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We demonstrate that a tree-based theory for various dynamical processes operating on static,
undirected networks yields extremely accurate results for several networks with high levels of clus-
tering. We find that such a theory works well as long as the mean intervertex distance ¢ is sufficiently
small—i.e., as long as it is close to the value of £ in a random network with negligible clustering
and the same degree-degree correlations. We confirm this hypothesis numerically using real-world
networks from various domains and on several classes of synthetic clustered networks. We present
analytical calculations that further support our claim that tree-based theories can be accurate for
clustered networks provided that the networks are “sufficiently small” worlds.

PACS numbers: 89.75.Hc, 89.75.Fb, 64.60.aq, 87.23.Ge

I. INTRODUCTION

One of the most important areas of network science is
the study of dynamical processes on networks [1-4]. On
one hand, research on this topic has provided interest-
ing theoretical challenges for physicists, mathematicians,
and computer scientists. On the other hand, there is an
increasing recognition of the need to improve the under-
standing of dynamical systems on networks to achieve ad-
vances in epidemic dynamics [5-7], traffic flow in both on-
line and offline systems [8], oscillator synchronization [9],
and more [3].

Analytical results for complex networks are rather rare,
especially if one wants to study a dynamical system on
a network topology that attempts to incorporate even
minimal features of real-world networks. Most analyses
assume that the network under study has a locally tree-
like structure, so that it can only possess very few small
cycles (or loops), whereas most real networks have sig-
nificant clustering (and, in particular, possess numerous
small cycles) [10]. Furthermore, if one considers a dy-
namical system on a real-world network rather than on a
grossly simplified caricature of it, then theoretical results
become almost barren. This has motivated a wealth of
recent research concerning analytical results on networks
with clustering [7, 11-23].

Most existing theoretical results for (unweighted) net-
works are derived for an ensemble of networks using (i)
only their degree distribution p, which gives the prob-
ability that a random node has degree k (i.e., it has ex-
actly k neighbors) or using (ii) their degree distribution
and their degree-degree correlations, which are defined
by the joint degree distribution P(k,k’) describing the
probability that a random edge joins nodes of degree k
and k’. In the rest of this paper, we will refer to case (i)
as “pp-theory” (the associated random graph ensemble is

known as the “configuration model” [24]) and to case (ii)
as “P(k,k’)-theory”. The clustering in sample networks
is low in both situations; it typically decreases as N
as the number of nodes N — oo [25], so these so-called
“tree-based theories” cannot in general guarantee mean-
ingful predictions for real-world networks with significant
clustering.

We concentrate in this paper on static, undirected, un-
weighted real-world networks, each of which is completely
described by an adjacency matrix. The adjacency matrix
can be used directly to model various processes on the
network that it represents. We refer to such calculations
and results as “numerical” because they do not involve
any theory or assumptions about the network structure.
Because there are no assumptions, such numerical results
are the most accurate results; they are, however, compu-
tationally expensive when the network is large. On the
other hand, one can obtain the empirical distributions py
and P(k, k") from the network adjacency matrix and use
them as respective inputs to tree-based analytical pi- and
P(k, k')-theories for dynamical processes. Such calcula-
tions are much less computationally expensive and can
provide a deeper insight into dynamics of interest, but the
results given by such theories might be inaccurate in the
sense that they can potentially differ significantly from
the numerical results. One reason for this inaccuracy is
that—unlike the adjacency matrix— the distributions pj
and P(k,k’) contain only partial information about the
original network structure (e.g., they cannot describe the
loops that are present in the network) and therefore such
tree-based theories can guarantee accurate results only
for random networks defined by these distributions (and
in the limit of large network size).

In the present paper, we consider real-world clustered
networks and run several dynamical processes on these
networks with a view to measuring the discrepancy be-
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FIG. 1. (Color online) Bond percolation. Plots of giant connected component (GCC) size S versus bond occupation probability
p for various real-world networks. These networks, which we also use as examples in other figures, are (a) the Facebook network
for University of Oklahoma [26], (b) the Internet at the autonomous systems (AS) level [27], (c) the Pretty Good Privacy (PGP)
network [28-30], and (d) the power grid for the western United States [31, 32].

tween the analytical tree-based theories and the (true)
numerical results for each of these dynamical processes.
We investigate how the agreement between the tree-based
theory and the corresponding (true) numerical result de-
pends on the network structure. In other words, we as-
sume that the dynamics on a given clustered network is
similar to that on a random graph with the same distri-
bution [py or P(k, k’)] and determine the condition under
which this assumption is adequate.

We demonstrate that analytical results derived using
tree-based P(k, k’)-theory can be applied with high ac-
curacy to certain networks despite their high levels of
clustering. Examples of such networks include univer-
sity social networks constructed using Facebook data [26]
and the autonomous systems (AS) Internet graph [27].
Specifically, the analytical results for bond percolation,
k-core sizes, and other processes accurately match nu-
merical results for a given (clustered) network provided
that the mean intervertex distance in the network is suf-
ficiently small—i.e., that it is close to its value in a ran-
domly rewired version of the graph. Recalling that a
clustered network with a low mean intervertex distance
is said to have the small-world property, we find that
tree-based analytical results are accurate for networks
that are “sufficiently small” small worlds. In discussing

this result, we focus considerable attention on quantify-
ing what it means to be “sufficiently small”. In other
words, how small must small-world networks be in order
for P(k,k’)-theory to give accurate results?

The remainder of this paper is organized as follows. In
Sec. I1, we consider several dynamical processes on highly
clustered networks and show that tree-based theory ad-
equately describes them on certain networks but not on
others. In order to explain our observations, we intro-
duce in Sec. IIT a measure of prediction quality E and
develop a hypothesis, inspired by the well-known Watts-
Strogatz example of small-world networks, regarding its
dependence on the mean intervertex distance ¢. We pro-
vide support for our hypothesis by analytical calculations
in Appendix A and by numerical examination of a large
range of networks in Appendix B. We discuss our con-
clusions in Sec. IV.

II. DYNAMICAL PROCESSES ON NETWORKS
A. Bond Percolation

We begin by considering bond percolation, which has
been studied extensively on networks. In bond percola-



TABLE 1. Basic summary statistics for the networks that we use in this paper.

Network N 2 I 0 | €F C C r | Ref(s).
Power Grid 4941 2.67 18.99 8.61 | 7.85 0.08 0.10 0.0035 | [31, 32]
PGP Network 10680 4.55 7.49 540 | 2.66 0.27 0.38 0.23 | [28-30]
AS Internet 28311 4.00 3.88 3.67 | 2.56 0.21 | 0.0071 —0.20 | [27]
RL Internet 190914 6.34 6.98 5.25 | 3.17 0.16 | 0.061 0.025 | [33]
Coauthorships 39577 8.88 5.50 445 | 2.93 0.65 0.25 0.19 | [34, 35]

= | Airports500 500 11.92 2.99 2.76 | 1.62 0.62 0.35 —0.278 | [36, 37

§ Interacting Proteins 4713 6.30 4.22 4.05 | 2.96 0.09 0.062 —0.136 | [38-40]

2 | C. Elegans Metabolic 453 8.94 2.66 2.55 | 1.93 0.65 0.12 —0.226 | [41, 42]

=1 c. Elegans Neural 297 14.46 2.46 233 | 1.84 0.29 0.18 —0.163 | [31, 43]
Facebook Caltech 762 43.70 2.34 2.26 | 1.55 0.41 0.29 —0.066 | [26]
Facebook Georgetown 9388 90.67 2.76 2.55 | 1.79 0.22 0.15 0.075 | [26]
Facebook Oklahoma 17420 | 102.47 2.77 2.66 | 1.79 0.23 0.16 0.074 | [26]
Facebook UNC 18158 84.46 2.80 2.68 | 1.87 0.20 0.12 7x107° | [26]

o | 7-theory [7(3,3) = 1] 1002 3 13.15 8.06 | 9.97 1/3 1/3 N/A | [14]

E ~-theory [v(3,3) = 1] 10002 3 19.81 | 11.37 | 13.29 | 1/3 1/3 N/A | [14]

‘i Watts-Strogatz (WS) 1000 10 50.45 3.29 | 3.14 2/3 2/3 N/A | [31]

9 | Watts-Strogatz (WS) 10000 10 | 500.45 4.34 | 4.19 2/3 2/3 N/A | [31]

We have treated all real-world data sets

as undirected, unweighted networks and have computed the following properties: total number of nodes N; mean degree z;
mean intervertex distance £ in original network; mean intervertex distance £; in the corresponding fully P-rewired version of
the network (i.e., in a random network with the original degree correlation); the mean intervertex distance 05 predicted by
Eq. (A2) using the branching matrix corresponding to a random network with the original degree-degree correlation; clustering

coefficients C' and C' (whose respective definitions are given by Egs. (3.6) and (3.4) of [24]); and the Pearson degree correlation
coefficient 7. The last column in the table gives the relevant citation number(s) in the bibliography.

tion, network edges are deleted (or labeled as unoccupied)
with probability 1 — p, where p is called the bond occu-
pation probability. One can measure the effect of such
deletions on the aggregate graph connectivity in the limit
of infinitely many nodes using S(p), the fractional size of
the giant connected component (GCC) at a given value
of p. (In this paper, we will use the terminology GCC for
finite graphs as well; one can alternatively use the term
“largest connected component” for finite graphs.) Bond
percolation has been used in simple models for epidemi-
ology. In such a context, p is related to the average trans-
missibility of a disease, so the GCC is used to represent
the size of an epidemic outbreak (and to give the steady-
state infected fraction in a susceptible-infected-recovered
model) [24].

Given the network adjacency matrix, we calculate the
distributions py and P(k, k') and then use them in the an-
alytical expressions that predict the GCC size for a par-
ticular value of p. Analytical expressions for predicting
GCC sizes using pg-theory [44] can be found in Eq. (8.11)
of Ref. [24] and analytical results for P(k, k’)-theory are
available in Eq. (12) of Ref. [45]. We plot these theo-
retical predictions in Fig. 1 as dashed red and solid blue
curves, respectively. In this figure, we use the following
data sets as examples: (a) the September 2005 Facebook
network for University of Oklahoma [26], where nodes are
people and links are friendships; (b) the Internet at the
autonomous systems (AS) level [27], where nodes rep-

resent ASs and links indicate the presence of a relation-
ship; (c¢) the network of users of the Pretty Good Privacy
(PGP) algorithm for secure information interchange [28-
30]; and (d) the network representing the topology of the
power grid of the western United States [31, 32]. We
treat all data sets as undirected, unweighted networks.

We performed numerical calculations of the GCC size
by applying the algorithm of Ref. [46] to the adjacency
matrices of our networks and plotted the average results
as black disks in Fig. 1. It is apparent from Fig. 1(a,b)
that P(k, k')-theory matches numerical results very accu-
rately for the AS Internet and Oklahoma Facebook net-
works, and we found similar accuracy for all 100 single-
university Facebook data sets available to us. However,
as shown in Fig. 1(c,d), the match between theory and
numerics is much poorer on the PGP and power grid
networks. The usual explanation for this lack of accu-
racy is that it is caused by clustering in the real-world
network that is not captured by P(k,k’)-theory. Note,
however, that the Oklahoma Facebook network has one
of the highest clustering coefficients of the four example
networks in Fig. 1 even though it is accurately described
by P(k,k')-theory.

The global clustering coefficients (defined as the mean
of the local clustering coefficient over all nodes [31]) for
the Oklahoma Facebook, AS Internet, PGP, and power
grid networks are 0.23, 0.21, 0.27, and 0.08, respectively.
(See Table I for basic summary statistics for these net-
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FIG. 2. (Color online) Plots of k-core sizes versus k for the real-world networks from Fig. 1. The highest nonzero k-cores are
(a) ka = 917 KP(k,k’) = 987 Knum = 1077 (b) ka == 132, KP(k,k’) = 19, Knum = 23, (C) ka = 7, KP(k,k’) = 167 Knum = 31,

and (d) Ky, =6, Kprry = 7, Knum = 19.

works.) The clustering coefficients for all 100 Facebook
networks range from 0.19 to 0.41, and the mean value of
these coeflicients is 0.24. These observations suggest that
one ought to consider other explanatory mechanisms for
the discrepancy between theory and numerical calcula-
tions in Fig. 1(c,d).

In considering other explanations, note that the dis-
crepancy between theory and numerics in Fig. 1(c,d) does
not arise from finite-size effects. To demonstrate this, we
rewired the networks using an algorithm that preserves
the P(k, k) distribution but otherwise randomizes con-
nections between the nodes [47]. Because this scheme
preserves the degree correlation matrix P(k, k'), we call
this the P-rewiring algorithm. Note that the P(k,k')-
theory should be accurate for fully P-rewired networks
because the ensemble of fully P-rewired networks is in
fact the ensemble of random networks defined by the
P(k, k') matrix of the original (unrewired) network.

We use the numerical algorithm of Ref. [46] again to
calculate the GCC sizes for these rewired networks. We
show the results averaged over 100 complete and indepen-
dent rewirings with blue squares in Fig. 1(c,d) and ob-
serve that they agree very well with the curves produced
from P(k,k')-theory. We conclude that the structural
characteristics of the original networks—rather than sim-
ply their sizes—must underlie the observed differences

between numerical calculations and analytics.

Also note that the agreement between P(k,k’)- and
pr-theories in Fig. 1 is better in panels (a) and (d) than
in panels (b) and (c¢). This is because the networks in
(a) and (d) have Pearson correlation coefficient r of the
end-vertex degrees of a random edge [24] with smaller
absolute value. The value of r for the network in (a) is
0.074, with the mean of 0.063 over 100 Facebook net-
works; the value for that in (d) is 0.0035; the value for
that in (b) is —0.2, and the value for that in (c) is 0.24.

B. Ek-Cores

Figures 2, 3, and 4 show similar comparisons between
analytical and numerical results for other well-studied
processes on networks.

In Fig. 2, we plot the k-core sizes of the networks. The
k-core is the largest subgraph whose nodes all have degree
at least k within the subgraph. The pg-theory for k-core
sizes is given in Ref. [48] and the P(k, k’)-theory is given
by Eq. (32) of Ref. [49]. We compare these theoretical
predictions with direct calculations of k-core sizes from
the adjacency matrices. Although the direct calculation
of k-cores is a measurement of the real network, we con-
tinue to use the term “numerical” in this subsection in
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FIG. 3. (Color online) Watts’ threshold model, with threshold mean u and variance o = 0.04 for the networks from Fig. 1.
We use the seed fraction pg = 0 because the nodes with negative thresholds immediately turn on and act as initial seeds. In
other words, the effective seed fraction is given by the cumulative distribution of thresholds at zero: [1 + erf {—,u/ (U\/i) }] /2.

order to contrast such calculations with theoretical pre-
dictions. Asshown in Fig. 2(a,b), we again find very good
agreement of P(k, k’)-theory with numerical calculations
on the AS Internet and Facebook networks and less ac-
curate results for the other example networks. This can
be quantified by comparing the numerical (true) result
for the highest value of k for which the k-core size is
nonzero to the value that is predicted by P(k, k’)-theory.
(We use K to denote this maximal value of k.) For
Fig. 2(a) and (b), we obtain Kpj 1)/ Knum =~ 0.916 and
Kp(ikry/ Knum = 0.826, respectively. The corresponding
values for Fig. 2(c) and (d) are Kp( x)/Knum =~ 0.516
and KP(k,k’)/Knum ~ 0.368.

C. Watts’ Threshold Model

Watts [50] introduced a simple model for the spread of
cultural fads. It allows one to examine how a small ini-
tial fraction of early adopters can lead to a global cascade
of adoption via a social network, distinguishing between
“simple” and “complex” contagions [51, 52]. The pg-
theory and P(k,k’)-theory for the average cascade size
are given, respectively, in Ref. [53] and Ref. [49]. In
Fig. 3, we compare these theories with numerical sim-

ulations on populations with Gaussian threshold distri-
butions of mean p and variance 02 = 0.04. The cascade
size shows a sharp transition as p is increased. As with
the other processes that we discussed above, the position
of this transition is accurately captured by the theory for
the Facebook and AS Internet networks but not for the
other examples.

D. Susceptible-Infected-Susceptible Model

In Fig. 4, we show a comparison between theory and
numerical results for the time evolution of a susceptible-
infected-susceptible (SIS) epidemic model on various net-
works. Unlike the other processes that we have dis-
cussed, the theory for this case—as given, for example,
by Eq. (17) of Ref. [6]—is expected to apply accurately
only to the early-time development of the infection [54].
In view of this restriction, the results of Fig. 4 are consis-
tent with those of Figs. 1-3. That is, the P(k, k')-theory
once again provides accurate results for certain networks
for a variety of processes of interest but is rather inaccu-
rate for other networks.
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IIT. MEASURE OF PREDICTION QUALITY

We now aim to characterize the types of networks for
which P(k, k’)-theory can be expected to give good re-
sults. Because Figs. 1-4 demonstrate that this charac-
terization holds for several processes, we will concentrate
hereafter primarily on the example of bond percolation.

A. Watts-Strogatz Networks

Using the small-world networks introduced by Watts
and Strogatz [31], one can conduct a systematic study
of the effects of clustering C' and the mean intervertex
distance £. We start with a ring of N = 10000 nodes
and connect each node to z = 10 nearest neighbors. We
then randomly rewire a fraction f of the links in the
network [55]. When f = 0, the values of C and ¢ are both
high. When f = 1, the rewired network is randomized
(i.e., the node degrees are preserved, but everything else
is random), which gives it low C' and ¢ values. For each
value of f between 0 and 1, we numerically calculate the
clustering coefficient C'y, the mean intervertex distance
¢y, and the GCC size Sf(p) for all values of the bond
occupation probability p between 0 and 1. The difference

between Sy(p) and the P(k,k’)-theory curve, which we
denote by Sin(p), gives a quantitative measure for the
inaccuracy of the theory for this particular value of the
rewiring parameter f. We define the error measure

M
By = 57 2 ISu(n) = Sy )

where p; = i/M for i = 1,2,..., M are uniformly-spaced
values in the interval [0, 1]. Taking the spacing 1/M to be
sufficiently fine (we use 1/M = 10~3) implies that the er-
ror measure Iy approaches the average vertical distance
between the Sy (p) and Sy(p) curves for p € [0, 1].

In Fig. 5, we plot the values of £y — {1, C¢ (scaled by
a factor of 10 for ease of visualization), and E; (scaled
by a factor of 100) as functions of the rewiring parame-
ter f. For values of f greater than 1072, the quantities
¢y and Ey exhibit similar behavior, whereas C'y remains
near its f = 0 value of 2/3 until f is much larger [56].
We highlight the similar scaling of £ and E in the inset
of Fig. 5, in which we plot £y — ¢; directly as a function
of E; for f > 1072. The approximately linear depen-
dence that we observe contrasts to the clearly nonlinear
relation between Fy and the clustering Cy that we show
in the same inset. This strongly suggests that differences
between theory and numerics are related more directly
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to the mean intervertex distance than to the clustering
coefficient.

B. Real-World Networks and Additional Examples

The above results for Watts-Strogatz small-world net-
works motivate the examination of a range of real-world
networks in order to seek a clear relationship between an
error measure similar to (1) and some other characteris-
tic of the network, such as clustering or mean intervertex
distance. For each network, we calculate the inaccuracy
of P(k, k’)-theory in terms of the error E, which measures
the distance between the actual (numerically calculated)
GCC size curve Spum(p) and the theoretical prediction

Sth(p):

1 M
E = M ; |Sth(pi) - Snum(pi)| . (2)

Essentially, E gives the average distance between the
numerics (black disks) and theory (solid blue curve) in
Fig. 1. In Fig. 6(a), we show a scatter plot of log,, E ver-
sus log,o C, where C' is the clustering coeflicient of each
network. We use logarithmic coordinates in Fig. 6 in or-
der to fully resolve the range of values for both variables,
as they vary by one or more orders of magnitude.

We also include synthetic examples, such as Watts-
Strogatz small-world networks and clustered random net-
works generated using the recent models described in
Refs. [13, 14], which we now briefly recall [57]. The
fundamental quantity defining the ~-theory networks
of Ref. [14] is the joint probability distribution (k,c),

which gives the probability that a randomly chosen node
has degree k and is a member of a c-clique (an all-to-all
connected subgraph of ¢ nodes). With v(3,3) = 1 (and
zero for other values of k and ¢), each node in such a
network has degree 3 and is part of exactly one triangle.
This is equivalent to the p;; = 1 case in the clustered
random graph model of Ref. [13], where p; ; is the prob-
ability that a randomly chosen node is part of ¢ different
triangles and in addition has s single edges (which don’t
belong to the triangles). In each synthetic network, we
P-rewire a fraction f of links and show our results for
fe{1073,4x1073,0.04,0.1,0.4}.

In order to assess the strength of a relation between the
theory error E and some characteristic of the network,
we calculate the coefficient of determination R? using a
linear regression. For the data in Fig. 6(a), we calculate
R? ~ 0.087 (using the points only and ignoring the con-
necting curves that help identify families of points). This
relatively small value indicates that C' is not a good pre-
dictor of the theory error across the set of networks that
we tested (see Table I). After examining a wide range
of possibilities (see the scatter plots in Appendix B), we
found that the network measure that best correlates with
the error E (on logarithmic scales) is (¢ — ¢1)/z (which
gives R? ~ 0.94), where z is the mean degree and ¢; is
the mean intervertex distance in the version of the net-
work that has been fully rewired while preserving the
joint degree distribution P(k, k") [see Fig. 6(b)]. Recall
that one can think of such fully P-rewired versions of a
network as random networks with the same degree cor-
relation P(k, k") and size (i.e., number of nodes) as the
original network.

We can summarize our observations as follows. Given a
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network, we compare its mean intervertex distance ¢ with
the value /1 in a random network of equal size and degree
correlation P(k, k'). If the difference ¢ — ¢ is sufficiently
small—e.g., if it is less than 2/10, as was the case in
Fig. 1(a,b)—then the P(k,k’)-theory can be expected to
accurately give the GCC size, k-core sizes, and results for
several dynamical processes (see Figs. 1-4). For example,
the AS Internet graph has (£ — ¢1)/z ~ 3.3 x 1072 and
all 100 Facebook networks have values much smaller than
this. However, the theory is not accurate for larger values
of {—¢;. (For example, the PGP and power grid networks
have (¢ — ¢1)/z values of approximately 0.45 and 3.9,
respectively.)

Because the tree-based theory systematically gives ac-
curate results for dynamical processes on networks that
are not locally tree-like when the intervertex distance is
small, it seems that there must be a deeper argument
than is currently known for the validity of such theories.
We show in Appendix A that the error measure E de-
pends linearly on ¢ — ¢; in a certain class of networks
with zero clustering. Although this theoretical result is
restricted in its applicability, it lends weight to our claim
that E depends primarily on ¢ — ¢; rather than on the
clustering C.

One possible explanation for the dependence of E on
the average intervertex distance ¢ is the following. The
P(k, k")-theory assumes that the probability of connec-
tion between any two nodes depends only on their de-
grees and nothing else. One can refer to this property
and the networks that satisfy it as “mixed” to contrast
them with real-world networks with community struc-
ture (where nodes belonging to different communities are
much less likely to be connected than if they were within
one community) or networks with a geographic compo-
nent (with either explicit effects of geography, as in pla-
nar graphs, or implicit ones, as in the power grid network
or the “sausage-like” networks of Ref. [58] where nodes
that are situated far from each other are less likely to be
linked together). The average distance ¢ can be inter-
preted as a measure of how much the original network is

mixed. If the network is well-mixed, then ¢ is low (i.e.,
it is similar to the value in a fully P-rewired version of
the network) and the P(k,k’)-theory will work well on
such networks. If the network is poorly-mixed, then the
value of ¢ is higher. When poorly-mixed networks are
rewired, the decrease in £ is an indicator or byproduct
of what is happening: the network community structure
or geographic dependence are gradually destroyed as the
network becomes mixed.

The fact that clustering apparently does not play a
role [see Fig. 6(a)] might be related to the specific error
measure that we define in Eq. (2) and use in this paper.
For example, it is possible that clustering is only crucial
near the percolation transition point (i.e., the value of
p at which the GCC first emerges), and therefore does
not significantly affect the average vertical distance (2)
between the curves for bond percolation. On the other
hand, geographical or community structure can poten-
tially play a role throughout the entire range of p from 0
to 1, leading to a strong correlation between E and ¢.

IV. CONCLUSIONS

At the beginning of this paper, we posed the following
question: “How small must small-world networks be in
order for P(k,k')-theory to give accurate results?” Our
heuristic answer is that they must have a value for the
mean intervertex distance ¢ that differs from the mean
intervertex distance in a random network with the same
joint degree distribution P(k, k') and number of nodes by
no more than about 10% of the mean degree z. Surpris-
ingly, the level of clustering has much less of an impact
on the accuracy of P(k, k’)-theory, which is why we found
excellent matches between theory and numerical results
even in highly clustered graphs such as Facebook social
networks and the AS Internet network.

Although our presentation used bond percolation as
our primary example, Figs. 1-4 suggest that if P(k,k’)-
theory is accurate for percolation, then it also works well
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FIG. 7. (Color online) Watts’ threshold model, with threshold mean y and variance o = 0 (i.e., with uniform thresholds) for
the networks from Fig. 1. We use a seed fraction of py = 1072,

for other processes. However, any measure of accuracy
must, of course, depend on the process under scrutiny.
For example, Fig. 7 shows a comparison between the-
ory and numerical results for Watts’ threshold model
in which ¢ = 0, implying that all nodes have identical
thresholds equal to p (in contrast to Fig. 3). This exam-
ple now exhibits different results for theory and numer-
ics even in the Facebook networks. This suggests that
the o = 0 case of Watts’ model is particularly sensitive
to deviations of the network from randomness and sug-
gests that this case provides a suitable testing ground for
new analytically solvable models of networks that include
clustering [13, 14, 22].

In summary, we have shown that for a variety of
processes—including bond percolation and k-core size
calculations—tree-based analytical theory yields highly
accurate results for networks in which ¢ ~ ¢1 even in the
presence of significant clustering. Such graphs, which in-
clude the AS Internet network and Facebook social net-
works, are definitively not locally tree-like, so that the
theory is working very well even in situations where the
theory’s fundamental hypothesis is known to fail utterly.
The fact that analytical results for several dynamical pro-
cesses can be expected to apply on “sufficiently small”
small-world networks increases the value of existing the-

oretical work and highlights the types of process for which
improved analytical modeling of clustering effects should
most profitably be targeted. We hope that the results of
the present paper will motivate further research on the
underlying causes of this “unreasonable” effectiveness of
tree-based theory for clustered networks.
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Appendix A: The Relationship Between Prediction
Error and Mean Intervertex Distance

We consider the class of networks for which one can
define a branching matriz [59]. A branching matrix de-
scribes the connection probabilities in tree-like networks
with non-trivial structure—e.g., modular networks [60].
In this appendix, we derive how the error measure F de-
fined in Eq. (2) depends on ¢ — ¢; for a network with a
branching matrix when the network is close to fully P-
rewired (i.e., when it is close to a random network with
the same degree correlation). We give the final formula
in Eq. (A6) below. Because clustering is negligible in
these infinite networks, E' cannot depend on the cluster-
ing coefficient C. In Fig. 6, we illustrate both of these
characteristics for real-world networks.

The branching matrix characterizes the average inter-
vertex distance £ in a network, and it also determines the
bond percolation behavior. The largest eigenvalue of the
branching matrix, which we denote by A, determines the
percolation threshold

1

Pth = X . (Al)

Additionally, an estimate of the mean intervertex dis-
tance can be written in terms of A as [59]

_InN
T o)’
where N denotes the number of nodes in the network.
We suppose now that the network is almost fully P-
rewired, and we consider how values of A that differ from
the fully P-rewired value (which we denote by A1) affect
the values of £ and pty,. Note that it is easy to calculate
A1, as the branching matrix of a fully P-rewired network

is given in terms of the degree correlation matrix P(k, k')
by [59]

(A2)

N — (1 P(k,K) , PR E)
Bk )= =D p ) = F ) T
and Aj is the largest eigenvalue of B;. Moreover, for
uncorrelated networks produced using the configuration
model, \y = >, k(k — 1)py/z. This implies in particu-
lar that Ay = z — 1 for graphs in which all nodes have
the same degree (such as P-rewired Watts-Strogatz net-
works and the special cases of y-theory networks used in
Sec. III).

Considering only small deviations from fully P-rewired
values, we write A = A1+ A\ and ¢ = {1+ Al. Expanding
to linear terms, we find from (A2) that the excess length
is

» (A3)

AXIn N

Al = ———.
¢ /\1(1n/\1)2

(A4)
Similarly, we find from (A1) that the change in percola-
tion threshold is

AN

N ——

¥ (A5)
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If we now make the further assumption that Apyy, is ap-
proximately equal to the error E for the bond percolation
process [this approximation is exact if the effect of the
perturbation is to shift the entire bond percolation curve
S(p) to S(p+ Apsn)], we obtain the relation

- (ln /\1)2

Ea~ 21
A In N

(6—t). (A6)

Although the scope of our analysis is obviously limited
by our assumptions, Eq. (A6) nevertheless supports our
main claim that F depends primarily on the excess length
¢ — {1. Note that C' = 0 for branching-matrix networks,
so E is (trivially) independent of C. Compare this to
the results for the real-world networks that we show in
Fig. 6(a). Moreover, the scatter plot of log,, E versus
logyo[(In A1)2(¢ — ¢1)/(A1In N)] in Fig. 8 indicates that
Eq. (A6) gives a good fit (R? =~ 0.87) even for real-world

networks.

or -
-1r e T K
e Y Power Grid
LTJ N B PGP Network
(=} >3 A AS Internet
bE v e A RL Internet
o -2 7 [> Coauthorships
— +A< -7 W Airports500
X <« Interacting Proteins
Phd + C. Elegans Metabolic
-3t . ® X C.Elegans Neural
o) O Facebook Caltech
- @ Facebook Georgetown
“ % Facebook Oklahoma
¢ Facebook UNC
-4 . . . T T )

-3 -2.5 -2 -15 -1 -0.5 0 0.5 1

n Al 2
10%10[(;11/:11)\/(6_ )]

FIG. 8. (Color online) Log-log scatter plot of actual (numer-
ical) values of E for real-world networks versus the values
predicted by Eq. (A6), for which we numerically calculate ¢
and /1. We find that R? ~ 0.87; the slope of the fitted line is
1.09.

Appendix B: Scatter Plots

In this appendix, we show scatter plots of log,, £ ver-
sus a variety of possible predictors (see Fig. 9). Re-
call that E, which we defined in Eq. (2), gives an error
measure for bond percolation. We test for the depen-
dence of E on various combinations of the mean degree
z, mean intervertex distance ¢, and clustering coeflicients
[61].Recall again that ¢; denotes the value taken by ¢ in
a fully P-rewired version of a network (i.e., in a random
network with the same degree correlation and size).

The scatter plots show data points for real-world net-
works, and for synthetic Watts-Strogatz small-world net-
works and v-theory networks, which are described in
Sec. ITI B. The dependence of E on ¢ — /¢ is clearly strong
(see the top row of scatter plots, which all have R? > 0.9),
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FIG. 9. (Color online) Scatter plots of error E versus various error predictors.

whereas the dependence on clustering is weak (see the
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bottom row of scatter plots, which all have R? < 0.3).



Given the relatively small number of available data sets,
we cannot definitively select the best scaling function
F(z,¢,...) for the relation E ~ F(z,¢,...)(¢ — ¢1), but
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the simple choice F' = 1/z used in Fig. 6(b) and the scal-
ing function F = In*A;/(\ In N) indicated by Eq. (A6)
both give satisfactory fits.
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