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Control of rare events in reaction and population systems by deterministically
imposed transitions

M. Khasin and M.I. Dykman
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We consider control of reaction and population systems by imposing transitions between the states
with different numbers of particles or individuals. The transitions take place at predetermined
instants of time. Even where they are significantly less frequent than spontaneous transitions, they
can exponentially strongly modify the rates of rare events, including switching between metastable
states or population extinction. We also study optimal control of rare events. Specifically, we are
interested in the optimal control of disease extinction for a limited vaccine supply. A comparison
is made with control of rare events by modulating the rates of elementary transitions rather than
imposing transitions deterministically. It is found that, unexpectedly, for the same mean control
parameters, controlling the transitions rates can be more efficient.

PACS numbers: 87.23.Cc, 82.20.-w, 02.50.Ga, 05.40.-a

I. INTRODUCTION

Many features of biophysical systems and population
dynamics are related to the randomness of the underly-
ing processes, such as elementary molecular reactions, or
birth and death, or infection and recovery. The random-
ness is important where the number of involved molecules
or individuals, even though it is large, is not very large,
as is often the case in gene expression, for example [1]. In
such a mesoscopic domain fluctuations are small on aver-
age. Then, if the system is in stationary conditions, for
much of the time its molecular composition or the popu-
lation size experience small variations about the values in
dynamically stable states, i.e., the stable states that the
system would have with no fluctuations. Examples are
countless. Besides single-cell protein levels [2, 3], they
range from microbial populations [4] and motor proteins
with different states strongly bound to the tracks [5] to,
at a larger scale, insect groups and worms that can switch
between the directions of motion [6] and, at a still larger
scale, endemic states of infectious disease, where a part
of the population is infected while the other part is not
[7], or stable states in the predator-prey models [8].

Even where fluctuations are small on average, occa-
sionally there occur large fluctuations that lead to dra-
matic changes in the system. An example is switching
between dynamically stable states. It plays an impor-
tant role in biophysical systems including the ones men-
tioned above. Another example is extinction of a group of
molecules or a population. A type of extinction that has
attracted much attention in the literature is spontaneous
disease extinction in an isolated population, where as a
result of a fluctuation the number of infected becomes
equal to zero and the epidemics ceases [9–21].

In this paper we will be interested in the control of
the rates of rare events that result from large fluctua-
tions, including interstate switching and extinction. We
will develop a general approach to control by determin-
istically imposed transitions (DIT), in which the num-
bers of molecules or individuals change in a well-defined

way at well-defined instants of time. The change is small
and does not cause switching or extinction on its own.
We show that, nevertheless, even weak deterministic con-
trol can strongly increase the rates of rare events. The
approach will then be applied to control of disease ex-
tinction. Here control is often performed by vaccination.
Sometimes there is not enough vaccine to eradicate the
disease. We show how to optimize the control given a
restriction on the amount of vaccine. The results refer
also to a more general situation of a limited time-average
speed at which the transitions are imposed.

The problem of optimal control of large rare fluctua-
tions has been discussed in qualitatively different terms
for two major models of fluctuating systems, continu-
ous and discrete. Fluctuations in continuous systems
are often thought of as resulting from an external noise,
whereas control of such systems is performed by an ap-
plied regular field. This field can be optimized, for a
given constraint, so that it will most efficiently change
the rate of noise-induced rare events [22, 23].

Populations or reacting species, on the other hand,
are intrinsically discrete, with integer numbers of react-
ing molecules or individuals. The dynamics is often de-
scribed as resulting from elementary transitions in which
these numbers change. The transitions happen at ran-
dom and are characterized by rates. These rates can be
controlled, but the transitions still remain random. We
call this elementary transition rates (ETR) control. Opti-
mal control of this type was discussed in Ref. 24. Because
of the randomness of the elementary transitions, the con-
straint on the control field is in some sense probabilistic,
for example, it can be imposed on the average amount of
vaccine used in a given time period.

Here we will show how to incorporate deterministically
imposed transitions into the analysis of large rare fluctu-
ations. In particular, we will develop an eikonal approxi-
mation, which applies where the total number of reacting
molecules or the population size are large. It maps the
problem of the probabilities of rare events in a reaction
system onto Hamiltonian dynamics of an auxiliary sys-
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tem. This formulation will be compared with the cor-
responding formulation for controlled reaction rates and
for controlled continuous systems.

The approach will then be applied to the problem of
disease extinction with a limited amount of vaccine. We
show that periodic vaccination implemented in a deter-
ministic fashion can strongly enhance disease extinction.
The enhancement can be resonant, for the appropriate
vaccination period.

II. MASTER EQUATION IN THE PRESENCE
OF DETERMINISTICALLY IMPOSED

TRANSITIONS

The state of the reaction or population system is de-
termined by vector X = (X1, X2, ...) with integer-valued
components that are equal to the numbers of molecules
of different sorts or individuals in different population
groups. The size of the system N , which gives the typ-
ical value of |X|, is the large parameter of the theory,
N � 1. Our analysis refers to spatially uniform sys-
tems, which are often encountered in biophysics, stirred
chemical reactors, and also in moderately large globally
connected populations.
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FIG. 1. Two types of transitions with a change of the num-
ber of molecules or individuals X → X + r. Spontaneous
transitions happen at random and are characterized by rates
W (X, r, t). In addition, transitions may be imposed exter-
nally in a deterministic way. We assume that the duration
of a transition is small compared to the interval between suc-
cessive transitions, which is necessary for the system to be
described by vector X with integer-valued components.

We will be interested in the probability P (X, t) for the
system to be in state X. The distribution P changes as
a result of elementary transitions in which X is changed.
Such transitions can come from spontaneous chemical or
biochemical reactions, or from infection and recovery of
individuals, for example. They can be imposed also in a
deterministic fashion, see Fig. 1. We will assume that, for
a given molecule or an individual, the interval between
successive transitions, whether spontaneous or determin-
istic, is much longer than the duration of a transition.
Then elementary transitions can be considered instanta-
neous, which is consistent with the notion of the compo-
nents of X being integer-valued.

In the absence of deterministic transitions the evolu-
tion of P (X, t) is described by the standard Markov mas-

ter equation

∂tP (X, t) = ŴP (X, t), (1)

where

ŴP (X, t) =
∑
r

[W (X− r, r, t)P (X− r, t)

− W (X, r, t)P (X, t)] . (2)

Here, W (X, r, t) is the rate of an elementary transition
X → X + r in which the population and/or number of
molecules changes by r = (r1, r2, . . .). The rates W are
proportional to the system size, W ∝ N . The change of
X in an elementary transition is independent of N and
comparatively small, |r| � N , typically |r| ∼ 1. We will
assume that the rates W are either independent of time
or depend on time periodically.

We now discuss the effect of a control field that deter-
ministically imposes elementary transitions. This field is
a series of pulses applied at instants t1 < t2... < tn < . . ..
In each pulse the state vector changes by ∆, that is,
X→ X + ∆. We will be interested primarily in the case
where |∆| ∼ 1. An example is vaccination in popula-
tion dynamics. One can think that vaccination shots are
applied at instants tn. In a simplified model where the
delay between vaccination and acquiring immunity is dis-
regarded, as a result of a shot the number of susceptible
individuals decreases by one, whereas the number of vac-
cinated increases by one. The corresponding components
of vector ∆ are then -1 and 1, respectively, whereas all
other components are equal to zero.

The analysis should be performed differently if a
change that occurs in a pulse is macroscopic, that is if
|∆| is of order N . This may be of interest, for example, if
control is performed by injecting or extracting a macro-
scopic amount of reacting molecules. The corresponding
extension is provided at the end of Sec. III.

Disregarding the pulse duration, one can describe the
effect of the deterministically imposed pulses as a shift
of the probability distribution,

P (X + ∆, tn + 0) = P (X, tn − 0). (3)

The formulation can be generalized also to the case where
the population change in a pulse ∆ depends on the in-
stant tn, ∆→∆(tn).

In the presence of a pulsed deterministically acting
field, master equation (1) applies in between the pulses.
Equations (1) - (3) fully describe the evolution of the dis-
tribution P (X, t). However, because of the discontinuity
of P at instants tn, they are inconvenient for the analysis.

III. THE EIKONAL APPROXIMATION

For a large system and |∆| ∼ 1, the typical inter-pulse
interval tn − tn−1 is small, ∝ 1/N , since the control field
is applied to different individuals. If this were not the
case, the overall effect of the field would be negligibly
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small. On the other hand, of interest is the evolution of
the distribution P on much longer times, of the order of
the relaxation time of the system tr. The time tr charac-
terizes how the system approaches the stable state in the
absence of fluctuations and is independent of the system
size.

Describing evolution of P on times ∼ tr requires coars-
ening over time intervals ∝ 1/N , and in particular over
the inter-pulse interval. This can be done by introducing
the characteristic pulse speed ξ(t),

ξ(tn) =
1

N(tn − tn−1)
. (4)

The continuous function ξ(t) is obtained by analytic con-
tinuation from the discrete set ξ(tn); it is assumed that
ξ(t) is smooth, ξ̇(t)(tn − tn−1) � ξ(t) for |t − tn| � tr.
Note that we are calling ξ(t) speed in contrast to rate to
emphasize its deterministic nature and to distinguish it
from the rates used in other equations.

Function ξ(t) determines the number of pulses Nξ(t)τ
that happen in a time interval τ such that tn − tn−1 �
τ � tr. We will assume that ξ(t) is either constant or
periodic in time, with period T � tn − tn−1. We further
assume, for simplicity, that this period coincides with
the period of the rates W (X, r, t) if these rates are time-
dependent. Then, in the neglect of fluctuations, the sys-
tem can have periodic steady states; the results can be
immediately extended to the case where the periods of
W and ξ are commensurate.

Introducing ξ(t) does not allow one to directly coarsen
the master equation for the probability distribution
P (X, t) over time. Indeed, on the tail of the distribution,
which is of interest for the problem of large rare fluctu-
ations, function P is steep, |P (X + ∆, t) − P (X, t)| ∼
P (X, t), which means that it significantly changes from
pulse to pulse and thus P (X, t+τ)−P (X, t) is not given
by τ∂tP even for τ � tr.

A. The Hamiltonian formalism

A differential equation that describes important fea-
tures of the evolution of the distribution in coarsened
time can be obtained by seeking P (X, t) in the eikonal
form [25–27],

P (X, t) = exp[−Ns(x, t)], x ≡ X/N, (5)

where x is the scaled state vector. In the limit N � 1
this vector is quasi-continuous. We assume that function
s is a smooth function of x and t. This assumption will
be checked a posteriori.

To obtain an equation for s between the pulses one can
write the rate operator in Eq. (2) as

ŴP =
∑

r
[exp(−r∂X)− 1]W (X, r, t)P (X, t).

Functions W (X, r, t) usually smoothly (polynomially)
depend on X. In contrast, function P can be exponen-

tially steep, see Eq. (5). Respectively, to the leading or-
der in 1/N one should only differentiate P in the above
expression. Then from Eqs. (1) and (3) one obtains

s(x +
1
N

∆, tn + 0) = s (x, tn − 0) ,

∂ts = −Hw(x, ∂xs, t), tn < t < tn+1 (6)

where n = 1, 2, . . .,

Hw(x,p, t) =
∑

r
w(x, r, t) [exp(pr)− 1] ,

w(x, r, t) ≡ 1
N
W (Nx, r, t). (7)

The terms disregarded in the equation for s between the
pulses give corrections ∝ 1/N [28].

The change of s resulting from a single pulse is small,
∝ 1/N [at the same time, from Eq. (5), P can change
significantly]. This allows us to obtain a single differen-
tial equation for s on a coarsened time scale. Indeed,
choosing time τ so that tn − tn−1 � τ � tr, in which
case many pulses occur during the time τ , but the overall
change of s accumulated between the pulses is small, we
obtain

s(x, t+ τ)− s(x, t) ≈ −τHw(x, ∂xs(x, t), t)
− τξ(t)∆ · ∂xs, (8)

where ξ(t) is given by Eq. (4). We can now formally go
to the limit τ → 0, which gives

∂ts(x, t) = −Hw(x, ∂xs(x, t), t)− ξ(t)∆ · ∂xs. (9)

Equation (9) has the form of a Hamilton-Jacobi equa-
tion, with s being the action of an auxiliary dynami-
cal system with coordinate x, momentum p = ∂xs, and
Hamiltonian

H(x,p, t) = Hw(x,p, t) + ξ(t)p∆. (10)

Hamiltonian H contains both the well-known part Hw

that comes from random elementary transitions [26, 27,
29] and a part that comes from the DIT. The latter is
described by the last term in H and is characterized by
two natural parameters: the speed of transitions per in-
dividual ξ(t) and the change in population at a transition
∆. The structure of this term is very different from that
of the term Hw: it depends linearly on the momentum
of the auxiliary system p, whereas Hw depends on p ex-
ponentially, that is, much stronger. Since functions w, ξ
are either independent of time or periodic with the same
period, Hamiltonian H as a whole is either independent
of time or depends on time periodically.

The reduction of the problem of the distribution tail
to the Hamilton-Jacobi equation (9) makes it possible to
study the distribution in the presence of deterministic
control using standard tools of the rare-event theory [26,
27, 29]. The assumed smoothness of s as function of
x immediately follows from Eq. (9) for smooth initial
conditions.
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B. Comparison with the previously studied models

It is instructive to compare Eqs. (9) and (10) with the
description of large fluctuations in noise-driven continu-
ous systems in the presence of a control field. There, for
white Gaussian noise, the probability density can be also
sought in the eikonal form of Eq. (5), with N replaced
by the reciprocal noise intensity [30]. The Hamiltonian
has a structure similar to Eqs. (7) and (10), with the dif-
ference being that exp(pr) in Hw should be expanded to
second order in p. The form of the control-field induced
term is the same as in Eq. (10), if the field corresponds
to an additive force driving the continuous system, with
−ξ(t)∆ playing the role of this force, cf. [22, 23].

We should also compare the present formulation with
that for the elementary transition rates control [24]. The
type of the ETR control most close to the considered here
DIT control is where elementary transitions X→ X+∆
rather than being directly imposed occur at random at
a controlled rate Nξpr(t) which is independent of X [18].
As we will see, in the mean-field approximation where
fluctuations are disregarded, the evolution of the system
in the presence of such control is described by the same
equation as for the DIT control.

To account for the ETR control, one should incor-
porate the term describing the controlled transitions in
the operator Ŵ in Eq. (1), W (X, r, t) → W (X, r, t) +
Nξpr(t)δr,∆. In the eikonal approximation, to the lead-
ing order in 1/N one then obtains the Hamilton-Jacobi
equation for s(x, t) ≈ −N−1 lnP (Nx, t), with Hamilto-
nian

Hpr(x,p, t) = Hw(x,p, t) + ξpr(t)[exp(p∆)− 1]. (11)

The major distinction from the DIT control, Eq. (10), is
in the different dependence of the control term on mo-
mentum p. The origin of this difference and its conse-
quences for the control will be discussed in Sec. IV. For-
mally, the DIT-term in the Hamiltonian H in Eq. (10)
looks like a small-p∆ expansion of the term ∝ ξpr in Hpr.

C. Multiple transitions

The analysis above should be modified if the control
pulses are applied rarely but cause macroscopic changes
in the system, so that a macroscopic fraction of the
molecules or population is changed in a single pulse. For-
mally, this means that |∆| � 1 and the ratio |∆|/N is
independent of N in the limit of large N . As mentioned
above, an example is provided by injection or extraction
of a macroscopic number of molecules of a certain sort
into the chemical reactor or the biological cell, or a group
of individuals into the population. If the pulses are short,
one can describe their effect by Eq. (3). We will assume
that |∆|/N is sufficiently small, so that the system is
weakly changed by a single pulse.

For the system to have a steady periodic state, the
pulses should be applied periodically, with tn − tn−1 =

tn+1 − tn ∼ tr. The tail of the distribution can still be
sought in the eikonal form, Eq. (5). However, now the
equation for s(x, t) is of the form

∂ts = −Hw(x, ∂xs, t)

+
∑

n

δ(t− tn)
[
exp

(
N−1∆ · ∂x

)
− 1
]
s. (12)

It differs from the Hamilton-Jacobi equation, and the
general analysis of this equation is beyond the scope of
this paper. However, we are interested here in a com-
paratively weak deterministic control, where |∆|/N is
small. Then it is sufficient to keep the lowest-order term
in |∆|/N in Eq. (12), and this equation becomes of the
same form as Eq. (9) with ξ(t) in Eq. (9) being a period-
ically repeated δ-function.

IV. MEAN FIELD DYNAMICS AND OPTIMAL
FLUCTUATIONS

The action s(x, t), and thus the distribution P to the
leading order in 1/N can be found from the Hamiltonian
equations of motion that follow from Eq. (10),

ẋ =
∑

r
rw(x, r, t)epr + ξ(t)∆,

ṗ = −
∑

r
∂xw(x, r, t) (epr − 1) . (13)

These equations have an important solution

˙̄x =
∑

r
rw(x̄, r, t) + ξ(t)∆, p = 0. (14)

It describes the mean-field dynamics of the population,
i.e., the dynamics in the neglect of fluctuations. Equation
(14) can be obtained also directly from Eqs. (1) and (3)
by multiplying them by X, summing up over X while
disregarding the width of the distribution P (X, t), and
coarsening over time. In the case of the ETR control
described by Hamiltonian (11), the equation of motion
for x̄ has the same form as Eq. (14), except that ξ(t) is
replaced by ξpr(t).

We assume that Eq. (14) has a stable solution xA. We
will consider the simple and fairly common case where xA

is stationary, for time-independent rates w(x, r, t) and
constant ξ(t), whereas for periodically varying in time
rates and/or periodic ξ(t) (with the same period), xA is
periodic with the same period as the modulation. The
time tr gives the relaxation time of x̄ and can be found
from Eq. (14) linearized about xA.

We also assume that Eq. (14) has an unstable saddle-
type stationary or periodic state xS on the boundary of
the basin of attraction to xA. In the problem of extinc-
tion, at xS one of the types of molecules or population
groups becomes extinct. Respectively, one of the com-
ponents of vector x, which we call xE , becomes equal
to zero. The state xS is stable with respect to all com-
ponents xi 6=E . Note that, by construction, xi ≥ 0, the
system cannot go beyond the extinction state to nega-
tive xE . In addition we assume that, once the group has
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gone extinct, it does not re-emerge, that is, once the hy-
perplane xE = 0 has been reached, the system will stay
there.

In the problem of switching between coexisting stable
states, on the other hand, xS is a conventional saddle
state. In this case, generally (xS)i > 0 for all i and the
system can be on any side of xS along any component xi.
From the opposite sides of xS in the unstable direction
the system will go to different stable states, in the neglect
of fluctuations.

We assume that there is only one state xS on the
boundary of the basin of attraction to xA. The system
can either switch or one group of molecules or popula-
tion can go extinct. The control field can shift the equi-
librium position xS . In the extinction problem, the un-
stable state should be in the hyperplane xE = 0. The
control field cannot lead to the re-birth of the group that
has gone extinct. Therefore in the considered model of
imposed transitions ∆E = 0 for the extinction problem.

A. Logarithmic susceptibility

Equations (13) can be used to find the rates of
fluctuation-induced switching and extinction in biophysi-
cal and population systems. The problems of calculating
these rates have much in common, but are not identi-
cal. The difference between them comes from the fact
that in switching the system has to cross the boundary
of the basin of attraction of the initially occupied stable
state xA and go to the other state, whereas in extinc-
tion it suffices to reach the hyperplane xE = 0, and then
the system will stay in this hyperplane. This difference
shows in Eqs. (16) and (17).

To logarithmic accuracy, the extinction and switch-
ing rates We are determined by the probability distri-
bution P (X, t) for x → xS and W−1

e � t � tr, given
that initially the system was in the vicinity of state xA

[18, 27], with xS being the extinction and saddle states,
respetively. Taking into account that, in this time range,
the distribution is maximal at xA, we have [14, 18, 19, 27]

We ∝ exp(−Q), Q = Nsext, (15)

sext =
∫ ∞
−∞

dt [pẋ−H(x,p, t)] .

The quantity sext is given by the action s(x) for x→ xS
counted off from the value of s at the stable state xA.
It can be calculated by minimizing the functional sext

with respect to
(
x(t),p(t)

)
, which leads to finding the

Hamiltonian trajectory (13) that starts for t → −∞ at
state xA and approaches state xS for t→∞. This opti-
mal trajectory, (xopt(t),popt(t)), gives the most probable
path followed by the system in spontaneous extinction or
switching.

The boundary conditions for the switching and extinc-
tion problems were discussed in [18, 24, 27]. One can
extend the analysis to show that, in the presence of the

DIT control that we consider, these boundary conditions
do not change. Specifically, in the switching problem

p→ 0, t→ ±∞, (16)

whereas in the extinction problem

p→ 0, t→ −∞; pi 6=E → 0, t→∞, (17)

while the component pE remains nonzero for t→∞. In
the both problems, the Hamiltonian H → 0 for t→ ±∞.

Of utmost interest for us is the effect of weak periodic
control,

ξ(t+ T ) = ξ(t), ξ(t)tr � 1, (18)

where T is the modulation period. In this case sext has
a simple form sext = s

(0)
ext + s

(1)
ext, where

s
(1)
ext[ξ(t)] = min

t0

∫ ∞
−∞

dtχ(t− t0)ξ(t), (19)

χ(t) = −p(0)
opt(t)∆.

Here, s(0)ext is the action in the absence of the control field,
and

(
x(0)

opt(t),p
(0)
opt(t)

)
is the most probable (optimal) ex-

tinction or switching path for ξ = 0; s(1)ext gives the field-
induced correction to the action. We are interested in
the case where s

(1)
ext < 0; only in this case the control

increases We.
Equation (19) is written for the case where the elemen-

tary transition rates W (X, r) are independent of time. In
this case the fluctuation leading to extinction or switch-
ing can happen at any time with the same probability;
respectively, the optimal path

(
x(0)

opt(t),p
(0)
opt(t)

)
can be

centered (for example, |ẋ(0)
opt(t)| can reach maximum) at

an arbitrary time t0. A time-dependent control lifts this
time degeneracy. It synchronizes the optimal path so as
to most strongly decrease action sext. This synchroniza-
tion is formally described in Eq. (19) by minimization
with respect to t0.

Even where the correction to the action is small,
|s(1)ext| � s

(0)
ext, the change of the switching or extinction

rate, which is given by the factor exp(−Ns(1)ext), can be
very large. It is this large change that makes the con-
trol exponentially efficient. Function χ(t) is called the
logarithmic susceptibility [31]. It describes the linear re-
sponse of the logarithm of the probability P (X) to the
control field.

Equation (19) describes also the effect of multiple
transitions, where |∆| � 1, provided |p(0)

opt(t)∆|/N �
1. Function ξ(t) in Eq. (19) should be replaced with
−N−1

∑
n δ(t− tn) in this case.

If the elementary transition rates W (X, r, t) are peri-
odic in time, the optimal trajectories

(
x(0)

opt(t),p
(0)
opt(t)

)
are periodically repeated in time, but their phase is fixed
by the time dependence of W (X, r, t). If ξ(t) has the
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same period, the correction to the action is

s
(1)
ext[ξ(t)] =

∫ ∞
−∞

dtχ(t)ξ(t)

with χ(t) of the same form as in Eq. (19). In this case,
however, the control field does not synchronize transi-
tions and its effect depends on its phase with respect to
the optimal trajectories of extinction or switching.

B. Comparison with the control of elementary
transition rates

The analysis of the weak ETR control was done
earlier[18, 24]. It is based on the eikonal formulation with
the Hamiltonian (11). The control-induced change of the
extinction or switching rate We is given by Eqs. (15) and
(19) in which ξ(t) is replaced with ξpr(t) and the loga-
rithmic susceptibility χ(t) is replaced with

χpr(t) = 1− exp[p(0)
opt(t)∆]. (20)

By comparing Eqs. (19) and (20) one can see that −χpr ≥
−χ, for the same ∆. This shows that the sensitivity of
the extinction rate to the ETR control is higher than to
the DIT control.

The stronger effect of the ETR control for the same
rate ξpr(t) as the speed ξ(t) and for the same change of
the number of molecules or individuals in a transition ∆
is somewhat unexpected. It can be understood qualita-
tively in the following way. In both cases the control field
does not cause extinction on its own. It cooperates with
the fluctuation that leads to extinction. The stronger the
field the stronger is its effect, but also the effect increases
with the increasing momentum on the optimal extinction
trajectory p = ∂xs. This momentum gives the steep-
ness of the probability distribution, as seen from Eq. (5).
The steeper the distribution the stronger is the effect of
changing it by the control field.

For the ETR control, the control-induced transitions
have the Poisson distribution. There is a probability that
within a given time interval τ this number will be higher
than the average number Nξpr(t)τ . Where the distribu-
tion in the absence of control is steep, that is, |p| is large,
the major effect on We will come from realizations of the
control with such more frequent transitions.

In other words, for the ETR control one can think of
extinction or switching as resulting from two types of
fluctuations: fluctuations in the absence of the control
and fluctuations of the control field itself. The extinction
rateWe is determined by the optimal, most probable fluc-
tuations of the both types. It is this double optimization
that makes We more sensitive to the ETR control.

V. OPTIMAL CONTROL BY DETERMINISTIC
TRANSITIONS: VACCINATION FOR A

LIMITED VACCINE SUPPLY

We now consider the problem of optimal control of ex-
tinction and switching rates by deterministically imposed
transitions. To be specific, we consider disease extinc-
tion, with the control performed by vaccination. The
results are not limited to this model, the only condition
that we use is that the speed ξ(t) ≥ 0. This condition
follows from Eq. (4). We also assume that ξ(t) is peri-
odic. The optimal form of ξ(t), i.e., the optimal control
protocol, depends on the imposed constraints. The con-
straint that we consider is fairly general, and again, is
not limited to vaccination only. Essentially, we consider
a constraint on the number of imposed transitions per
modulation period.

As mentioned earlier, a simple model of vaccination is
where the vaccine is applied to susceptible individuals,
and in an elementary transition a susceptible becomes
vaccinated and thus immediately immune to the infec-
tion. A natural constraint on the speed of vaccination is
that the total amount of vaccine per period NΞ is fixed,

T−1

∫ T

0

dt ξ(t) = Ξ, (21)

where T is the vaccination period, ξ(t+ T ) = ξ(t).
The optimal vaccination speed ξ(t) should minimize

the disease extinction barrier Q subject to constraint
(21). From Eq. (15), optimal ξ(t) is given by the solution
of the variational problem of minimizing the functional

s̃ext [ξ(t)] = sext [ξ(t)] + λT−1

∫ T

0

[ξ(t)− Ξ] dt, (22)

where λ is the Lagrange multiplier and sext[ξ] is given by
Eq. (15).

For comparatively weak vaccination, where ξ-
dependence of sext is of the form of Eq. (19), minimiza-
tion with respect to ξ(t) can be done in the same way
as for probabilistic vaccination where the vaccination is
a Poisson process characterized by rate [24]; such vacci-
nation is an example of the ETR control. It follows from
the form of the constraint (21) and the condition ξ(t) ≥ 0
that the optimal vaccination speed as a function of time
is independent of the logarithmic susceptibility χ(t). If
the system is stationary in the absence of periodic vacci-
nation, from Eq. (19)

s
(1)
ext ≥ min

t
χT (t)

∫ T

0

dtξ(t) = ΞT min
0≤t<T

χT (t),

χT (t) =
∞∑

n=−∞
χ(t+ nT ). (23)

The minimum of s(1)ext is reached, and the inequality (23)
becomes an equality, for ξ(t) of the form of periodically
repeated δ-pulses,

ξ(t) = ΞT
∑

n

δ(t− tmin + nT ). (24)
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The instant tmin determines where vaccination pulses are
applied. It is arbitrary for a stationary system. In fact,
the disease extinction events are adjusted to the vacci-
nation pulses. This adjustment is described by the min-
imization over t in Eq. (23); the periodic function χT (t)
is minimal at tmin.

The optimal shape of ξ(t) is easy to understand: the
vaccine is most efficient if it acts where |χT (t)| is maxi-
mal, and also where χT (t) < 0 to assure that s(1)ext < 0.
We note that strong periodic vaccination has been inves-
tigated in the framework of deterministic epidemic mod-
els, where all fluctuations are disregarded, and it was
found that pulsed vaccination is advantageous compared
to vaccination at a constant rate [32].

For periodically modulated systems, where W (X, r, t)
are periodic functions of time, optimal ξ(t) still has the
form of pulses, Eq. (24), but now spontaneous extinc-
tion events are synchronized without vaccination, and
this is the vaccination that must adjust in order to in-
crease the rate of disease extinction. Equation (23) for
s
(1)
ext applies only if tmin is chosen so that χT (t) is mini-

mal at tmin; a wrong choice of tmin will be less efficient
and can even slow down spontaneous disease extinction
instead of speeding it up.

It is instructive to compare the results with the prob-
abilistic ETR-type vaccination, where vaccination is ap-
plied at random with rate ξpr(t). The differences are in
the form of the logarithmic susceptibility, cf. Eqs. (19)
and (20), and in the meaning of the parameter Ξ. In
the deterministic scenario, NTΞ gives the actual num-
ber of individuals vaccinated in time T , which is fixed
and is determined, for example, by the periodically sup-
plied vaccine. In contrast, in the probabilistic scenario
NTΞpr = N

∫ T

0
dt ξpr(t) gives the average number of vac-

cinated individuals per time T . The actual number is
random. For largeNTΞpr, the distribution of the number
of vaccinated is close to Gaussian, with variance NTΞpr.

A. Resonant optimal vaccination

Expressions (15), (19), and (24) allow one to investi-
gate the effect of optimal deterministic vaccination on the
disease extinction rate, to study how this effect depends
on the interrelation between the parameters of the sys-
tem and vaccination, and to find the change of the disease
extinction rate for specific models. The analysis is simi-
lar to that for probabilistic vaccination [24], and we will
not reproduce it here. Generally, the effect increases with
the increasing period T , as seen from Eq. (23). However,
there may be important features that require special at-
tention.

As an illustration we show the results for determinis-
tic vaccination in one of the broadly used epidemic mod-
els, the susceptible-vaccinated-infected-recovered (SVIR)
model [12, 33]. Here, in the absence of vaccination,
susceptible individuals, with population X1 = S, are

brought in at rate µN (birth), each population decreases
at rate µXi, i = 1, . . . , 4 (dying), the infection rate is
βX1X2/N , where X2 = I is the number of infected in-
dividuals, and infected can recover at rate γX2. The
vaccination that we discuss corresponds to the decrease
of the number of susceptible individuals at speed Nξ(t).

We assume that both the recovered (R) and vacci-
nated (V ) individuals keep the immunity, they do not
become susceptible again. These groups of population
are “sinks”, there is no influx to other groups and the
transition rates are independent of R and V . The dy-
namics is then determined by two variables, X1 = S and
X2 = I. In the mean-field description, for β > γ + µ
the model possesses a single endemic state xA; for µ <
4 (β−γ−µ)(γ+µ)2β−2 this state is a focus on the plane
(x1, x2).
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FIG. 2. (a) The Fourier transform of the logarithmic sus-
ceptibility with respect to deterministic vaccination for the
SVIR model, Eq. (25). The parameters are β/µ = 80 and
γ/µ = 50. The susceptibility spectrum displays a sharp peak
at the characteristic frequency ω0 of decaying oscillations near
the mean-field endemic state. (b) The change of the scaled ex-

tinction barrier s′ = µs
(1)
ext/Ξ with vaccination period T . The

solid line shows s′ where there is no limit on vaccine accumu-
lation. The dashed lines refer to the case of a limited amount
of accumulated vaccine M , where the actual mean speed of
vaccination is Ξa = min(Ξ,M/T ). The scaled accumulation
limit is M ′ = µM/Ξ. The locations of resonances of s′ are
independent of M .

In the mean-field approximation, the populations of
susceptibles and infected exhibit decaying oscillations in
time as the system approaches the endemic state. In
the same parameter range, the populations oscillate also
on the optimal disease extinction path [19]. Because of
the oscillations, the Fourier-transform of the logarithmic
susceptibility

χ̃(ω) =
∫ ∞
−∞

dt χ(t) exp(iωt) (25)

displays a resonant peak shown in Fig. 2 (a) [χ̃(ω) is
obtained using the optimal trajectory

(
x(0)

opt(t),p
(0)
opt(t)

)
found in Ref. 24]. The peak of χ̃(ω) is centered at the fre-
quency ω0 of decaying (in the mean-field approximation)
oscillations near xA.
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Because of the spectral peak in χ̃(ω), the vaccination-
induced term in the extinction exponent Q(1) = Ns

(1)
ext

depends on the vaccination period T nonmonotonically.
This behavior is illustrated in Fig. 2 (b). Where T is
close to a multiple of the oscillation period 2π/ω0, −s(1)ext

displays a peak. Respectively, the disease extinction rate
is exponentially enhanced in this case.

Shown in Fig. 2 (b) are also the results for s(1)ext in the
case where the total amount of accumulated vaccine is
limited, which means ΞT ≤ M , where M characterizes
the accumulation limit. Such constraint is typical for live
vaccine, as it may be dangerous to store too much vaccine
in this case. For a given period T , this is effectively
a constraint on the average vaccination speed Ξ, as it
makes no sense to increase it beyond M/T . If we set
Ξ = M/T for large T , then it is seen from Eq. (23) that
the effect of vaccination saturates with increasing period,

s
(1)
ext →M min

t
χ(t), T →∞.

However, the maximum of |s(1)ext| is reached not for T →
∞, as seen from the dashed lines in Fig. 2 (b), but for T
close to an appropriate multiple of 2π/ω0.

If the maximum of |s(1)ext| lies where the solid and dashed
lines are separated, as for M ′ = 3, the saturation limit
has already been reached for the corresponding T , and
the actual vaccination speed Ξa = min(Ξ,M/T ) is equal
to M/T . On the other hand, for M ′ = 1 the maximum
of |s(1)ext| lies practically on the solid line, and thus it is
reached for Ξa ≈ Ξ. In practice, for a given maximum
accumulation level M and a given range of available av-
erage speeds Ξ and vaccination periods T , one should
adjust Ξ and T so as to take advantage of the resonance
while keeping Ξa equal to Ξ.

VI. CONCLUSIONS

We have developed a theory of control of large rare
fluctuations in reaction and population systems by de-
terministically imposed transitions. These transitions
take place at well-defined instants of time and cause well-
defined changes in the numbers of individuals or reacting
molecules. The control is comparatively weak, so that
the mean-field dynamics of the system is perturbed very
weakly. Nevertheless the probabilities of rare events may
be changed significantly.

The theory applies to mesoscopic systems, where the
characteristic number of molecules or individuals N is
large, but not exceedingly large, so that the rates of rare
events, which depend on N exponentially, are not ex-
ceedingly small. The analysis takes into account the dis-

creteness of the numbers of individuals or molecules and
the fact that the tail of the probability distribution is
not smooth, the distribution significantly changes if the
number of individuals/molecules changes by one. Our
approach is based on the eikonal approximation. It al-
lowed us to reduce the problem of the distribution tail to
a Hamilton-Jacobi equation for the action of an auxiliary
conservative dynamical system and express the Hamilto-
nian in terms of the characteristic speed of the determin-
istic transitions.

Of primary interest for this paper was control of such
rare events as switching between coexisting stable states
or population extinction. We found that even a com-
paratively weak control field can lead to an exponential
increase of the rates of these events. The exponent is
proportional to N and linearly depends on the speed of
the imposed transitions. It is determined by the motion
of the system in the most probable fluctuation leading to
the event in the absence of the control.

The considered control should be contrasted with the
ETR control, where all elementary transitions happen at
random, but their rates are controlled. Unexpectedly, we
found that the ETR control can be more efficient than the
DIT control provided the average transition speed and
the composition change in a transition are the same. This
is a consequence of the double optimization in the ETR
control, where the rate of the rare event is determined
by both the optimal fluctuation leading to this event in
the absence of control and the optimal realization of the
control.

We have considered the problem of optimal control of
rare events where a number of deterministically imposed
transitions per period is limited. An important example
is disease extinction by vaccination in the situation of
a limited average speed of vaccine supply. The optimal
shape of the vaccine pulses is a train of δ-pulses. It is
independent of the model of the system. The results are
illustrated using the well-known susceptible-vaccinated-
infected-recovered model, and the possibility of resonant
exponential enhancement of the effect of vaccination is
demonstrated for the deterministic vaccination.

We note in conclusion that the theory of rare events
in mesoscopic population and reaction systems developed
in this paper fills the gap between the previously studied
deterministic control of rare events in dynamical systems,
which are continuous, and the ETR control of reaction
systems, which are inherently discrete.
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