a
factor roughly given by Eq. (B3). We will use this large
discrepancy between extrinsic and parameter-effects cur-
vature when we improve the standard algorithms in sec-

tion V111

We have seen that manifolds of sloppy models possess
a number of universal characteristics. We saw in sec-
tion Ml that they are bounded with a hierarchy of widths

107
g 10° o0
C >
% 10 vy /K
a AA 1/KP
(]
e10!
&1
[0 S
EID
a) 10~
Wo—1 32 3 1 % ¢ 71
Eigenvalue Number
[4}]
Q
c
[}
B
o
210!
g
wl[]‘
@ -3
g10
aQy
b) Wy 5 10 1 w0 % M

Eigenvalue Number

FIG. 19: (Color online) The extrinsic and parameter-effects
curvature on the model manifold are strongly anisotropic,
with the largest curvatures along the shortest widths (see
Figs. B [¥). The slopes of the (inverse) curvature vs. eigen-
value lines are roughly twice that of the singular values (which
are equivalent to the widths). The magnitude of the extrin-
sic curvature is set by the most narrow cross sections, while
the magnitude of the parameter-effects curvature is set by the
widest cross-section. Consequently the parameter-effect cur-
vature is much larger than the extrinsic curvature. Here we
plot the widths and curvatures for a model of four exponen-
tials (above) from reference |29] and a feed forward artificial
neural network (below)

which we describe as a hyper-ribbon. In this section we
have seen that the extrinsic and parameter-effects cur-
vature also possess a universal structure summarized in
Figs. A remarkable thing about the parameter-
invariant, global structure of a sloppy model manifold
is that is typically well-described by the singular values
of the parameter-dependent, local Jacobian matrix. We
saw in section [Tl that the singular values correspond to
the widths. We have now argued that the largest and
smallest singular values set the scale of the parameter-
effects and extrinsic curvatures respectively. This entire
structure is a consequence of the observation that most
models are a multi-dimensional interpolation scheme.

Let us summarize our conclusions about the geometry
of sloppy models. We argued in section [[TI] using inter-
polation theorems that multiparameter nonlinear least-
squares models should have model manifolds with a hi-

25

1012

106,

100,

10}

Eigenvalue / Curvature

102

c) d) e)

FIG. 20: Curvature Anisotropy. a) Inverse Met-
ric eigenvalues. The (inverse) metric has eigenvalues
spread over several orders of magnitude, producing a strong
anisotropy in the way distances are measured on the model
manifold. b) Geodesic Curvature in eigendirections
of the metric. The geodesic curvatures also cover many
decades. The shortened distance measurements from the
metric eigenvalues magnify the anharmonicities in the sloppy
directions. c¢) Parameter-Effects Geodesic Curvature.
The parameter-effects curvature is much larger than the ex-
trinsic curvature, but shares the anisotropy. d) The eigen-
values of the Shape Operator. The strong curvature
anisotropy described by the geodesic curvature is also illus-
trated in the eigenvalue spectrum of the shape operator. e)
Parameter-Effects Shape Operator eigenvalues. Two
measures (geodesic and shape operator curvatures) span sim-
ilar ranges, but in both cases the parameter-effects curvature
is a factor of about 10° larger than the extrinsic curvature
equivalent.

erarchy of widths, forming a hyper-ribbon with the nt"
width of order W,, ~ Wy A™ with A given by the spacing
between data points divided by a radius of convergence
(in some multidimensional sense) and Wy the widest cross
section. We discovered in some cases that the eigenval-
ues of the Hessian about the best fit agreed well with
the squares of these widths (so A\, ~ A?", see Fig. H).
This depends on the choice of parameters and the place-
ment of the best fit; we conjecture that this will usually
occur if the ‘bare’ parameters are physically or biologi-
cally natural descriptions of the model and have natu-
ral units (i.e., dimensionless), and if the best fit is not
near the boundary of the model manifold. The parame-
ter A will depend on the model and the data being fit;
it varies (for example) from 0.1 to 0.9 among seventeen
systems biology models |fl]. We argued using interpola-
tion theory that the extrinsic curvatures should scale as
K, ~ ¢/W2, where the total variation € ~ Wy, implying
K, ~ AN /(WyA2?") (Fig. 18c). We find this hierarchy
both measured along the eigenvectors of the (parameter-
independent) shape operator (Fig. Bll) or the geodesic
curvatures measured along the (parameter-dependent)
eigenpredictions at the best fit. Finally, we note that
the parameter effects curvature also scales as 1/A%" by

WoA
P < > WO _
(o] s >
\
$§I
w
a)
~Wo/2 Wo/2
hn
_A=(N=1)
AT =+ widtns
> (S R
2 vv /K
o 1p
@
a)
(0]
8 AAV—l
Q
o
8
[1v] AT
A2(N-1)

0 1 2 3 4 5 6 N
Cross Section Number

FIG. 21: (Color online) A caricature of the widths and curva-
tures of a typical sloppy model. a) The manifold deviates by
an amount A" from a linear model for each width. As each
width is smaller than the last by a factor of A the curvature
is largest along the narrow widths. This summary agrees well
with the two real models in Fig. b) The scales of the
extrinsic and parameter-effects curvature are set by the nar-
rowest and widest widths respectively. The parameter-effects
curvature is therefore smaller than the extrinsic curvature by
a factor of AY. Both are strongly anisotropic. Compare this
figure to with the corresponding result for the two real models
in Fig. @

inspecting the similarity in the two formulae, Eqs. (27
and ([BIl). We argue that the parameter-effects curva-
ture should be roughly given by the extrinsic curva-
ture of a one-dimensional model moving in a stiff di-
rection, which sets the scale of the parameter effects as
KP ~ Wy /W2 ~ 1/(WpA%), again either measured
along the eigendirections of the parameter-effects shape
operator or along eigenpredictions. Thus the entire struc-
ture of the manifold can be summarized by three num-
bers, Wy the stiffest width, A the typical spacing between
widths, and N the number of parameters. We summarize
our conclusions in Fig. 211

26
E. Curvature on the Model Graph

Most of the non-linearities of sloppy models appear as
parameter-effects curvature on the model manifold. On
the model graph, however, these non-linearities become
extrinsic curvature because the model graph emphasizes
the parameter dependence. An extreme version of this
effect can be seen explicitly in Fig. B where the model
manifold, which had been folded in half, is unfolded in
the model graph, producing a region of high curvature
around the fold line.

If the Levenberg-Marquardt parameter is sufficiently
large, the graph can be made arbitrarily flat (assuming
the metric chosen for parameter space is flat, such as
for the Levenberg metric). This effect is also visible in
Fig.Bin the regions that stretch toward the boundaries.
In these regions, the Levenberg-Marquardt parameter is
much larger than the eigenvalues of the metric, making
the parameter space metric the dominant contribution,
and creating an extrinsically flat region on the model
graph.

To illustrate how the curvature on the model graph
is affected by the Levenberg-Marquardt parameter, we
consider how the geodesic curvatures in the eigendirec-
tions of the metric change as the parameter is increased
for a model involving several exponentials with ampli-
tudes and rates. The results are plotted in Fig. As
the Levenberg-Marquardt parameter is raised, the widely
ranging values of the geodesic curvatures may either in-
crease or decrease. The largest curvature directions (the
sloppy directions) tend to flatten, but the directions with
the lowest curvature (the stiff directions) direction be-
come more curved. The main effect of the the Levenberg-
Marquardt parameter is to decrease the anisotropy in the
curvature.

The behavior of the extrinsic curvature as the
Levenberg-Marquardt parameter is varied can best be
understood in terms of the interplay between parameter-
effects curvature and extrinsic curvature. Curvatures
decrease as more weight is given to the FEuclidean,
parameter-space metric. However, as long as the
parameter-space metric is not completely dominant, the
graph will inherit curvatures from the model manifold.
Since the graph considers model output versus the pa-
rameters, curvature that had previously been parameter-
effects become extrinsic curvature. Therefore, directions
that had previously been extrinsically flat will be more
curved, while the directions with the most curvature will
become less curved.

The largest curvatures typically correspond to the
sloppy directions. Most algorithms will try to step in
sloppy directions in order to follow the canyon. The ben-
efit of the model graph is that it reduces the curvature
in the sloppy directions, which allows algorithms to take
larger steps. The fact that previously flat directions be-
come extrinsically curved on the model graph does not
hinder an algorithm that does not step in these extrin-
sically flat directions anyway. The role that curvatures

10°

10°
o

10°

-12
1010*“ g 10° 10’
A

FIG. 22: Model Graph Curvature. As the Levenberg-
Marquardt parameter,), is increased, directions with highest
curvature become less curved. For stiff directions with less
extrinsic curvature, the parameter effects curvature may be
transformed into extrinsic curvature. The damping term re-
duces the large anisotropy in the curvature. For sufficiently
large values of the Levenberg-Marquardt parameters, all cur-
vatures vanish.

play in determining an algorithm’s maximal step size is
looked at more closely in the next section.

F. Optimization Curvature

The distinction between extrinsic and parameter-
effects curvature is not particularly useful in understand-
ing the limitations of an algorithm. An iterative algo-
rithm taking steps based on a local linearization will ul-
timately be limited by all non-linearities, both extrin-
sic and parameter-effects. We would like a measure of
non-linearity, analogous to curvature, that explains the
limitations of stepping in a given direction.

Suppose an algorithm proposes a step in some
direction, v*, then the natural measure of non-
linearity should include the directional second derivative,
v’ 9,0, 7/v*vq, where we included the normalization in
order to remove the scale dependence of v. This expres-
sion is very similar to the geodesic curvature without the
projection operator.

Simply using the magnitude of this expression is not
particularly useful because it doesn’t indicate whether
curvature of the path is improving or hindering the con-
vergence of the algorithm. This crucial bit of information
is given by the (negative) dot product with the unit resid-
ual vector,

k(v) = —;~ , (34)

which we refer to as the Optimization Curvature. Since
the goal is to reduce the size of the current residual, the
negative sign is to produce the convention that for x > 0,

27

the curvature is helping the algorithm while when £ < 0
the curvature is slowing the algorithm’s convergence.

This expression for x has many of the properties of
the curvatures discussed in this section. It has the same
units as the curvatures we have discussed. It requires
the specification of both a direction on the manifold (the
proposed step direction, v) and a direction in data space
(the desired destination, 7), making it a combination of
both the geodesic and shape operator measures of curva-
ture. Furthermore, without the projection operators, it
combines both extrinsic and parameter effects curvature
into a single measure of non-linearity, although in prac-
tice, it is dominated by the parameter-effects curvature.
We now consider how &« is related to the allowed step size
of an iterative algorithm.

Consider the scaled Levenberg step given by
56" = — (¢° +AD)" 9,C o1

Each A specifies a direction for a proposed step. For a
given A, we vary 7 to find how far an algorithm could
step in the proposed direction. We determine 67 by per-
forming a line search to minimize the cost in the given
direction. While minimizing the cost at each step may
seem like a natural stepping criterion, it is actually a poor
choice, as we discuss in section [VIITCF however, this sim-
ple criteria is useful for illustrating the limitations on step
size.

We measure the step size by the motion it causes in
the residuals, ||07]|. This is a convenient choice because
each direction also determines a value for the geodesic
curvature (K), parameter-effects curvature (K?), and an
optimization curvature (x), each of which are measured
in units of inverse distance in data space. We compare
the step size with the inverse curvature in each direction
in Fig.

One might assume that the size of the non-linearities
always limits the step size, since the direction was deter-
mined based on a linearization of the residuals. This is
clearly the case for the summing exponentials model in
Fig. B3k, where x < 0; the step size closely follows the
largest of the curvatures, the parameter effects curvature
KP =~ |k|.

However, the non-linearities on occasion may inadver-
tently be helpful to an algorithm, as in Fig. E3b where
k > 0. If the value of k changes sign as we vary A,
then the distinction becomes clear: steps can be several
orders of magnitude larger than expected if £ > 0, oth-
erwise they are limited by the magnitude of k. The sign
of the parameter is illustrating something that can be
easily understood by considering the cost contours in pa-
rameter space, as in Fig. B3d. If the canyon is curving
“into” the proposed step direction, then the step runs up
the canyon wall and must be shortened. However, if the
canyon is curving “away” from the proposed step direc-
tion, then step runs down the canyon and eventually up
the opposite wall, resulting in a much larger step size.

1012
o
(9}
C
]
o 10°
o =
)
(9]
©
{o]
wn
% 10 —
© — 5]
e - (kP
(a) K
— Step Size
107 -8 5 -2 1 4
10 10 10 10 10
A
10’
@ T k<0
g A
S S
B4 ” —
5 =
[0}
o
o
o
[¥p]
2 1
© — |«
= - (KT
e K
(c) — Step Size
108
108 10° 107 10t 10*
A

28

10°

Q
[e
[o
©
+
R0}
Ia) T ———=—eEEEE
[0}
(@]
©
Qo
w
5 1
© — x|
0 (K?)~
(b K
— Step Size
1045 = 2 1 4
10 10 10 10 10

FIG. 23: (Color online) a) Curvature and Step Size for x < 0. If K < 0, then the non-linearities in the proposed direction
are diverting the algorithm away from the desired path. Distances are limited by the size of the curvature. b) Curvature
and Step Size for x > 0. The non-linearities may be helpful to an algorithm, allowing for larger than expected step sizes
when k > 0. ¢) Curvature and Step Size for s with alternating sign. For small A, K < 0 and the non-linearities are
restricting the step size. However, if x becomes positive (the cusp indicates the change of sign), the possible step size suddenly
increases. d) Cost contours for positive and negative values of k. One can understand the two different signs of x in
terms of which side of the canyon the given point resides. The upper point has positive £ and can step much larger distances
in the Gauss-Newton direction than can the lower point with negative x, which quickly runs up the canyon wall.

G. Curvature and parameter evaporation

We have stressed the the boundaries of the model man-
ifold are the major obstacle to optimization algorithms.
Because a typical sloppy model has many very narrow
widths, it is reasonable to expect the best fit parame-
ters to have several evaporated parameter values when
fit to noisy data. In order estimate the expected num-
ber of evaporated parameters, however, it is necessary to
account for the extrinsic curvature of a model.

In Fig. 24 we illustrate how the curvature effects which
regions of data space correspond to a best fit with either
evaporated or finite parameters. A first approximation
is a cross-sectional width with no extrinsic curvature, as
in Fig. Bdh. If the component of the data parallel to the

cross-section does not lie outside the range of the width,
the parameter will not evaporate. If the cross-section has
curvature, however, the situation is more complicated,
with the best fit depending on the component of the data
perpendicular to the cross-section as well. Figs. Zi(b)
and (c) highlight the regions of data space for which the
best fit will not evaporate parameters (gray).

Knowing both the regions of data space corresponding
to non-evaporated parameters and the relative probabil-
ities of the possible data (Eq. @)), we can estimate the
expected number of evaporated parameters for a given a
model at the best fit. Using Gaussian data of width o
centered on the middle of a cross-section for a problem
of fitting exponentials, we find the best fit and count the
number zero-eigenvalues of the metric, corresponding to

FIG. 24: The curvature along the width of a manifold effects if
the best fit lies on the boundary or on the interior. For a cross-
sectional width (thick black line), consider three possibilities:
a) extrinsically flat, b) constant curvature along width, and ¢)
curvature proportional to distance from the boundary. Grey
regions correspond to data points with best fits on the interior
of the manifold, while white regions correspond to data with
evaporated parameters. If the curvature is larger near the
boundaries, there is less data space available for evaporated
best fit parameters.

the number of non-evaporated parameters at the fit.

We can derive analytic estimates for the number of
evaporated parameters using the approximation that the
cross section is either flat or has constant curvature as
in Fig. B4h and b. If the cross-section is extrinsically
flat then the probability of the corresponding parameter
combination not evaporating is given in terms of the error
function

. W,
Pllat — 9 erf (2—;‘> , (35)
where W, is the n'" width given by W,, = WyA™.

A similar formula for the constant curvature approxi-
mation is a little more complicated. It involves integrat-
ing the Gaussian centered on the cross section in Fig. 24
over the gray region. Since the apex of the gray cone is
offset from the center of the Gaussian, we evaluate the in-
tegral treating the offset as a perturbation. We recognize
that there are several cases to be considered. If the noise
is smaller than any of the widths, then the probability is
approximately one. However, if the noise is larger than
the width but smaller than inverse curvature, the prob-
ability is given by W, /o. Finally, if the noise is larger
than any of the widths the probability is W, K,,. Recall
that we characterize a sloppy model manifold by three
numbers, Wy, A, and N, the largest width, the average
spacing between widths and the number of parameters
respectively. The final result in each of the three cases in

29

terms of these three numbers is given by

1 if o < W,
P”(l:urVCd — WOTM 1f Wn <o < 1/Kn; (36)
AN-n if 1/Kn<0"

From our caricature of a typical sloppy model summa-
rized in Fig. Bl we estimate how many widths should
belong in each category for a given o. Summing the
probabilities for the several widths in Eq. [BH) we find
the expected number of non-evaporated parameters to
be given by

2 log o /Wy
1-A log A

<Napprox> = — 1. (37)

In Table [l we compare the fraction of non-evaporated
parameters with the estimates from Eqs. (BH) and (B4l).
We find a large discrepancy when the noise in the data
is very large. In this case there is often a large fraction
of non-evaporated parameters even if the noise is much
larger than any cross-sectional width. We attribute this
discrepancy to larger curvatures near the corners of the
manifold that increase the fraction of data space that can
be fit without evaporating parameters. Since the metric
is nearly singular close to a boundary, we expect the ex-
trinsic curvature to become singular also by inspecting
Eq. 7). We explicitly calculate the curvature near the
boundary and we find that this is in fact the case.

The calculation in Table [l can be interpreted in sev-
eral ways. If one is developing a model to describe some
data with known error bars, the calculation can be used
to estimate the number of parameters the model could
reasonably have without evaporating any at the best fit.
Alternatively for a fixed model, the calculation indicates
what level of accuracy is necessary in the data to confi-
dently predict which parameters are not infinite. Qual-
itatively, for a given model, the errors must be smaller
than the narrowest width for there to be no evaporated
parameters.

Similarly, for experimental data with noise less than
any of the (inverse) parameter-effects curvatures the pa-
rameter uncertainties estimated by the inverse Fisher in-
formation matrix will be accurate since the parameter-
ization is constant over the range of uncertainty. It is
important to note, that for models with large numbers of
parameters either of these conditions require extremely
small, often unrealistically small, error bars. In general,
it is more practical to focus on predictions made by en-
sembles of parameters with good fits rather than parame-
ter values at the best fit as the latter will depend strongly
the noise in the data.

VIII. APPLICATIONS TO ALGORITHMICS

We now consider how the results derived in previous
sections can be applied to algorithms. We have stressed

[(N) /N[{Natas) /N [(Ninsegrat) /N | (Napprox) /N|

10Wo 0.61 .0006 0.028 0.025
Wo 0.73 0.05 0.076 0.16
WoWn| 0.87 0.50 0.52 0.60
Wn 0.95 0.92 0.93 1.00
Wnx/10 | 0.98 1.00 1.00 1.00

TABLE I: The number of non-evaporated parameters (N) per
total number of parameters IV at the best fit, for an 8 parame-
ter model of exponentials and amplitudes. As the noise of the
data ensemble grows, the number of non-evaporated parame-
ters at the best fit decreases (i.e. more parameters are evapo-
rated by a good fit). Even if the noise is much larger than any
of the widths, there are still several non-evaporated parame-
ters, due to the curvature (see Fig. E]). We estimate the ex-
pected number of non-evaporated parameters from both a flat
manifold approximation (Eq. 1)) and a constant curvature
approximation. For the constant curvature approximation we
show the result of the exact integral of the gaussian over the
grey region of Fig. as well as our perturbative approxi-
mation, Eq. Bd), using the parameters Wy = 6.1, A = .11
and N = 8. These approximations agree with the numerical
results when the noise is small, but for very noisy data there
are still several non-evaporated parameters even if the noise is
much larger than any of the widths. Therefore, although our
general caricature of the model manifold as a hyper-cylinder
of constant curvatures and widths seems to describe the geom-
etry of the sloppy directions, it does not capture the features
of the stiff directions. This discrepancy could be due, for ex-
ample, by an increase in the curvature near the boundary as

in Fig. Zk.

that fitting sloppy models to data consist of two difficult
steps. The first step is to explore the large, flat plateau to
find the canyon. The second step is to follow the canyon
to the best fit.

We begin by deriving two common algorithms, the
modified Gauss-Newton method and the Levenberg-
Marquardt algorithm from the geometric picture in sec-
tions [VTITAl and We then suggest how it may be
improved by applying what we call delayed gratification
and an acceleration term in sections [VIIT(] and

We demonstrate that the suggested modifications can
offer improvements to the algorithm by applying them to
a few test problems in section [VIITEl In comparing the
effectiveness of algorithms we make an important obser-
vation, that the majority of the computer time for most
problems with many parameters is occupied by Jacobian
evaluations. As the number of parameters grows, this
becomes increasingly the case. Models with many pa-
rameters are more likely to be sloppy, so this assumption
does not greatly reduce the applicability of the algorithms
discussed.

If an algorithm estimates the Jacobian from finite dif-
ferences of the residuals, then most of the function (resid-
ual) evaluations will be spent estimating the Jacobian.
(Our function evaluation counts in Table [l do not in-
clude function evaluations used to estimate Jacobians.)

30

If this is the case, then for any given problem, comparing
function evaluations automatically integrates the relative
expense of calculating residuals and Jacobians. How-
ever, many of the problems we use for comparison are
designed to have only a few parameters for quick eval-
uation, while capturing the essence of larger problems.
We then extrapolate results from small problems to sim-
ilar, but larger problems. Our primary objective is to
reduce the number of Jacobian evaluations necessary for
an algorithm to converge. We do not ignore the num-
ber of function evaluations, but we but consider reducing
the number of function calls to be a lower priority. As
we consider possible improvements to algorithms, we will
usually be willing to accept a few more function calls if
it can significantly reduce the number of Jacobian eval-
uations that an algorithm requires.

In the next few sections, we discuss the geometric
meaning of the Gauss-Newton method (section [VIITAI)
and other similar algorithms, such as the Levenberg-
Marquardt algorithm (section [VIITH]). We then discuss
how ideas from differential geometry can lead to ways of
improving convergence rates. First, we suggest a method
of updating the Levenberg-Marquardt parameter, which
we call delayed gratification, in section [VIITC} Second,
we suggest the inclusion of a geodesic acceleration term
in section We end the discussion by comparing
the efficiency of standard versions of algorithms to those
with the suggested improvements in section [VIITE]

A. Modified Gauss-Newton Method

The result presented in this paper that appears to be
the most likely to lead to a useful algorithm is that cost
contours are nearly perfect circles in extended geodesic
coordinates as described in section [VIl The coordinates
illustrated in Fig. [l transformed a long, narrow, curved
valley into concentric circles. Searching for the best fit in
these coordinates would be a straightforward task! This
suggests that an algorithm that begins at an unoptimized
point need only follow a geodesic to the best fit. We
have thus transformed an optimization problem into a
differential equation integration problem.

The initial direction of the geodesic tangent vector (ve-
locity vector) should be the Gauss-Newton direction

do+

W(T:O):

e (38)

If we assume that the manifold is extrinsically flat (the
necessary and sufficient condition to produce concentric
circles in extended geodesic coordinates), then Eq. (Z0)
tells us that the cost will be purely quadratic,

20 dor e
F = g'u E? = COnStant, (39)

which implies that the first derivative of the cost will be

linear in 7:

dc dor do” .
— =g =0). 4

dr (g dr dr > T+C(r=0) (40)
A knowledge of C(7 = 0) will then tell us how far the
geodesic needs to be integrated:

C(r =0)
Tmax = o dor dov - (41)
gH d_: dr

We can calculate the missing piece of Eq.) from the
chain rule and Eq. (BY),
. do*
Cc = —9,C
dr "
= —g‘uuayc 8#0,

which gives us
Tmaz = 1.

The simplest method one could apply to solve the
geodesic equation would be to apply a single Euler step,
which moves the initial parameter guess by

508 = GroT
= —g"0,C, (42)

since 7 = 1. Iteratively updating the parameters accord-
ing to Eq. [@2) is known as the Gauss-Newton method.
It can be derived without geometric considerations by
simply assuming a linear approximation to the residu-
als. Unless the initial guess is very good, however, the
appearance of the inverse Hessian in Eq. #2) (with its
enormous eigenvalues along sloppy directions) will result
in large, unreliable steps and prevent the algorithm from
converging.

The Gauss-Newton method needs some way to shorten
its steps. Motivated by the idea of integrating a dif-
ferential equation, one could imagine taking several Eu-
ler steps instead of one. If one chooses a time step
to minimize the cost along the line given by the local
Gauss-Newton direction, then the algorithm is known as
the modified Gauss-Newton method, which is a much
more stable algorithm than the simple Gauss-Newton
method [54].

One could also imagine performing some more sophis-
ticated method, such as a Runge-Kutta method. The
problem with these approaches is that the sloppy eigen-
values of the inverse metric require the Euler or Runge-
Kutta steps to be far too small be competitive with other
algorithms. In practice, these techniques are not as ef-
fective as the Levenberg-Marquardt algorithm, discussed
in the next section.

B. Levenberg-Marquardt Algorithm

The algorithm that steps according to Eq. @) using
the metric of the model graph, Eq. [[), is known as the

31
Levenberg-Marquardt step:
50" = —(¢° +AD)" 9, C.

If D is chosen to be the identity, then the algorithm is
the Levenberg algorithm [44]. The Levenberg algorithm
is simply the Gauss-Newton method on the model graph
instead of the model manifold.

If D is chosen to be a diagonal matrix with entries
equal to the diagonal elements of ¢°, then the algo-
rithm is the Levenberg-Marquardt algorithm [45]. As
we mentioned in section [Vl the Levenberg-Marquardt
algorithm, using the Marquardt metric, is invariant to
rescaling the parameters. We find this property to often
be counterproductive to the optimization process since
it prevents the modeler from imposing the proper scale
for the parameter values. In addition we observe that
the resulting algorithm is more prone to parameter evap-
oration. The purpose for adding D to the metric is to
introduce parameter dependence to the step direction.

The Levenberg-Marquardt algorithm adjusts A at each
step. Typically, when the algorithm has just begun, the
Levenberg-Marquardt term will be very large, which will
force the algorithm to take small steps in the gradient di-
rection. Later, once the algorithm has descended into a
canyon, A will be lowered, allowing the algorithm to step
in the Gauss-Newton direction and follow the length of
the canyon. The Levenberg-Marquardt parameter, there-
fore, serves the dual function of rotating the step direc-
tion from the Gauss-Newton direction to the gradient
direction, as well as shortening the step.

As we mentioned in section [Vl when using the Lev-
enberg metric, A\ will essentially wash out all the sloppy
eigenvalues of the original metric and leave the large ones
unaffected. The relatively large multiplicative factor sep-
arating eigenvalues means that A does not need to be
finely tuned in order to achieve convergence. Neverthe-
less, an efficient method for choosing A is the primary
way that the Levenberg-Marquardt algorithm can be op-
timized. We discuss two common updating schemes here.

A typical method of choosing A at each step is de-
scribed in Numerical Recipes |35]. One picks an initial
value, say A = .001, and tries the proposed step. If the
step moves to a point of larger cost, by default, the step
is rejected and A is increased by some factor, 10. If the
step has decreased the cost, the step is accepted and A
is decreased by a factor of 10. This method is guaran-
teed to eventually produce an acceptable step, since for
extremely large values of A\, the method will take an ar-
bitrarily small step in the gradient direction. We refer to
this as the traditional scheme for updating .

A more complicated method of choosing A is based on
a trust region approach and is described in [46]. As in
the previous updating scheme, at each step A is increased
until the step goes downhill (all uphill steps are rejected).
However, after an accepted step, the algorithm compares
the decrease in cost at the new position with the decrease

predicted by the linear approximation of the residuals

|7 Bota) | = 7 Buc) |
|7 Gl = |[#Bota) + T, 001

If this value is very far from unity, then the algorithm has
stepped beyond the region for which it trusts the linear
approximation and will increase A by some factor even
though the cost has decreased; otherwise, A is decreased.
This method tunes A so that most steps are accepted,
reducing the number of extra function evaluations. As
a result, it often needs a few more steps, and therefore,
a few more Jacobian evaluations. This algorithm works
well for small problems where the computational com-
plexity of the function and the Jacobian are comparable.
It is not as competitive using the number of Jacobian
evaluations as a measure of success.

These are certainly not the only update schemes avail-
able. Both of these criteria reject any move that increases
the cost, which is a natural method to ensure that the
algorithm does not drift to large costs and never con-
verges. One could imagine devising an update scheme
that allows some uphill steps in a controlled way such
that the algorithm remains well-behaved. We consider
such a scheme elsewhere [53] and note that it was a key
inspiration for the Delayed Gratification update scheme
that we describe below in section [VIITCl

As we observed in section [M the metric formed by
the model graph acts similarly to the effect of adding
linear Bayesian priors as residuals. The Levenberg-
Marquardt algorithm therefore chooses a Gauss-Newton
step as though there were such a prior, but then ig-
nores the prior in calculating the cost at the new point.
A similar algorithm, known as the iteratively updated
Gauss-Newton algorithm, includes the contribution from
the prior when calculating the new cost, although the
strength of the prior may be updated at each step [56].

C. Delayed Gratification

We have seen that parameter-effects curvatures are
typically several orders of magnitude larger than ex-
trinsic curvatures for sloppy models, which means that
the model manifold is much more flat than the non-
linearities alone suggest and produce the concentric cir-
cles in Fig. [When considering only a single step on
even a highly curved manifold, if the parameter-effects
curvature dominates, the step size will be less than the
(inverse) extrinsic curvature and approximating the man-
ifold by a flat surface is a good approximation. Fur-
thermore, we have seen that when the manifold is flat,
geodesics are the paths that we hope to follow.

The Rosenbrock function is a well known test func-
tion for which the extended geodesic coordinates can be
expressed analytically. It has a long, parabolic shaped

32

50

40

30

20

0y

10

-10

FIG. 25: Extended Geodesic Coordinates for Rosen-
brock Function. The residuals are one choice of extended
geodesic coordinates if the number of parameters equal the
number of data points, as is the case for the Rosenbrock func-
tion. Because the Rosenbrock function is a simple quadratic,
the coordinate transformation can be expressed analytically.
Lines of constant p are equi-cost lines, while lines of constant
¢ are the paths a geodesic algorithm should follow to the
best fit. Because the geodesics follow the path of the narrow
canyon, the radial geodesics are nearly parallel to the equi-
cost lines in parameter space. This effect is actually much
more extreme than it appears in this figure because of the
relative scales of the two axes.

canyon and is given by

rn = 1—91
ro = A(Hg—&f),

where A is a parameter that controls the narrowness of
the canyon. The Rosenbrock function has a single min-
imum at (f1,02) = (1,1). Since there are two residuals
and two parameters, the model manifold is flat and the
extended geodesic coordinates are the residuals. It is
straightforward to solve

91 = 1—T1
T
92 = Zz—i-(l—Tl)z.

If we change to polar coordinates,

ry = psing
ra = pcosd,

then lines of constant ¢ are the geodesic paths that we
would like an algorithm to follow toward the best fit, and
lines of constant p are cost contours. We plot both sets
of curves in Fig.

Inspecting the geodesic paths that lead to the best fit
in Fig. BHreveals that most of the path is spent following
the canyon while decreasing the cost only slightly. This
behavior is common to all geodesics in canyons such as

this. We would like to devise an update scheme for A in
the Levenberg-Marquardt algorithm that will imitate this
behavior. The results of section [VITH suggest that we
will often be able to step further than a trust region would
allow, so we start from the traditional update scheme.

The primary feature of the geodesic path that we wish
to imitate is that radial geodesics are nearly parallel to
cost contours. In the usual update scheme, if a proposed
step moves uphill, then A is increased. In the spirit of
following a cost contour, one could slowly increase the
Levenberg-Marquardt parameter just until the cost no
longer increases. If A is fine-tuned until the cost is the
same, we call this the equi-cost update scheme. Such
a scheme would naturally require many function evalua-
tions for each step, but as we said before, we are primarily
interested in problems for which function calls are cheap
compared to Jacobian evaluations. Even so, determin-
ing A to this precision is usually overkill, and the desired
effect can be had by a much simpler method.

Instead of precisely tuning A, we modify the tradi-
tional scheme to raise and lower the parameter by differ-
ent amounts. Increasing A by very small amounts when
a proposed step is uphill and then decreasing it by a
large amount when a downhill step is finally found will
mimic the desired behavior. We have found that increas-
ing by a factor of 2 and decreasing by a factor of 10 works
well, consistent with Lampton’s results |51]. We call this
method, the delayed gratification update scheme.

The reason that this update scheme is effective is due
to the restriction that we do not allow uphill steps. If
we move downhill as much as possible in the first few
steps, we greatly restrict the steps that will be allowed
as successive iterations, slowing down the convergence
rate, as illustrated in Fig.

By using the delayed gratification update scheme, we
are using the smallest value of A that does not produce
an uphill step. If we choose a trust-region method, in-
stead, each step will choose a much larger value of \. The
problem with using larger values of \ at each step, is that
they drive the algorithm downhill prematurely. Even if
the trust region only cuts each possible step in half com-
pared to the delayed gratification scheme, the cumulative
effect will be much more damaging because of how this
strategy reduces the possibility of future steps.

D. Geodesic Acceleration

We have seen that a geodesic is a natural path that an
algorithm should follow in its search for the best fit. The
application of geodesics to optimization algorithms is not
new. It has been applied, for example to the problem
of nonlinear programming with constraints |58, 59, to
neural network training [60], and to the general problem
of optimization on manifolds |34, I61]. Here we apply it
as a second order correction to the Levenberg-Marquardt
step.

The geodesic equation is a second order differential

33

15

— Possible LM Steps /
++ Greedy Steps 7
o @ Delayed Gratification|/ BCSJI Fit
1.0{|=— Geodesic Path

< 05

0.0

-0.375 0.0 05 1.0 15

FIG. 26: (Color online) Greedy Step and Delayed Grat-
ification Step Criterion. In optimization problems for
which there is a long narrow canyon, such as for the Rosen-
brock function, choosing a delayed gratification step is im-
portant to optimize convergence. By varying the damping
term, the algorithm may choose from several possible steps.
A greedy step will lower the cost as much as possible, but by
so doing will limit the size of future steps. An algorithm that
takes the largest allowable step size (without moving uphill)
will not decrease the cost much initially, but will arrive at the
best fit in fewer steps and more closely approximate the true
geodesic path. What constitutes the largest tolerable step size
should be optimized for specific problems so as to guarantee
convergence.

equation, whose solution we have attempted to mimic
by only calculating first derivatives of the residuals (Ja-
cobians) and following a delayed gratification stepping
scheme. From a single residual and Jacobian evaluation,
an algorithm can calculate the gradient of the cost as well
as the metric, which determines a direction. We would
like to add a second order correction to the step, but one
would expect its evaluation to require a knowledge of the
second derivative matrix, which would be even more ex-
pensive to calculate than the Jacobian. We have already
noted that most of the computer time is spent on Jaco-
bian evaluations, so second order steps would have even
more overhead. Fortunately, the second order correction
to the geodesic path can be calculated relatively cheaply
in comparison to a Jacobian evaluation.

The second order correction, or acceleration, to the
geodesic path is given by

at = —Fgﬁv“vﬁ, (43)

as one can see by inspecting Eq. 4)). In the expression
for the acceleration, the velocity contracts with the two
lower indices of the connection. Recall from the defini-

1.5
Lo Acceleration Best Fit
< 05
Parabolic Path
with Acceleration
0.0
Velocity
0375 0.0 05 10 15
'91
FIG. 27: (Color online) Geodesic Acceleration in the

Rosenbrock Valley. The Gauss-Newton direction, or veloc-
ity vector, gives the correct direction that one should move
to approach the best fit while navigating a canyon. However,
that direction quickly rotates, requiring an algorithm to take
very small steps in order to avoid uphill moves. The geodesic
acceleration indicates the direction in which the velocity ro-
tates. The geodesic acceleration determines a parabolic tra-
jectory that can efficiently navigate the valley without run-
ning up the wall. The linear trajectory quickly runs up the
side of the canyon wall.

tion,
Fgﬁ = gwjaurmaaaﬁrmu

that the lowered indices correspond to the second deriva-
tives of the residuals. This means that the acceleration
only requires a directional second derivative in the direc-
tion of the velocity. This directional derivative can be
estimated with two residual evaluations in addition to
the Jacobian evaluation. Since each step will always call
at least one residual evaluation, we can estimate the ac-
celeration with only one additional residuals call, which
is very cheap computationally compared to a Jacobian
evaluation.

With an easily evaluated approximation for the accel-
eration, we can then consider the trajectory given by

50 = 01T + %é#a#’. (44)

By following the winding canyon with a parabolic path
instead of a linear path, we expect to require fewer steps
to arrive at the best fit. The parabola can more naturally
curve around the corners of the canyon than the straight
line path. This is illustrated for the Rosenbrock function
in Fig. Because the canyon of the Rosenbrock func-
tion is parabolic, it can be traversed exactly to the best
fit by the acceleration in a single step.

34

The relationship between the velocity and the acceler-
ation depicted in Fig. for the Rosenbrock function is
overly idealized. In general the velocity and the acceler-
ation will not be perpendicular; in fact, it is much more
common for them to be nearly parallel or anti-parallel.
Notice that the expression for the connection coefficient
involves a factor of the inverse metric, which will tend
to bias the acceleration to align parallel to the sloppy di-
rections, just as it does for the velocity. It is much more
common for the acceleration to point in the direction
opposite to the velocity, as for a summing exponentials
model in Fig. 28h.

Although an acceleration that is anti-parallel to the ve-
locity may seem worthless, it is actually telling us some-
thing useful: our proposed step was too large. As we reg-
ulate the velocity by increasing the Levenberg-Marquardt
parameter, we also regulate the acceleration. Once our
velocity term is comparable to the distance over which
the canyon begins to curve, the acceleration indicates into
which direction the canyon is curving, as in Fig. Z8b.

If the damping term is too small, the acceleration
points in the opposite direction to and is much larger
than the velocity. This scenario is dangerous because it
may cause the algorithm to move in precisely the op-
posite direction to the Gauss-Newton direction, causing
parameter evaporation. To fix this problem, we add an-
other criterion for an acceptable step. We want the con-
tribution from the acceleration to be smaller than the
contribution from the velocity; therefore, we typically re-
ject proposed steps, increasing the Leveberg-Marquardt
parameter until

m 2
va @y (45)

where « is a chosen parameter, typically unity, although
for some problems a smaller value is required.

The acceleration is likely to be most useful when the
canyon is very narrow. As the canyon narrows, the al-
lowed steps become smaller. In essence, the narrowness of
the canyon is determining to what accuracy we are solv-
ing the geodesic equation. If the canyon requires a very
high accuracy, then a second order algorithm is likely to
converge much more quickly than a first order algorithm.
We will see this explicitly in the next section when we
compare algorithms.

We have argued repeatedly that for sloppy mod-
els whose parameter-effects curvature are dominant, a
geodesic is the path that an algorithm should follow. One
could object to this assertion on the grounds that, apart
from choosing the initial direction of the geodesic to be
the Gauss-Newton direction, there is no reference to the
cost gradient in the geodesic equation. If a manifold is
curved, then the geodesic will not lead directly to the
best fit. In particular, the acceleration is independent of
the data.

Instead of a geodesic, one could argue that the path

35

FIG. 28: (Color online) a) De-acceleration when overstepping. Typically the velocity vector greatly overestimates the
proper step size. (We have rescaled both velocity and acceleration to fit in the figure.) Algebraically, this is due to the factor
of the inverse metric in the velocity, which has very large eigenvalues. The acceleration compensates for this by pointing
anti-parallel to the velocity. However, the acceleration vector is also very large, as it is multiplied twice by the velocity vector
and once by the inverse metric.To make effective use of the acceleration, it is necessary to regularize the metric by including
a damping term. b) Acceleration indicating the direction of the canyon. As the Levenberg-Marquardt parameter is
raised, the velocity vector shortens and rotates from the natural gradient into the downhill direction. The acceleration vector
also shortens, although much more rapidly, and also rotates. In this two dimensional cross section, although the two velocity
vectors rotate in opposite directions, the accelerations both rotate to indicate the direction that the canyon is turning. By
considering the path that one would optimally like to take (along the canyon), it is clear that the acceleration vector is properly

indicating the correction to the desired trajectory.

that one should follow is given by the first order differ-
ential equation

—g"'V,C
V9BV ,C V30"

where we have introduced the denominator to preserve
the norm of the tangent vector. Each Levenberg-
Marquardt step chooses a direction in the Gauss-Newton
direction on the model graph, which seems to be bet-
ter described by Eq. #H) than by the geodesic equation,
Eq. 4). In fact Eq. #8) has been proposed as a Neural
Network training algorithm by Amari et al. [43].

The second order differential equation corresponding
to Eq. #8) which can be found by taking the second
derivative of the parameters, is a very complicated ex-
pression. However, if one then applies the approximation
that all non-linearities are parameter-effects curvature,
the resulting differential equation is exactly the geodesic
equation. By comparing step sizes with inverse curva-
tures in Fig. 23 we can see that over a distance of sev-
eral steps, the approximation that all non-linearities are
parameter-effects curvature should be very good. In such
a case, the deviation of Eq. {8) from Eq. [24)) will not
be significant over a few steps.

While the tensor analysis behind this result is long and
tedious, the geometric meaning is simple and intuitive:
if steps are much smaller than the extrinsic curvature on
the surface, then the vector (in data space) corresponding

ot =

(46)

to the Gauss-Newton direction can parallel transport it-
self to find the Gauss-Newton direction at the next point.
That is to say the direction of the tangent vector of a
geodesic does not change if the manifold is extrinsically
flat.

Including second derivative information in an algo-
rithm is not new. Newton’s method, for example replaces
the approximate Hessian of the Gauss-Newton method in
Eq. (@), with the full Hessian in Eq. @). Many standard
algorithms seek to efficiently find the actual Hessian, ei-
ther by calculating it directly or by estimation @, @]
One such algorithm, which we use for comparison in
the next section, is a quasi-Newton method of Broyden,
Fletcher, Goldfarb, and Shannon (BFGS) [63], which es-
timates the second derivative from an accumulation of
Jacobian evaluations at each step.

In contrast to these Newton-like algorithms, the
geodesic acceleration is not an attempt to better approx-
imate the Hessian. The results of section [V suggest that
the approximate Hessian is very good. Instead of cor-
recting the error in the size and direction of the ellipses
around the best fit, it is more productive to account for
how they are bent by non-linearities, which is the role of
the geodesic acceleration. The geodesic acceleration is a
cubic correction to the Levenberg-Marquardt step.

There are certainly problems for which a quasi-Newton
algorithm will make important corrections to the approx-
imate Hessian. However, we have argued that sloppy
models represent a large class of problems for which the

Newton correction is negligible compared to that of the
geodesic acceleration. We demonstrate this numerically
with several examples in the next section.

E. Algorithm Comparisons

To demonstrate the effectiveness of an algorithm that
uses delayed gratification and the geodesic acceleration,
we apply it to a few test problems that highlight the
typical difficulties associated with fitting by least squares.

First, consider a generalized Rosenbrock function,

n\ 2
0_1(95+A2<92_9_1>>,
2 n

where A and n are not optimizable parameters but set
to control the difficulty of the problem. This problem
has a global minimum of zero cost at the origin, with a
canyon following the polynomial path 67 /n whose width
is determined by A. To compare algorithms we draw
initial points from a Gaussian distribution centered at
(1,1/n) with standard deviation of unity, and compare
the average number of Jacobian evaluations an algorithm
requires in order to decrease the cost to 10~%. The results
for the cubic and quartic versions of the problem are
given in Fig. 29 for several version of the the Levenberg-
Marquardt algorithm.

We next consider a summing exponential problem; a
summary of these results can be found in [22]. Here we
expand it to include the delayed gratification algorithm
outlined above in section VIITC}

A surprising result from Table [lis that including the
geodesic acceleration not only improves the speed of con-
vergence, but improves the likelihood of convergence,
that is, the algorithm is less likely to evaporate param-
eters. This is a consequence of the modified acceptance
criterion in Eq. ([@3). As an algorithm evaporates param-
eters, it approaches a singular point of the metric on the
model manifold, causing the velocity vector in param-
eter space to diverge. The acceleration, however, also
diverges, but much more rapidly than the velocity. By
requiring the acceleration term to be smaller than the
velocity, the algorithm is much more adept at avoiding
boundaries. Geodesic acceleration, therefore, helps to
improve both the initial search for the canyon from the
plateau, as well as the subsequent race along the canyon
to the best fit.

Finally, we emphasize that the purpose of this sec-
tion was to demonstrate that delayed gratification and
geodesic acceleration are potentially helpful modifica-
tions to existing algorithms. The results presented in
this section do not constitute a rigorous comparison, as
such a study would require a much broader sampling of
test problems. Instead, we have argued that ideas from
differential geometry can be helpful to speed up the fit-
ting process if existing algorithms are sluggish. We are in
the process of performing a more extensive comparison
whose results will appear shortly [54].

36

400

— Trust Region
@ — Traditional
5300 -
=1 - Traditional + accel
2 Delayed Grat.
1200 D.G. + accel
3
Qo
8
& 100 .
= T T T
a) e
foo 10! 107 10 10!
Condition Number
2000
— Trust Region
o — Traditional
51500 .
E= - Traditional + accel
2 Delayed Grat.
{1000 D.G. + accel
3
Qo
3
& 500
3
b
for 10! 10° 10° 10*
Condition Number
FIG. 29: Generalized Rosenbrock results for

Levenberg-Marquardt variants. If the canyon that
an algorithm must follow is very narrow (measured by the
condition number of the metric at the best fit) or turns
sharply, the algorithm will require more steps to arrive
at the best fit. Those that use the geodesic acceleration
term converge more quickly as the canyon narrows. As the
parameter-effects curvature increases, the canyon becomes
more curved and the problem is more difficult. Notice that
changing the canyon’s path from a cubic function in a) to a
quartic function in b) slowed the convergence rate by a factor
of 5. We have omitted the quadratic path since including the
acceleration allows the algorithm to find the best fit in one
step, regardless of how narrow the canyon becomes.

IX. CONCLUSIONS

A goal of this paper has been to use a geometric per-
spective to study nonlinear least squares models, deriving
the relevant metric, connection, and measures of curva-
ture, and to show that geometry provides useful insights
into the difficulties associated with optimization.

We have presented the model manifold and noted
that it typically has boundaries, which explain the phe-
nomenon of parameter evaporation in the optimization
process. As algorithms run into the manifold’s bound-
aries, parameters are pushed to infinite or otherwise
unphysical values. For sloppy models, the manifold is
bounded by a hierarchy of progressively narrow bound-
aries, corresponding to the less responsive direction of pa-
rameter space. The model behavior spans a hyper-ribbon
in data space. This phenomenon of geometric sloppiness

37

Algorithm ||Success Rate|Mean NJEV [Mean NFEV
Trust Region LM 12% 1517 1649
Traditional LM 33% 2002 4003
Traditional LM + accel 65% 258 1494
Delayed Gratification 26% 1998 8625
Delayed Gratification + accel 65% 163 1913
BFGS 8% 5363 5365

TABLE II: The results of several algorithms applied to a test problem of fitting a sum of four exponential terms (varying both
rates and amplitudes — 8 parameters) in log-parameters (to enforce positivity). Initial conditions are chosen near a manifold
boundary with a best fit of zero cost near the center of the manifold. Among successful attempts, we further compare the
average number of Jacobian and function evaluations needed to arrive at the fit. Success rate indicates an algorithm’s ability
to avoid the manifold boundaries (find the canyon from the plateau), while the number of Jacobian and function evaluations
indicate how efficiently it can follow the canyon to the best fit. BFGS is a quasi newton scalar minimizer of Broyden, Fletcher,
Goldfarb, and Shanno (BFGS) |64, 64]. The traditional |35, 45] and trust region |46] implementations of Levenberg-Marquardt
consistently outperform this and other general optimization routines on least squares problems, such as Powell, simplex, and
conjugate gradient. Including the geodesic acceleration on a standard variant of Levenberg-Marquardt dramatically increases

the success rate while decreasing the computation time.

is one of the key reasons that sloppy models are difficult
to optimize. We provide a theoretical caricature of the
model manifold characterizing their geometric series of
widths, extrinsic curvatures, and parameter-effects cur-
vatures. Using this caricature, we estimate the number
of evaporated parameters one might expect to find at the
best fit for a given uncertainty in the data.

The model graph removes the boundaries and helps
to keep the parameters at reasonable levels. This is not
always sufficient, however, and we suggest that in many
cases, the addition of thoughtful priors to the cost func-
tion can be a significant help to algorithms.

The second difficulty in optimizing sloppy models
is that the model parameters are far removed from
the model behavior. Because most sloppy models are
dominated by parameter-effects curvature, if one could
reparametrize the model with extended geodesic coordi-
nates, the long narrow canyons would be transformed to
one isotropic quadratic basin. Optimizing a problem in
extended geodesic coordinates would be a trivial task!

Inspired by the motion of geodesics in the curved
valleys, we developed the delayed gratification update
scheme for the traditional Levenberg-Marquardt algo-
rithm and further suggest the addition of a geodesic ac-
celeration term. We have seen that when algorithms must
follow long narrow canyons, these can give significant im-
provement to the optimization algorithm. We believe
that the relative cheap computational cost of adding the
geodesic acceleration to the Levenberg-Marquardt step
gives it the potential to be a robust, general-purpose op-
timization algorithm, particularly for high dimensional
problems. It is necessary to explore the behavior of
geodesic acceleration on a larger problem set to justify
this conjecture [1].

Acknowledgments

We would like to thank Saul Teukolsky, Eric Siggia,
John Guckenheimer, Cyrus Umrigar, Peter Nightingale,
Stefanos Papanikolou, Bryan Daniels, and Yoav Kallus
for helpful discussions. We thank Dave Schneider for sug-
gesting information geometry to us and acknowledge sup-
port from NSF grants number DMR-0705167 and DMR-
1005479.

Appendix A: Information Geometry

The Fisher information matrix, or simply Fisher infor-
mation, I, is a measure of the information contained in a
probability distribution, p. Let £ be the random variable
whose distribution is described by p, and further assume
that p depends on other parameters 6 that are not ran-
dom. This leads us to write

p=p(&0),
with the log likelihood function denoted by I:

[= log p.

The information matrix is defined to be the expectation
value of the second derivatives of [,

0%l

2]
- aeuaev>

0
= —/d§ p(§79)W~

It can be shown that the Fisher information can be writ-
ten entirely in terms of first derivatives:

al ol al ol
L =550 900 = /d§ P&, 0) 50 v

Eq. @) makes it clear that the Fisher information is
a symmetric, positive definite matrix which transforms

L = (47)

(48)

like a covariant rank-2 tensor. This means that it has all
the properties of a metric in differential geometry. Infor-
mation geometry considers the manifolds whose metric is
the Fisher information matrix corresponding to various
probability distributions. Under such an interpretation,
the Fisher information matrix is known as the Fisher in-
formation metric.

As we saw in Section [l least squares problems arise by
assuming a Gaussian distribution for the deviations from
the model. Under this assumption, the cost function is
the negative of the log likelihood (ignoring an irrelevant
constant). Using these facts, it is straightforward to ap-
ply Eq. @) or Eq. ER) to calculate the information met-
ric for least squares problems. From Eq. @), we get

e
9 = Gguagr

> = Z<8M’f'may'f'm + rmauaurm>7 (49)

where we have replaced I by g to indicate that we are
now interpreting it as a metric.

Eq. @), being an expectation value, is really an
integral over the random variable (i.e. the residuals)
weighted by the probability. However, since the integral
is Gaussian, it can be evaluated easily using Wick’s theo-
rem (remembering that the residuals have unit variance).
The only subtlety is how to handle the derivatives of the
residuals. Inspecting Eq. (I}, reveals that the derivatives
of the residuals have no random element, and can there-
fore be treated as constant. The net result is

G = Zaurma,,rm = (JTJ)W, (50)

since (r,,,) = 0. Note that we have used the Jacobian
matrix, Jy,, = 0,7 in the final expression.

We arrive at the same result using Eq. (@) albeit using
different properties of the distribution:

v = Z(rmaurmrnaurn>.

m,n

Now we note that the residuals are independently dis-
tributed, (rp,rn) = Omn, which immediately gives
Eq. (E0), the same metric found in Section [ll

There is a class of connections consistent with the
Fisher metric, known as the a-connections because they
are parametrized by a real number, « [12]. They are
given by the formula

11—«

V€

e — (010,01 + < > 010,10,1).

This expression is straightforward to evaluate. The result
is independent of «,

., =g Z OxTmO0u0yTm.

It has been shown elsewhere that the connection corre-
sponding to @ = 0 is in fact the Riemann connection.

38

It is interesting to note that all the a-connections, for
the case of the nonlinear least squares problem, are the
Riemann connection.

These results are of course valid only for a cost function
that is a sum of squares. For example, one might wish to
minimize

0= Iral”. (51)

which is naturally interpreted as the pt* power of the LP
norm in data space. The case of p =1 is used in “robust
estimation”, while “minimax” fits correspond to the case
of p = oo [35]. Note that under a general L? norm, data
space does not have a metric tensor as it has no natural
inner product consistent with the norm.

Consider a cost function that is a differentiable func-
tion of the residuals, but is otherwise arbitrary. In this
case, the metric becomes

9w = (0,C0,C),

where

oC
8MC = JmH % .
As we argue above, the Jacobian matrix has no stochastic
element and may be factored from the expectation value,

giving
Juv = Jm,quanllv

where we have introduced

oC oC
> —c Yv b
Gmnoc/dre o

as the metric of the space in which the model manifold
is now embedded. The proportionality constant is deter-
mined by normalizing the distribution of the residuals.
Although the metric of the embedding space is not nec-
essarily the identity matrix, it is constant, which implies
that the embedding space is generally flat. In a practi-
cal sense, the transition from least squares to an arbi-
trary cost functions merely requires replacing the metric
JTJ — JTGJ; however, the distinction that the embed-
ding space does not have the same norm as data space is
important.

For the case of the cost function in Eq. Bl correspond-
ing to the LP norm, G,y X dmn, SO the metric of model
manifold is the same as for least squares, g = J.J. How-
ever, unless p = 2, the distance between nearby points
on the model manifold is proportional to the Euclidean
distance not the LP norm distance natural to data space.
For the cases p = 1 and p = oo the cost contours in
geodesic coordinates (circular for p = 2) become squares.
A Newton-like method, such as Levenberg-Marquardt,
would no longer take the most direct path to the best
fit in geodesic coordinates and would additionally have
no sense for how far away the best fit would lie. As a

Algorithm 1 Traditional Levenberg-Marquardt as
described in |34, 44, 45|

1. Initialize values for the parameters, x, the
Levenberg-Marquardt parameter A\, as well as Ayp and Adown
to be used to adjust the damping term. Evaluate the
residuals r and the Jacobian J at the initial parameter guess.
2. Calculate the metric, g = JTJ + AI and the cost gradient
vC=JTr, C= %r2.

3. Evaluate the new residuals, rnew at the point given by
Tnew = T — g71VC’ , and calculate the cost at the new point,
Chrew = %T%ew-

4. If Chew < C, accept the step, £ = Tnew and set 7 = Tnew
and A = A\/Agown. Otherwise, reject the step, keep the old
parameter guess x and the old residuals r, and adjust

A=A X Aup.

5. Check for convergence. If the method has converged,
return x as the best fit parameters. If the method has not
yet converged but the step was accepted, evaluate the
Jacobian J at the new parameter values. Go to step 2.

consequence, many of the results of this work are specific
to quadratic costs and it is unclear how well the methods
would generalize to more arbitrary functions.

The field of information geometry is summarized nicely
in several books [12, [13].

Appendix B: Algorithms

Since we are optimizing functions with the form of
sums of squares, we are primarily interested in algo-
rithms that specialize in this form, specifically variants
of the Levenberg-Marquardt algorithm. The standard
implementation of the Levenberg-Marquardt algorithm
involves a trust region formulation. A FORTRAN imple-
mentation, which we use, is provided by MINPACK |G1].

The traditional formulation of Levenberg-Marquardt,
however, does not employ a trust region, but adjusts the
Levenberg-Marquardt term based on whether the cost
has increased or decreased after a given step. An im-
plementation of this algorithm is described in Numerical
Recipes |34] and summarized in Algorithm 0 Typical
values of A, and Agown are 10. We use this formulation
as the basis for our modifications.

The delayed gratification version of Levenberg-
Marquardt that we describe in section [VIILCOl modifies
the traditional Levenberg-Marquardt algorithm to raise
and lower the Levenberg-Marquardt term by differing
amounts. The goal is to accept a step with the smallest
value of the damping term that will produce a downhill
step. This can typically be accomplished by choosing
Aup = 2 and Agown = 10.

The geodesic acceleration algorithm can be added to
any variant of Levenberg-Marquardt. We explicitly add
it to the traditional version and the delayed gratifica-

39

tion version, as described in Algorithm I We do this by

calculating the geodesic acceleration on the model graph

Algorithm 2 Geodesic Acceleration in the traditional
Levenberg-Marquardt algorithm

1. Initialize values for the parameters, x, the

Levenberg-Marquardt parameter A, as well as Ayp and Agown

to be used to adjust the damping term, and « to control the

acceleration /velocity ratio. Evaluate the residuals r and the

Jacobian J at the initial parameter guess.

2. Calculate the metric, g = J*J + Al and the Cost gradient

vC =J"r, C=ir’

3. Calculate the velocity v = —g~'VC, the geodesic

acceleration of the residuals in the direction of the velocity

a=—g 'JT (v d,0.r)

4. Evaluate the new residuals, 7ne at the point given by

Tnew = T + v + %a , and calculate the cost at the new point,

Chew = %T%ew'

5. If Cpew < C and |a|/|v| < «, accept the step, T = Tnew
and set 7 = rpew and A = A/Agown. Otherwise, reject the
step, keep the old parameter guess x and the old residuals r,
and adjust A = A X Ayp.

6. Check for convergence. If the method has converged,
return x as the best fit parameters. If the method has not
yet converged but the step was accepted evaluate the
Jacobian J at the new parameter values. Go to step 2.

at each iteration. If the step raises the cost or if the
acceleration is larger than the velocity, then we reduce
the Levenberg-Marquardt term and reject the step by
default. If the step moves downhill and the velocity is
larger than the acceleration, then we accept the step.
For accepted steps we raise the Levenberg-Marquardt
term; otherwise, we decrease the Levenberg-Marquardt
term. In our experience the algorithm described in Algo-
rithm B is robust enough for most applications; however,
we do not consider it to be a polished algorithm. We will
present elsewhere an algorithm utilizing geodesic accel-
eration that is further optimized and that we will make
available as a FORTRAN routine [54].

In addition to the variations of the Levenberg-
Marquardt algorithm, we also compare algorithms for
minimization of arbitrary functions not necessarily of the
least squares form. We take several such algorithms from
the Scipy optimization package |64]. These fall into two
categories, those that make use of gradient information
and those that do not. Algorithms utilizing gradient in-
formation include a quasi-Newton of Broyden, Fletcher,
Goldfarb, and Shannon (BFGS), described in [63]. We
also employ a limited memory variation (L-BFGS-B) de-
scribed in [66] and a conjugate gradient (CG) method
of Polak and Ribiere, also described in [63]. We also
explored the downhill simplex algorithm of Nelder and
Mead and a modification of Powells’ method [64], nei-
ther of which make use of gradient information directly,
and were not competitive with other algorithms.

40

[1] K. Brown, J. Sethna: Physical Review E 68 (2003) 21904
[2] K. Brown, C. Hilly G. Calero, C. Myers, K. Lee,
J. Sethna, R. Cerione: Physical biology 1 (2004) 184
[3] F. Casey, D. Baird, Q. Feng, R. Gutenkunst, J. Waterfall,
C. Myers, K. Brown, R. Cerione, J. Sethna: Systems

Biology, IET 1 (2007) 190

[4] B. Daniels, Y. Chen, J. Sethna, R. Gutenkunst, C. Myers:
Current Opinion in Biotechnology 19 (2008) 389

[6] R. Gutenkunst, F. Casey, J. Waterfall, C. Myers,
J. Sethna: Annals of the New York Academy of Sciences
1115 (2007) 203

[6] R. Gutenkunst, J. Waterfall, F. Casey, K. Brown, C. My-
ers, J. Sethna: PLoS Comput Biol 3 (2007) €189

[7] R. Gutenkunst: Sloppiness, modeling, and evolution in
biochemical networks: Ph.D. thesis, Cornell University
(2008)

[8] J. Waterfall, F. Casey, R. Gutenkunst, K. Brown, C. My-
ers, P. Brouwer, V. Elser, J. Sethna: Physical Review
Letters 97 (2006) 150601

[9] H. Jeffreys: Theory of probability:
Press, USA (1998)

[10] C. Rao: Vull. Calcutta Math. Soc. 37 (1945) 81

[11] C. Rao: Sankhya 9 (1949) 246

[12] S. Amari, H. Nagaoka: Methods of Information Geome-
try: Amer Mathematical Society (2007)

[13] M. Murray, J. Rice: Differential geometry and statistics:
Chapman & Hall New York (1993)

[14] E. Beale: Journal of the Royal Statistical Society 22
(1960) 41

[15] D. Bates, D. Watts: J. Roy. Stat. Soc 42 (1980) 1

[16] D. Bates, D. Watts: Ann. Statist 9 (1981) 1152

[17] D. Bates, D. Hamilton, D. Watts: Communications in
Statistics-Simulation and Computation 12 (1983) 469

[18] D. Bates, D. Watts: Nonlinear Regression Analysis and
Its Applications: John Wiley (1988)

[19] R. Cook, J. Witmer: American Statistical Association
80 (1985) 872

[20] R. Cook, M. Goldberg: The Annals of Statistics (1986)
1399

[21] G. Clarke: Journal of the American Statistical Associa-
tion (1987) 844

[22] M. K. Transtrum, B. B. Machta, J. P. Sethna: Physical
Review Letters 104 (2010) 1060201

[23] See EPAPS Document No. XXX for an animation
of this figure. For more information on EPAPS, see
http://www.aip.org/pubservs/epaps.html

[24] O. Barndorfi-Nielsen, D. Cox, N. Reid:
statistical review 54 (1986) 83

[25] D. Gabay: Journal of Optimization Theory and Applica-
tions 37 (1982) 177

[26] R. Mahony: Optimization algorithms on homogeneous
spaces: Ph.D. thesis, Australian National University
(1994)

[27] R. Mahony, J. Manton: Journal of Global Optimization
23 (2002) 309

[28] J. Manton: In: Proceedings of the 16th International
Symposium on Mathematical Theory of Networks and
Systems, Leuven, Belgium (2004)

[29] R. Peeters: Research-Memorandum (1993)

[30] S. Smith: Harvard University, Cambridge, MA (1993)

[31] S. Smith: Hamiltonian and gradient flows, algorithms

Oxford University

International

and control 3 (1994) 113

[32] C. Udriste: Convez functions and optimization methods
on Riemannian manifolds: Kluwer Academic Pub (1994)

[33] Y. Yang: Journal of Optimization Theory and Applica-
tions 132 (2007) 245

[34] P. Absil, R. Mahony, R. Sepulchre: Optimization Algo-
rithms on Matriz Manifolds: Princeton University Press
(2008)

[35] W. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flan-
nery: Numerical recipes: the art of scientific computing,:
Cambridge University Press (2007)

[36] C. Misner, K. Thorne, J. Wheeler:
Freeman and Company (1973)

[37] M. Spivak: PublishorPerish, California (1979)

[38] L. Eisenhart: Riemannian geometry: Princeton Univ Pr
(1997)

[39] T. Ivancevic: Applied differential geometry: a modern
introduction: World Scientific Pub Co Inc (2007)

[40] J. Stoer, R. Bulirsch, W. Gautschi, C. Witzgall: Intro-
duction to numerical analysis: Springer Verlag (2002)

[41] J. Hertz, A. Krogh, R. Palmer: Introduction to the theory
of neural computation: Westview Press (1991)

[42] S. Frederiksen, K. Jacobsen, K. Brown, J. Sethna: Phys-
ical Review Letters 93 (2004) 165501

[43] S. Amari, H. Park, T. Ozeki: Neural Computation 18
(2006) 1007

[44] K. Levenberg: Quart. Appl. Math 2 (1944) 164

[45] D. Marquardt: Journal of the Society for Industrial and
Applied Mathematics 11 (1963) 431

[46] J. More: Lecture notes in mathematics 630 (1977) 105

[47] R. Kass: Journal of the Royal Statistical Society. Series
B (Methodological) (1984) 86

[48] D. Hamilton, D. Watts, D. Bates: Ann. Statist 10 (1982)
393

[49] J. Donaldson, R. Schnabel: Technometrics 29 (1987) 67

[50] B. Wei: Australian & New Zealand Journal of Statistics
36 (1994) 327

[61] L. Haines, T. O Brien, G. Clarke: Statistica Sinica 14
(2004) 547

[62] E. Demidenko: Computational Statistics and Data Anal-
ysis 51 (2006) 1739

[63] D. Hilbert, S. Cohn-Vossen: Geometry and the Imagina-
tion: American Mathematical Society (1999)

[64] H. Hartley: Technometrics (1961) 269

[65] M. K. Transtrum, B. B. Machta, C. Umrigar, P. Nightin-
gale, J. P. Sethna: Development and comparison of algo-
rithms for nonlinear least squares fitting: In preparation

[56] A. Bakushinskii: Computational Mathematics and Math-
ematical Physics 32 (1992) 1353

[67] M. Lampton: Computers in Physics 11 (1997) 110

[68] D. Luenberger: Management Science (1972) 620

[59] A.Pazman: Journal of Statistical Planning and Inference
103 (2002) 401

[60] C. Igel, M. Toussaint, W. Weishui: Trends and Applica-
tions in Constructive Approzimation, International Se-
ries of Numerical Mathematics 151 (2005)

[61] Y. Nishimori, S. Akaho: Neurocomputing 67 (2005) 106

[62] P. Gill, W. Murray: SIAM Journal on Numerical Anal-
ysis (1978) 977

[63] J. Nocedal, S. Wright: Numerical optimization: Springer
(1999)

Gravitation: WH

[64]
[65]
[66]

[67]

[68]

[69]
[70]
[71]

E. Jones, T. Oliphant, P. Peterson, et al.: URL
http://www. scipy. org (2001)

J. Moré, B. Garbow, K. Hillstrom:
MINPACK-1 (1980)

R. Byrd, P. Lu, J. Nocedal, C. Zhu: SIAM Journal on
Scientific Computing 16 (1995) 1190

K. S. Brown: Signal Transduction, Sloppy Models, and
Statistical Mechanics: Ph.D. thesis, Cornell University
(2003)

G. Golub, V. Pereyra:
Analysis 10 (1973) 413
L. Kaufman: BIT Numerical Mathematics 15 (1975) 49
G. Golub, V. Pereyra: Inverse Problems 19 (2003) R1
The term parameter evaporation was originally used to
describe the drift of parameters to infinite values in the
process of Monte Carlo sampling |67]. In this case the
tendency of parameters to run to unphysical values is a
literal evaporation caused by the finite temperature of the
stochastic process. We now use the term to also describe
deterministic drifts in parameters to extreme values in
the optimization process.

User guide for

SIAM Journal on Numerical

[72]

73]

41

This example is also a separable nonlinear least squares
problem. Separable problems containing a mixture of
linear and nonlinear parameters are amenable to the
method known as variable projection [68-{7(]. Variable
projection consists of first performing a linear least
squares optimization on the linear parameters, making
them implicit functions of the nonlinear parameters. The
geometric effect of this procedure is to reduce the di-
mensionality of the model manifold, effectively selecting
a sub-manifold which now depends upon the location of
the data. We will not discuss this method further in this
paper, but we note that it is likely to have interesting
geometric properties.

This is strictly only true if the parameter-effects curva-
ture has no compression component. Bates and Watts
observe that typically, the compression is a large part of
the parameter-effects curvature |13]. As long as the com-
pression is not significantly larger than the rotation (i.e.
is within an order of magnitude), the parameter-effects
curvature will be the same order of magnitude as the
extrinsic curvature of the one-dimensional model.

