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Biological macromolecules expand with increasing temperature and this dynamic expansion is
associated with the onset of function. The expansion is typically characterized by the mean square
vibrational displacement (MSD), 〈u2〉, of specific constituents such as hydrogen within the macro-
molecules. The 〈u2〉 increases with increasing temperature and the slope of 〈u2〉 versus temperature
can increase significantly at a temperature TD identified as a dynamical transition. We illustrate
that the observed expansion and change in slope of 〈u2〉 with temperature at TD can be reproduced
within a simple model of the vibration, an atom in an anharmonic potential, V (u). Given V (u),
only the temperature is varied in the model. A simple Gaussian potential or a potential containing
a hard wall is particularly effective is reproducing the observed change in the slope of 〈u2〉 with
temperature around TD.

I. INTRODUCTION

Many biological macromolecules undergo a dynami-
cal transition1–10 or cross-over at a temperature TD ∼
200 − 230 K. The cross-over can be characterized by a
significant increase in the slope of the mean square dis-
placement (MSD), 〈u2〉, of atoms in the molecule with
temperature at TD. Above TD, the 〈u2〉 is large, the
macromolecule is more flexible and atoms in the macro-
molecule traverse larger distances and sample new envi-
ronments. This dynamical cross-over is associated with
the onset of function or activity in the macromolecule.

In the classical limit and in a harmonic
approximation4,9, the MSD arising from vibration
is 〈u2〉 = kBT/φ where kB is the Boltzmann constant,
T is the temperature and φ is a harmonic force constant.
An increase in slope of 〈u2〉 vs. T at T ≃ TD suggests a
reduction in the effective force constant φ at T ≃ TD.
Often the slope begins to increase somewhat at lower
temperatures (T ≃ 100 K) and the changes with temper-
ature are continuous5. However, there usually remains
a marked change in slope at TD. The magnitude of the
change in slope depends on the degree of hydration of
the protein2,4–6 and many other factors. The observed
change in slope can be reproduced in molecular dynamics
simulations of proteins1,8.

The change in slope is observed in hydrated pro-
teins, in DNA and in RNA. Typical examples are hy-
drated lyzozyme3, myoglobin9 and purple membrane
bacteriorhodopsin2,5. The 〈u2〉 is determined in neutron
scattering4,9,10, X-ray and Mossbauer spectroscopy10,11

and in dielectric spectroscopy5. In neutron scattering,
the 〈u2〉 of hydrogen is predominantly observed, usu-
ally hydrogen bound in molecules (e.g. methyl groups).
In Mossbauer spectroscopy the 〈u2〉 of 57Fe is observed.
The sudden change in slope of 〈u2〉 at TD has been at-
tributed to a change in the “effective elasticity” of the
protein7, to a “glass” transition in the protein9,12,13, to
the onset of thermally activated transitions and diffu-
sion that modify the trapping cages9,14 and to a fragile-
strong cross-over in the hydration water surrounding the
macromolecule15.

Our goal is simply to illustrate that a marked change
in the slope of 〈u2〉 with T can arise in the vibrational
dynamics of a particle of mass M in an anharmonic po-
tential well. This can arise, for example, in a Gaussian
potential well, in which the curvature (effective force con-
stant) decreases with increasing distance of the particle
from the minimum of the well. This average distance
increases with increasing 〈u2〉. In the Gaussian well ex-
ample, the increase in slope with T is gradual. However,
if the potential has hard wall and soft wall components
in it, an abrupt change in slope of 〈u2〉 with T can be
obtained. We consider a single particle in a 1D well and
use the self-consistent harmonic (SCH) theory16–19 to de-
scribe the dynamics of the particle in the well. The essen-
tial feature of the SCH model is that the optimum har-
monic force constant φ is obtained as the second deriva-
tive of the potential averaged over the vibrational distri-
bution of the particle in the well. As the 〈u2〉 increases,
a wider region of the well is sampled and the force con-
stant, φ, can change (e.g. decrease) with increasing 〈u2〉.
This decrease leads to an increase in slope of 〈u2〉 with
temperature at TD as is observed.

II. DYNAMICAL MODEL

To describe the dynamics of a particle in a potential
V (u) we employ the self consistent harmonic (SCH) the-
ory of dynamics16–19. In the SCH theory the aim is to de-
termine the harmonic force constant φ that best describes
the anharmonic dynamics. The harmonic model can be
introduced via a trial harmonic Hamiltonian Hh and its
corresponding density matrix ρh. The optimum φ in
Hh can be determined by minimizing the Helmholtz free
energy. The result is that the usual harmonic force con-
stant φ(u) = (d2V/du2)u=0, the second derivative eval-
uated at the minimum of the well (u = 0), is replaced
by

φ =

∫

duρ(u)
d2V (u)

du2
, (1)
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the second derivative averaged over the vibrational dis-
tribution ρ(u) in the well. The distribution is

ρ(u) = [2π〈u2〉]−1/2e−u2/2〈u2〉, (2)

a Gaussian since we are assuming a harmonic model. The
mean square displacement 〈u2〉 is given by the usual har-
monic expression,

〈u2〉 =
h̄

2Mω
coth(

kBT

h̄ω
), (3)

where M is the particle mass and ω2 = φ/M is the har-
monic frequency and h̄ is Planck’s constant divided by
2π. In the classical limit, T ≥ θE = h̄ω/kB, Eq. 3 re-
duces to

〈u2〉 =
kBT

φ
(4)

Eqs. 1 to 3 constitute the SCH theory. It is imple-
mented by iterating Eqs. 1, 2 and 3 until consistent be-
ginning, for example, with an estimated value of 〈u2〉.
The SCH can be derived by summing a class of anhar-
monic terms as well as by minimizing the free energy or
ground state energy at T = 0 K.

III. RESULTS

A. Harmonic Potentials

Our model of an atom in a macromolecule is a single
particle in a 1D potential well. We begin with a harmonic
well to introduce the model and consider low temperature
to determine a low temperature model force constant, φL,
and to set the length scales. The harmonic potential is
V (u) = (1/2)φLu2, d2V/du2 = φL, the oscillator (SHO)
frequency is ω2 = ω2

L = φL/M and in the classical limit
the 〈u2〉 is Eq. 4 with φ = φL. We choose a mass M =
20 Amu which is intended to represent hydrogen bonded
in a molecule.

At low temperature, T <
∼ 120 K, the observed 〈u2〉 ver-

sus T in biological macromolecules is well described by a
straight line, as in Eq. 4. We choose the low temperature
force constant in our model, so that 〈u2〉 = kBT/φL re-
produces the observed straight line 〈u2〉obs vs. T at low
T . We select, arbitrarily, myoglobin hydrated with 0.38
g of D2O per g of protein as observed by Doster et.
al.9. To fix φL we introduce a convenient temperature
T0, arbitrarily choosing T0 = 240 K, and extrapolate the
observed myoglobin low temperature 〈u2〉 to T0 and de-
termine the length u2

0 ≡ 〈u2〉obs = kBT0/φL. This ex-
trapolation of the low temperature myoglobin 〈u2〉 data
is shown as a solid line in Fig. 1 giving u2

0 = 0.1 Å2 at
T0 = 240 K. Clearly, the low temperature force constant

is (φL/kB) = T0/u2
0. We also use u0 and T0 as convenient

length and temperature scales, respectively.

We use (φL/kB) as the low temperature force constant
in all potentials. When the potential well V (u) is not
harmonic, we adjust the parameters in V (u) (in units
of kB) so that the low temperature force constant is
(d2V/du2)u=0 = (φL/kB) = T0/u2

0. In this way all po-
tentials have the same initial slope of 〈u2〉 vs. T at low
temperature and they differ only in their higher temper-
ature behaviour (T >

∼ T0/2).
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FIG. 1: (a) The mean square vibrational displacement,
(MSD), 〈u2〉, given by (Eq. 3) of an atom in a harmonic
well. The slope of 〈u2〉 vs. T in the classical limit, T ≥ θE ,
is given by 〈u2〉 = kBT/φL. We choose the low tempera-
ture force constant φL in our model so that it reproduces
the observed slope of myoglobin at low temperature, i.e.
u2

0 = 〈u2〉obs = kBT0/φL where u2
0 = 0.1 Å2 is the observed

MSD at temperature T0. (b) The vibrational distribution
ρ(x) in harmonic well υ(x) = V (u)/kBT0, x = u/u0 at three
temperatures.

The inset of Fig. 1a shows the harmonic poten-
tial V (u) = (1/2)φLu2 in the dimensionless length
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FIG. 2: (a) The MSD, 〈u2〉, of an atom in a Gaussian well,
V (x), where x = u/u0. The slope of 〈u2〉 with temperature
shows a marked increase at a T ∼ 250 K simulating a dynami-
cal transition at TD ∼ 250 K. (b) The vibrational distribution
ρ(x) in the Gaussian well at three temperatures.

x = u/u0 in the form υ(x) = V (x)/kBT0. Us-
ing φL/kB = T0/u2

0, υ(x) = (1/2)x2. Fig. 1b
shows the harmonic potential and vibrational distribu-
tion ρ(x) = [2π〈x2〉]−1/2 exp [−x2/2〈x2〉] at three tem-
peratures where 〈x2〉 = 〈u2〉/u2

0. Since d2υ(x)/dx2 = 1
for all x for the harmonic potential, the SCH force con-
stant φ given by Eq. 1 remains φ = φL at all T indepen-
dent of the width of ρ(x). For a harmonic potential, the
SCH model is the same as the harmonic approximation.

B. Symmetric Potentials

Fig. 2a shows the 〈u2〉 predicted by the SCH theory
for a particle in a Gaussian potential,
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FIG. 3: (a) The 〈u2〉 in a potential well composed of two har-
monic components characterized by force constants φL and
φH . The slope crosses over gradually from a low (L) tem-
perature to high (H) temperature value. (b) The ρ(x) for a
potential composed of two harmonic components.

V (u) = −Ae−αu2

, (5)

where A and α are adjustable parameters. In this case
d2V/du2 decreases with increasing u and the SCH force
constant φ, given by Eq. 1, decreases with increasing
temperature as the vibrational distribution, ρ(u), broad-
ens. The slope of 〈u2〉 vs. T (〈u2〉 = kBT/φ) there-
fore increases with increasing temperature as shown in
Fig. 2a. Thus using a simple model of anharmonic ef-
fects (e.g. the SCH model) and a simple potential (a
Gaussian), a variation of 〈u2〉 with temperature as ob-
served in biological macromolecules can be reproduced.
The degree of change in slope of 〈u2〉 vs. T with increas-
ing temperature depends entirely on the parameters cho-
sen in the Gaussian potential. In the example shown in
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FIG. 4: The 〈u2〉 for an atom in a potential well composed
of two harmonic components with a barrier separating the
two components (see inset). The 〈u2〉 vs. temperature and
ρ(x) (not shown) is similar to that in Fig. 3b.

Fig. 2b, the ρ(x) begins to sample regions of V (x) where
d2V/dx2 is quite small (even negative) at a temperature
of T ≃ 250 K. Thus the SCH force constant φ decreases
rapidly with increasing T for T >

∼ 250 K and the slope
of 〈u2〉 = kBT/φ increases rapidly with increasing T for
T >
∼ 250 K.

Fig. 3a shows the MSD 〈u2〉 for a particle in a potential
that is the sum of two harmonic potentials as depicted in
the inset of Fig. 3a and in Fig. 3b. At low temperature,
the slope of 〈u2〉 is set by the large force constant φL.
This slope is indicated by the short dashed line in Fig. 3a.
At high temperature the slope of 〈u2〉 is set by the much
smaller force constant φH that characterizes the shallow
harmonic well at large values of x. The steeper slope
of 〈u2〉 at higher temperatures is indicated by the long
dashed line in Fig. 3a. The temperature (T ∼ 150 K)
at which the slope crosses over from a low to a higher
value depends on the energy at which the V (x) crosses
over from a large force constant φL to the smaller one,
φH . The φH is adjustable. The cross-over from the low
(L) to high (H) temperature slope will always be grad-
ual because the distribution ρ(x) continues to sample the
steep well potential near x = 0 at higher temperature, as
shown in Fig. 3b.

In Fig. 4 we show 〈u2〉 for a potential that is again
the sum of two harmonic components but with a barrier
between the two components. This potential leads to a
〈u2〉 which has the same basic character as that shown
in Fig. 3a. Thus introducing a barrier and displacing
the minimum of the shallow potentials to finite values of
x makes little difference to 〈u2〉 . The 〈u2〉 in Fig. 3a and
Fig. 4 are very similar probably because both potentials
are symmetric about x = 0. The ρ(x) are also similar and
therefore the ρ(x) for the potential depicted in Fig. 4 is
not shown.
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FIG. 5: (a) The MSD, 〈u2〉, for a double well potential. The
height of the barrier (at xB = 0.75) between the two wells
(see inset) is relatively small, V (xB)/kBT0 ≃ 0.2. (b) The
ρ(x) for a particle in a double well potential. The center of
ρ(x), ∆ moves from one well (∆ = 0) at T = 0 K to the
midpoint between the two wells (∆ = xB) at a relatively low
temperature. The slope at high temperature is set by the
harmonic well force constant (H) at larger x.

C. Asymmetric Potentials

The four potentials V (x) considered so far are sym-
metric around the origin (x = 0), i.e. symmetric around
the center of the low temperature well. This means that
as temperature is increased, although 〈x2〉 increases, the
vibrational distribution ρ(x) remains centered around
x = 0. We now consider potentials that are asymmet-
ric around x = 0. This means that the center point of
ρ(x) will change with temperature. To accommodate this
we generalize ρ(x) to

ρ(x) = [2π〈x2〉]−1/2e−(x−∆)2/2〈x2〉 (6)
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FIG. 6: (a) The MSD 〈u2〉 for a well that has a hard wall
component. The 〈u2〉 vs. T shows a large increase in slope at
T ≃ 250 K, an increase arising from the center of ρ(x) moving
rapidly away from the wall as T increases as shown in part
(b).

where as before 〈x2〉 = 〈u2〉/u2
0. The SCH 〈x2〉 and φ are

obtained as before. The ∆ is obtained by minimizing the
potential energy 〈V (x)〉 as a function of ∆. Since we
are in the classical limit, minimization of the free energy
reduces to minimization of the potential energy.

Fig. 5 shows the MSD for a particle in a double well
potential. The double well potential selected consists of
two harmonic wells (with force constant φL) separated
by a barrier. At low temperature, the particle is con-
fined to the left well (x = 0) with ∆ = 0, as indicated
by the ρ(x) in Fig. 5b for T = 60 K. As temperature is
increased the center of the ρ(x) moves to the right until
at high temperature (T = 240 K) the ρ(x) is centered
symmetrically between the two wells. In the example
shown in Fig. 5, the barrier height between the two wells
is relatively small (compared to kBT0) and ∆ moves from
∆ = 0 to the midpoint between the two wells at a rela-
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FIG. 7: The MSD 〈u2〉 for a well that has a hard wall compo-
nent. The well parameters (φL, φH , barrier height and well
center) are adjusted to reproduce the 〈u2〉 vs. T observed
for myoglobin by Doster et al. at low and high temperature.
The observed values of Doster et al.9 as presented in Ref.[4].
The calculated 〈u2〉 clearly reproduce the observed 〈u2〉 for
myoglobin well.

tively low temperature. This double well potential does
not reproduce the observed increase in slope of 〈u2〉 with
increasing temperature well.

In Fig. 6a we show the MSD for a particle in an asym-
metric potential which is intended to simulate a particle
near a surface or a wall. The wall on the LHS of the po-
tential is formed by continuing the large low temperature
force constant φL (near x = 0) to high energy (∼ 2kBT0).
On the RHS, the “barrier height” of the low temperature
potential is low. Thus the particle can cross the barrier
on the RHS and move to the right away from the wall
at higher temperature. The potential on the RHS also
has a well with a minimum or “well center” at x ≈ 3. At
higher temperature we anticipate that the particle will
move toward the “well center”. As shown in Fig. 6a, the
〈u2〉 increases very rapidly at high temperature (T ∼ 250
K) with 〈u2〉 vs. T reaching a very steep slope at high
temperature. The steep slope is associated with the par-
ticle moving rapidly away from the wall as T is increased
i.e. ∆(T ) increasing rapidly with T at higher tempera-
ture.

The potential shown in Fig. 6 is a simple but very flexi-
ble potential which can reproduce a large or small change
in slope of 〈u2〉 vs. T with the change in slope taking
place at any desired temperature. It could also describe
the eventual instability of a protein at an even higher
temperature (as can the Gaussian potential). In Fig. 7
we show this potential with parameter (barrier height,
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well center and φH) selected to reproduce the 〈u2〉 ob-
served by Doster et al.9 for hydrated myoglobin. Clearly,
the change in slope seen in the data is well reproduced.
In this potential, the slope at high temperature is set
chiefly by the rate at which the particle is moving away
from the wall (by the rate of change of ∆(T ) with T )
rather from the force constant φH describing the poten-
tial well on the RHS away wall. In this sense the physical
origin of the slope of 〈u2〉 at higher temperature is quite
different from that for the symmetric Gaussian potential
shown in Fig. 2.

IV. DISCUSSION

A. Dynamics of Proteins

There are predominantly two approaches to revealing
and understanding the dynamics of proteins. The first is
experiment, chiefly neutron scattering experiments. The
second is molecular dynamics (MD) simulation. The
present work is neither of these. Rather it is an ana-
lytic approach using a simple model of the dynamics of
an atom. The aim of the simple model is to make a single
point, an important one we believe, that the change in
slope of the observed 〈u2〉 versus T can be reproduced
by a vibrating particle in an anharmonic potential. The
model is simply anharmonic vibration with only temper-
ature changing in the model. The present dynamical
model does not contain any thermally activated, tran-
sition rate processes as in the “two-state” model intro-
duced by Frauenfelder et al.20, Keller and Debrunner14

and Doster et al.9. It does not contain any diffusive mo-
tion.

In the classical limit, which is reached at T >
∼ 100

K, the present MSD is independent of the mass of the
particle. The 〈u2〉 depends only on the potential, V (u),
selected and the temperature. The observed 〈u2〉 in pro-
teins can be reproduced using a Gaussian potential or a
potential with a wall. In the Gaussian potential, the
slope of 〈u2〉 can change rapidly with temperature at
a dynamical transition temperature TD, if the second
derivative of V (u) changes rapidly with u at energies
V (u) ∼ kBTD. That is, if at energies kBTD, V (u) be-
comes soft. A marked change in 〈u2〉 versus T will take
place at TD for any potential that has this property. For
a potential with a wall, the slope of 〈u2〉 versus T changes
at TD because the particle moves away from the wall at
T >
∼ TD. The slope is large for T ≥ TD because the par-

ticle is moving rapidly away from the wall for T ≥ TD.

In the present model the change in slope of 〈u2〉 with
T , with only T itself varying, is captured because the dy-
namical model is non-perturbative. That is, derivatives
of V (u) at displacements u ≥ 0 (described here by ρ(u))
are sampled. A perturbative theory of anharmonic effects
in which derivatives of V (u) at (u = 0) only are included
would probably not suffice. Also since we are in the clas-
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FIG. 8: (a) The calculated MSD 〈u2〉 for a Gaussian po-
tential well (solid line). The low temperature force constant
φL of the Gaussian is set to reproduce the low temperature
slope of 〈u2〉 vs. T in purple membrane (PM). The calculated
〈u2〉 at higher temperature for the Gaussian V (u) reproduces
the observed 〈u2〉 for PM ( dashed-dotted line) well at higher
temperature (T >

∼ 200 K). The vibrational distribution ρ(x) is
shown in part (b)

sical limit, the vibrational distribution ρ(u) should be in-
terpreted as representing a statistical distribution of the
displacements of an ensemble of identical, independent
classical particles in the well at temperature, T .

The model is adapted or adjusted to describe a specific
protein by adjusting the low temperature force constant
φL in the model. We chose φL to reproduce the ob-
served 〈u2〉 versus T of myoglobin at low temperature
as observed by Doster et al.9(see also Fig. 1 of Bicout
and Zaccai4) as depicted here in Fig. 1. Specifically, the
parameters in the potential V (u) are adjusted so that
(d2V (u)/du2)u=0 = φL. We can readily adjust the φL to
reproduce other biological macromolecules such as pur-
ple membrane (PM) where at low temperature the slope
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of 〈u2〉 versus T is marginally larger1. This is shown
in Fig. 8 for the Gaussian potential where we see that
the observed 〈u2〉 versus T in PM is well reproduced at
low and at high temperature using a Gaussian potential.
Note that the definition of 〈u2〉 in Refs.[1] and [2] (Fig. 8)
for PM is twice the value used in Refs.[9] and [14] (Fig. 7)
for myoglobin.

MD and the SCP theory have been compared explic-
itly in solids. Specifically, the elastic constants21, ther-
modynamic properties22 and phonon response23 in solids
calculated using SCP theory at different levels of approx-
imation and MD have been compared. For elastic con-
stants, most appropriate here, the two agree accurately at
intermediate temperatures but the SCP values can differ
by up to 20 % near the solid melting temperature where
anharmonic effects are largest. At the same time MD
simulations can show spurious dynamic response that is
not found in SCP models or experiment. Thus we expect
the SCP to be accurate up to intermediate temperatures
and qualitatively correct but possibly 10-20 % in error at
the highest temperatures.

B. Potentials in Proteins

Neutrons scatter predominantly from hydrogen in pro-
teins and interfacial water. In the following paragraphs
we attempt a comparison of our model potentials with
the potentials seen by hydrogen (H) in proteins. H in
proteins is bound in a wide spectrum of sites and in sol-
vent water. The H potential in these sites varies greatly.
It depends on its separation from and on bond angles
with its neighbors. The present simple model potentials
represent an average over these widely varying potentials.
To make a comparison we consider two simplified cases
which represent two ends of the spectrum. We also ignore
the dependence on angles. The first is hydrogen (H) in a
hydrogen bond (H-bond) and the second is H in amino
acids.

The dynamics of H in an H-bond is governed by the
H-bond energy. As a simple example, we consider the H-
bond in a single formamide dimer. The formamide dimer
is, for example, a model bond used to represent H-bonds
in protein backbones. The formamide dimer consists of a
tightly bound N−−H+ pair which is hydrogen bonded to
a second pair O− = C+, an acceptor-acceptor base pair.
In the formamide dimer (N −H · · ·O = C), the H-bond
is bond indicated by the dotted line between the H+ (the
donor H+) and the acceptor O− in the acceptor-acceptor
base pair. Fig. 9 shows the formamide H-bond energy
versus separation r between the H and the acceptor (O),
as calculated by Morozov and Kortemme24 using density
functional theory (DFT))(see Fig. 4 of Ref.[24]). The
H-bond energy is divided by kBT0 = 0.476 kcal/mole =
1.99 kJ/mole where T0 = 240 K and the separation r by
u0 = 0.33 Å (x = r/u0) so that the H-bond energy is
in the same units as the present model potentials. The
DFT energy is very similar to the H-bond energy ob-

tained using molecular mechanics methods in which each
atom in the bond interacts with a potential such as the
CHARMM27 potential25 or other potentials27. In the
CHARMM27 potential, the interatomic potential is rep-
resented by a standard 12-6 Lennard-Jones potential26

plus an electrostatic term25. In Fig. 9 the H-bond energy
is compared with the present model Gaussian potential.
The Gaussian well minimum is moved to coincide with
that of the H-bond potential.

0 5 10
-16

-12

-8

-4  H-bond 
 Gaussian 

V
(x
)/k

BT
0

x 

FIG. 9: H-bond potential V (r) in a formamide dimer versus
H+ to acceptor (O−) separation, r, from Fig. 4 of Morozov
and Kortemme24. The potential is shown in units x = r/u0

where u0 = 0.33 Å and V (x)/kBT0 where T0 = 240 K and
kBT0 = 0.476 kcal/mole. Also shown is the present Gaussian
model potential in these units.
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FIG. 10: Coarse-Grained potential V (r) between two TRP3
amino acids in a protein from Fig. 3 of Basdevant et al.28.
The potential is in units of x = r/u0 and V (x)/kBT0 as in Fig.
9 and compared with the present Gaussian model potential.

From Fig. 9 we see that the H-bond potential has clear
anharmonic character as does the model present Gaus-



8

10 15 20 25 30 35

-1

0

1

2

3  Coarse-Grained
 Hard Wall 

V
(x
)/k

BT
0

x

FIG. 11: Coarse-Grained potential shown in Fig. 10 com-
pared with the present Hard Wall model potential.

sian potential. In addition the H-bond potential is asym-
metric around the minimum energy. Both the anhar-
monic and asymmetric character will lead to an increase
in slope of 〈u2〉 at higher temperature, as found here in
Fig. 8 for the model Gaussian potential and in Fig. 6 for
the model hard walled potential. As anticipated, the H-
bond potential is much narrower and stronger than the
model Gaussian. High frequency, small amplitude mo-
tion is expected for H in an H-bond whereas the Gaus-
sian represents an average for H over all sites.

Hydrogen is also attached to the backbone of proteins.
In this position, the dynamics of the H is largely deter-
mined by the lower frequency, larger amplitude dynamics
of the backbone. Specifically, H is a component of amino
acids which make up the backbone and are attached to
the backbone. To describe the dynamics of amino acids
in the backbone, a simplified potential between amino
acids is often introduced28,29. Each amino acid is ap-
proximated by a single (heavy) atom or pseudo-atom.
The effective or coarse-grained (CG) potential between
the pseudo-atoms is obtained using several methods one
of which is simulating the amino acids in proteins us-
ing molecular dynamics (MD) and determining the effec-
tive interaction between them which best represents their
properties. In the MD simulation a potential between all
the atoms in the amino acids is typically used, denoted
an all-atom potential. The CG potential is subsequently
used to calculate the longer time scale dynamics of the
backbone or of larger polypeptides in the protein The
dynamics of H in these amino acids is largely governed
by these CG potentials.

Specifically, Basdevant et. al.28 and Ha-Duong30

represent the CG potential by a repulsive (1/r6) term
plus a Gaussian attractive term. If the amino acid
is charged there is also an electrostatic term. A rep-
resentative CG potential between two TRP3 amino
acids28 is shown in Fig. 10 and compared with our

model Gaussian potential. The CG potential is again
shown with separation divided by u0 = 0.33Å and
energy divided by kBT0 so that it has the same units
as our model potentials. The minimum of our Gaussian
model potential has been shifted to coincide with that
of the CG potential. From Fig. 10 we see that the
CG potential is asymmetric and anharmonic so the a
change is slope of 〈u2〉 with increasing temperature can
be expected. Indeed the shape of the CG potential is
similar to that of the the present hard wall potential as
is shown in Fig. 11. The present hard wall model leads
to a significant change of slope of 〈u2〉 with increasing
temperature as shown in Fig. 7 and a similar change
can be expected for the CG potential. From Fig. 10
we see that the CG potential is broader and weaker (on
the right side) than our model Gaussian. Thus lower
frequency, larger amplitude motions than average are
expected for H in amino acids.

In summary, hydrogen in H-bonds and in amino acids
see effective potentials that are anharmonic and similar
in character to the model potentials used here. The H-
bond potential is stiffer and the CG potential between
amino acids is softer than the present model potentials
which represent an average over a spectrum of potentials
seen by H in proteins.

C. Concluding remarks

In summary, our aim in this paper is to illustrate that a
change in slope of the MSD 〈u2〉 versus temperature can
be obtained within vibration of a mass in an anharmonic
potential. Our goal is not to say that thermally activated
processes and diffusion are not important in the long time
dynamics of proteins. The many dynamical processes
that may contribute to the dynamical transition are re-
viewed by Doster.31 Indeed, we have applied the present
SCH vibrational dynamics to the “two-state” model po-
tential introduced by Frauenfelder et al, Keller and De-
brunner and Doster et al.9,14,20. This potential coupled
with the SCH dynamics did not lead to a 〈u2〉 that agreed
well with experiment - essentially because the thermally
activated transitions central to this model are not in-
cluded. Including the thermally activiated transitions
between the two states, as intended,9,14,20 is essential
to obtain the good agreement with experiment that has
been obtained using the “two state” model. Our pur-
pose is simply to illustrate that a break in 〈u2〉 with
temperature is possible within vibration alone.
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APPENDIX A: THE SELF CONSISTENT

HARMONIC THEORY

In this section we derive the self consistent harmonic
theory for a single particle of mass M in an arbitrary
potential, V (u) used in the present article. The particle
is described by the Hamiltonian

Ĥ = K̂ + V (u) (A-1)

where K̂ = −(h̄2/2M)d2/du2 is the kinetic energy oper-
ator. We introduce a model harmonic Hamiltonian

Ĥh = K̂ +
1

2
φu2 (A-2)

and corresponding harmonic density matrix

ρh =
e−βHh

Tr(e−βHh)
(A-3)

where β = (kBT )
−1

. Expectation values evaluated using
ρh are

〈Ô〉h = Tr{ρhÔ} (A-4)

where Ô is any operator. The corresponding model har-
monic Helmholtz free energy is

Fh = 〈Ĥh〉h − TSh

= 〈Ĥh〉 + (kBT )Tr{ρh log ρh}

= kBT log 2 sinh

(

1

2
βh̄ω

)

(A-5)

where ω = ( φ
M )

1

2 is the model simple harmonic oscillator

frequency. In terms of Ĥh the particle Ĥ is

Ĥ = Ĥh + V (u) −
1

2
φu2. (A-6)

The basic concept is to use ρh as a trial or model den-
sity matrix with which to evaluate the particle free en-
ergy. The trial particle free energy is

Ftrial = 〈H〉h + (kBT )Tr{ρh log ρh}

= Fh + 〈V (u)〉h −
1

2
φ〈u2〉h. (A-7)

The Ftrial is an upper bound to the exact Helmholtz free
energy, the Gibbs-Bogolibov variational principle. We
consider Ftrial as a functional of the model harmonic
force constant φ and the MSD 〈u2〉h. We minimize the
Ftrial with respect to φ and 〈u2〉h independently holding
the other variable constant to find the optimum φ and
〈u2〉h. This variation gives

δFtrial

δ〈u2〉h
=

1

2
〈
d2V (u)

du2
〉h −

1

2
φ = 0 (A-8)

δFtrial

δφ
=

1

2

(

h̄

2Mω

)

coth

(

1

2
βh̄ω

)

−
1

2
〈u2〉h = 0(A-9)

The first term in Eq. A-8 is obtained by making a
Taylor’s expansion of 〈V (u)〉h in Eq. A-7 about V (0),

V (u) = eu( d

du
)V (0), and a cumulant expression of the ex-

ponential 〈eu( d

du
)〉h. For, a harmonic system with Gaus-

sian distributions, 〈u〉h = 0 and all cumulants beyond
the second cumulant vanish so that

〈V (u)〉h = 〈eu(d/du)〉hV (0)

= e
1

2
〈u2〉h(d2/du2)V (0). (A-10)

Differentiation with respect to 〈u2〉h then yields the first
term in Eq. A-8 and Eq. A-8 leads immediately to Eq. A-
1 with 〈〉h expressed as a average in configuration space.
The average in configuration space can be obtained by
Fourier transforming V (u) and again using a cumulant
expansion,

〈∇2V (u)〉h = ∇2

∫

dqV (q)〈eiqu〉h

= ∇2

∫

dqV (q)e−
1

2
q2〈u2〉h

=

∫

due−
1

2
u2/〈u2〉h∇2V (u) (A-11)

where d/du is denoted by ∇. The first term in Eq. A-9 is
obtained by differentiating Eq. A-5 for Fh with respect to
ω using ω2 = φ/M . Eq. A-9 leads immediately to Eq. 3.
The φ represents the optimum harmonic force constant
representing a particle in an anharmonic well V (u) in
which the particle has a MSD 〈u2〉.
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