
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Role of dissolved salts in thermophoresis of DNA: Lattice-
Boltzmann-based simulations

Audrey Hammack, Yeng-Long Chen, and Jennifer Kreft Pearce
Phys. Rev. E 83, 031915 — Published 24 March 2011

DOI: 10.1103/PhysRevE.83.031915

http://dx.doi.org/10.1103/PhysRevE.83.031915


EV10526

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Role of dissolved salts in thermophoresis of DNA: Lattice Boltzmann based

simulations

Audrey Hammack,1 Yeng-Long Chen,2, 3 and Jennifer Kreft Pearce1, ∗

1Department of Chemistry, University of Texas at Tyler, Tyler,TX
2Institute of Physics, Academia Sinica, Taipei, Taiwan

3Research Center for Applied Science, Academia Sinica, Taipei, Taiwan

We use a lattice Boltzmann based Brownian dynamics simulation to investigate the dependence of
DNA thermophoresis on its interaction with dissolved salts. We find the thermal diffusion coefficient
DT depends on the molecule size, in contrast with previous simulations without electrostatics. The
measured ST also depends on the Debye length. This suggests thermophoresis of DNA is influenced
by the electrostatic interactions between the polymer beads and the salt ions. However, when
electrostatic forces are weak, DNA thermophoresis is not found, suggesting that other repulsive
forces such as the excluded volume force prevent thermal migration.

PACS numbers: 87.14Gk, 82.35Rs, 66.10cd

I. INTRODUCTION

Thermophoresis, also known as thermal diffusion or
the Soret effect, is the migration of a species due to a
temperature gradient. Understanding the phenomenon
has proved challenging since results from different exper-
iments often contradict each other because of the com-
plexity of the underlying mechanism [1–9]. Particle ther-
mophoresis can be obscured by particle transport by ther-
mal convection, and thermophoresis in multi-component
mixtures is further complicated by the interaction be-
tween different species. In particular, thermophoresis of
charged particles is complicated by the thermal migra-
tion of salt ions, which induces an electric field when the
cations and anions have very different thermodiffusivi-
ties [8, 9]. When the induced electric field is strong, the
particle thermodiffusivity has been found to be directly
proportional to the field strength. When the field is weak,
particle thermodiffusion is found to be quenched at high
ionic strengths. This study will focus on the role played
by interspecies interactions on particle thermodiffusion in
a binary mixture, and neglect the effects of fluid thermal
convection.

To quantify results, the flux of a migrating species is
described by Ficks Law, with an extra term to account
for thermal diffusion:

Jy = −ρ
∂B

∂y
D − ρDT B(1 − B)

∂T

∂y
(1)

where Jy is the particle flux in the y-direction. The
first term denotes diffusion due to a concentration gra-
dient: D is the molecular diffusion coefficient, B is the
concentration of the migrating species and ρ is the mass
fraction. The second term describes diffusion due to the
temperature gradient: DT is the thermal diffusion coef-
ficient and T is the local temperature. A third term can
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be added to the equation to account for eletrophoresis if
an electric field is present. At steady state, Jy=0 and the
Soret coefficient, ST is defined as

ST =
DT

D
=

−1

B(1 − B)

∂B/∂y

∂T/∂y
(2)

ST can be positive or negative depending on whether the
species migrates to the hot (ST < 0) or the cold (ST > 0)
region. In fact, the sign of ST has been shown to change
in experiments depending on the physical parameters of
the system[10–13].

As examples of the difficulties in understanding this
phenomena, we summarize the results found in [1–
6, 8, 9, 13]. It is common for different experiments on the
same migrating species to observe different determining
factors for the value of ST and DT . In [9, 13], the mecha-
nism of thermophoresis of sodium dodecyl sulfate (SDS)
micelles or nanoscale latex spheres in solution depended
on the type of salt also dissolved in the solution. Two
different scenarios were observed: if the cation and an-
ion have significantly different ST values, an electric field
would develop akin to the Seebeck effect in solids due to
differences in thermal migration of the ions. If the salt
did not differentially migrate, electrokinetics did not play
a significant role in determining migration of the larger
species.

Similarly, two regimes for the thermophoretic mobility
for polymers have been reported [3, 4]. In the dilute poly-
mer regime, the bulk solvent viscosity determines DT .
Near the polymer glass transition, the effective local poly-
mer viscosity determines the thermophoretic mobility. In
addition, DT for neutral polymers has been shown to be
molecular weight independent [2]. DT for charged poly-
mers, in contrast, has been measured to increase with
decreasing molecular weight [1, 6].

Additionally, observations in [6] found that DT varied
with particle size in colloidal suspensions, while the work
of Piazza et al. [8] did not find the same size dependence.
The particle composition in both studies was similar, but
particle surface treatments were used in [8] to standard-
ize interfacial properties. Finally, in the work of Duhr
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et al. [5], DT for double stranded DNA remained con-
stant for the two different lengths examined (48.5 kbp
and 27 bp), with DT = 0.4µm2/s/K. However, Duhr
and Braun later found that DT decreases with increas-
ing DNA length [6]. The difference between these two
experiments could be due to the lower salt concentration
and stronger electrostatic forces in the later work. We
will test this hypothesis by measuring the thermal diffu-
sion coefficient and Soret coefficient for DNA in a sim-
ulation which allows direct observation of the DNA-ion
interactions.

Several models based on both local equilibrium[6, 14,
15] and non-equilibrium [16–22] assumptions have been
developed to interpret these complex experimental re-
sults. Dhont et al., proposed a model based on force
balance for the thermal diffusion coefficient of charged
colloidal particles [14]. In the limit of thin electric double
layers, this model is equivalent to those proposed by Fay-
olle, et al. and Duhr and Braun[6, 15]. This theory does
match some experiments [6, 23], but not others [8, 9].
Studies indicate that thermophoresis of charged micelles
and nanoscale latex spheres are strongly influenced by
an electric field that develops as positive ions migrate
differently than negative ions in solution. This leads to a
slight charge accumulation at the boundaries of the con-
tainer and an electric field that influences the motion of
the micelles [9, 13]. Würger proposed a model based on
the development of an electrolyte-induced electric field
for spherical particles much larger than the Debye length
that captures the qualitative trends observed in[9]. Oth-
ers have proposed models for thermophoresis that are
based on a non-equilibrium approach that nearly quanti-
tatively match experiments[16–21]. Of these approaches,
either based on equilibrium or non-equilibrium thermo-
dynamics, no single model satisfactorily captures all re-
ported trends. Under different experimental conditions,
different interactions may dominate thermophoretic mo-
bilty; both equilibrium and non-equilibrium approaches
are needed to fully capture the thermophoresis mecha-
nism.

To shed light on the differences between the two recent
experiments on DNA thermophoresis [5, 6], we present
data from a simulation that employs the lattice Boltz-
mann model for hydrodynamics and a worm-like chain
model with Brownian dynamics for the DNA. The model
allows us to capture the long time scales needed for the
experimental system to equilibrate in a relatively short
amount of computing time [24, 25]. The role and dy-
namics of dissolved ions on DNA thermophoresis cannot
be easily measured in experiment. However, the simula-
tion is able to capture and quantify the motions of DNA
chains, salt ions, and counterions.

II. SIMULATION

A. Fluid Model

The simulation employs the lattice Boltzmann method
(LBM) to solve for the velocity distribution of solvent
molecules on fixed lattice sites at each time step [26–
30]. We use this model as it is an explicit model for
fluid-particle and fluid mediated particle-particle inter-
actions, rather than implicit, as in some Brownian dy-
namics simulations [25]. The forces in the simulation in-
clude hydrodynamic interactions between particles. The
fluid-particle interaction is necessary to reproduce ther-
mophoresis [24]. The fundamental quantity in the LBM
is ni(r, t), which describes the distribution of solvent
molecules with a discretized velocity, ci at position r and
time t [28]. The maximum velocity in the simulation is

the speed of sound, cs=
√

1/3∆x/∆τ , where ∆x = 1 is
the lattice spacing in simulation units and ∆τ = 0.05
is the fluid timestep in simulation units (∆x = 0.5µm
and ∆τ=8.8x10−6s). At equilibrium, the velocity distri-
bution of solvent molecules will be Maxwell-Boltzmann,
and can be represented by a second-order expansion:

neq
i = ρaci [1 + (ci · u)/c2

s + uu : (cici − c2
sI)/(2c4

s)] (3)

where ρ is the density, u is the local velocity, and I is
the identity matrix. The coefficients aci are found by
satisfying the local isotropy condition:

∑

aciciαciβciγciδ = c4
s(δαβδγδ + δαγδβδ + δαδδβγ) (4)

where α, β, δ, and γ represent the x, y, or z axis.
The equilibrium conditions for the density, ρ, momentum
density j, and the momentum flux density Π:

ρ =
∑

neq
i (5)

j = ρu =
∑

ci · neq
i (6)

Π = ρ(uu + c2
sI) =

∑

neq
i · cici (7)

must also be satisfied. The solvent molecules interact
with each other through collisions which dissipate mo-
mentum and relax back to equilibrium. The changes in
the velocity distributions, as a result of these collisions,
arise according to:

ni(r + ci∆τ, t + ∆τ) = ni(r, t) + Lij [nj(r, t) − neq
j (r, t)]

(8)
where L is a collision operator for fluid particles collisions
such that the fluid always relaxes back to the equilibrium
distribution. For small Knudson and Mach numbers, this
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equation has been shown to be equivalent to the Navier-
Stokes equation [31]. Our system meets these criteria:
the fluid speed is much less than the speed of sound and
the mean free path of the fluid, in this case water, is much
less than the characteristic length scale of the simulation,
the lattice spacing (∆x = 0.5µm).

The collision operator can be transformed from veloc-
ity space into hydrodynamic moment space, Mq=m · n,
where Mq is the qth moment of the distribution, m is
the transformation matrix and n=(n0,n1, ... n18). The
density, momentum density, momentum flux, and the ki-
netic energy flux constitute the nineteen moments. The
collision operator, L, is chosen to be a diagonal matrix
with elements τ−1

0 , τ−1
1 , ... ,τ−1

18 , where τq is the char-
acteristic relaxation time of the moment q. The con-
served moments, such as density and momentum, have
τ−1=0. The other moments, such as the hydrodynamic
stress have a single relaxation time, τs [32]. For these
simulations, τs= 1.0. The focus of this model is how
electrostatic interactions and local changes in the fluid
momentum affect polyelectrolyte thermophoresis. Thus,
the fluid model only conserves fluid density and momen-
tum, and thermal convection of the fluid is neglected.

B. DNA model

A worm-like chain model is employed for DNA chains
[33–35]. The parameters of the model have been selected
to match the dynamics of YOYO-stained λ-DNA in bulk
solution at 298 K. We model the 48.5kbp λ-DNA with 11
beads connected by 10 springs . The position and velocity
of the beads are updated using the explicit Euler method.
The forces acting on the bead include excluded volume
effects, the elastic force of the springs, the viscous drag
force, the electrostatic force, and the Brownian motion
of the particles.

The Gaussian excluded volume potential ensures that
the DNA behaves according to self-avoiding statistics and
is given by:

Ueν
ij =

1

2
kBTνN2

ks(
3

4πS2
s

)exp(
−3|ri − rj |2

4S2
s

) (9)

where ν=σ3
k is the excluded volume parameter with

σk = 0.105µm (the length of one Kuhn segment),
Nks=19.8 is the number of Kuhn segments per spring and
S2

s=(Nks/6)σ2
k is the characteristic size of the bead. The

ions and DNA beads interact with each other through en-
tropic excluded volume forces, in addition to electrostatic
forces. The parameters for interactions with ions are the
same, except for the excluded volume radius. To more
accurately capture the ions, the excluded volume radius
of the ions is reduced to 1/10 that of a DNA bead, to
approximately 20nm. Thus the excluded volume force is
reduced by a factor of 10 for ion-bead and a factor of 100
for ion-ion interactions.

The Marko-Siggia [36] force extension relation is used

to calculate the DNA elastic force, given by:

fsij =
kBT

2σκ
[(1− |rj − ri|

Nκsσκ
)−2+4

|rj − ri|
nκσκ

−1]
rj − ri

|rj − ri|
(10)

The force extension relation is accurate when Nks >> 1.
Combined with the bead-bead repulsion, the equilibrium
spring length is 0.5 µm.

The solvent exerts a frictional viscous drag in the beads
given by:

Ff = −ζ(up − uf ) (11)

where up is the velocity of the bead and uf is the veloc-
ity of the fluid at the bead position, and ζ=6πηa is the
friction coefficient: η is the fluid viscosity and a is the
hydrodynamic radius of the species. The hydrodynamic
radius for ions is 1/10 that of the radius of the DNA
beads. Thus the ion diffusivity is ten times higher than
a DNA bead’s diffusivity.

The simulation lattice size, ∆x, is chosen to be 0.5µm.
For this model, each bead on a DNA chain has a hydro-
dynamic radius of a=0.077µm, or 0.154∆x [27]. Since the
positions of the beads are not limited to the lattice site
where the fluid velocity is well defined, the fluid velocity
at the position of the bead is determined by linear in-
terpolation of the velocities of the nearest neighbor (nn)
lattice sites such that uf=

∑

iǫ(nn) wiui The weighting

factors wi are normalized and ui represents the fluid ve-
locity at site i. The momentum transfer to the bead is
∆j=-Ff∆t/∆x3. The bead will also transfer this mo-
mentum to the fluid at a neighboring site i with velocity
q, such that ∆fi = wiρacq

∆j · cq [27]. The advantage
of the LBM is that the momentum balance and thermal
fluctuations of the beads are satisfied locally. In addition,
this explicit interaction between the DNA or ion beads
and the fluid is necessary to observe thermophoresis. In
Brownian dynamics based simulations where hydrody-
namic interactions are incorporated through the Oseen-
Burger tensor[25], thermophoresis was not observed since
a difference in the local fluid stress must develop for the
phenomenon to occur [24]. These simulations include hy-
drodynamic interactions explicitly through the momen-
tum exchange between beads and the surrounding fluid.

The beads undergo Brownian motion according to the
local temperature that varies with the bead position.
The local equilibrium approximation is invoked to equili-
brate the bead and the fluid temperature, while ther-
mal convection of the fluid is neglected. This is the
only interaction in which the temperature gradient is
taken into account. The thermal fluctuations of the
beads are drawn from a Gaussian distribution with zero
mean and a variance that depends on the bead position:
σν = 2kBT (y)ζ∆t Here,

T (y) =
2(Thot − Tcold)

Ymax
|(Ymax/2 − y)| + Tcold (12)

where Ymax is the width of the channel, and y is the po-
sition of the bead in the channel. Thot is the maximum
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temperature at the boundaries and Tcold is the minimum
temperature in the channel center. This gives a saw-
toothed shaped temperature profile, a periodic temper-
ature profile is necessary since periodic boundary condi-
tions are imposed in all directions.

The beads of the model DNA interact with dissolved
salts and counter-ions through electrostatic interactions.
For every one DNA bead that bears a -1 charge, there
is one counter-ion with a +1 charge. The dissolved salts
occur as pairs, one bearing a +1 charge and the other
bearing a -1 charge. Both the counter-ions and the dis-
solved salts are modeled as point charges. The electro-
static force is calculated using Coulomb’s Law:

FE = k
q1q2

r2
r̂ (13)

where q1 and q2 are charges (either +1 or -1), r is
the distance between them, and r̂ is the unit vector in
the direction of the line connecting the centers of the
charges. The constant k is the electric constant and is
the same for both DNA-DNA, DNA-ion, and ion-ion in-
teractions. The electric constant can be varied in simula-
tion to change the strength of the electrostatic interaction
and therefore the Debye length. Mathematically, this is
equivalent to increasing or decreasing the charge density
on the polyelectrolyte or the charge of the dissolved salt
since, for example, doubling q1, q2, or k would result in
doubling the force. The parameters q1 and q2 can be
changed in experiments where k cannot be varied. The
total force on each bead or ion is calculated by summing
over all possible pair interactions. A long range cut-off of
one half the system size and a short range cut-off of 0.01
lattice spacings is imposed, thus 0.01∆x < r < 10∆x.
The container size and cut-offs were varied, but this did
not significantly change DT or ST .

Despite the simple and coarse-grained nature of the
model, it has been shown to quantitatively predict the
DNA thermophoretic diffusivity from previous experi-
ments with DT for λ-DNA measured as 0.4µm2/s/K
[5, 24]. The effect of the coarse-grained model on
DNA thermophoresis was examined by varying the de-
gree of DNA coarse-graining. In simulations with no salt
molecules added, DT was found to not depend on the
degree of coarse-graining.

Each of the forces is necessary to model the experimen-
tal systems in [5, 6]. The viscous and Brownian forces
coupled to a lattice-Boltzmann fluid are required to pro-
duce the local gradient in the fluid stress around polymer
beads, which causes thermophoresis of neutral polymers
[24]. The excluded volume force, spring force, and hydro-
dynamic interactions are necessary to capture long chain
dynamics and to prevent the polymer or salt molecules
from becoming too concentrated in any one region. Fi-
nally, we will also investigate the role of the salt molecules
in thermophoresis.

C. Simulation Parameters

10 λ-DNA chains were simulated in a system of size
1µm X 10µm X 10µm = 2∆x X 20∆x X 20∆x with pe-
riodic boundary conditions in all directions. The concen-
tration of DNA is below the dilute-semi-dilute crossover.
The number of salt molecules was varied from 22 to 440.
The Debye length is 0.3-1.7 lattice spacings (0.15µm-

0.85µm) as calculated according to λD =
√

kBT
2k[salt] where

[salt] is the concentration of salt molecules and k is the
electric constant from eqn. 15. The temperature pro-
file is a periodic sawtooth function with minimum at
y = Ymax/2 to allow periodic boundary conditions to
be imposed. By matching the model DNA relaxation
time at T = Tcold to the λ-DNA relaxtion time, the time
step for the fluid is ∆τ=8.8x10−6s (0.05 in simulation
units) and for the polymer ∆ t=1.76x10−6s (0.01 in sim-
ulation units). The total simulation time corresponds
to 528 seconds, with data collected once every 1.76 sec-
onds to ensure independent configurations are sampled;
the final 200 configurations were averaged to determine
ST and DT . For each set of parameters, 5 different sim-
ulations were conducted, each starting from a different
random initial configuration.

0 1 2 3 4 5
−1.8

−1.5

−1.2

−0.9

−0.6

Y ( µm)

ln
(B

)

 

 

FIG. 1: Log of the concentration of DNA beads in the steady
state plotted versus position in channel. The thermal diffu-
sion coefficient is determined from the slope of the linear fit.
Here DT = 0.53 × µm2/s/K. Data shown is the average of
five independent simulations with 10 λ-DNA chains, 220 salt
molecules, and ∆T =2K between y = 0 or y = Ymax (10µm)
and y = Ymax/2 (5µm).

III. RESULTS

The average DNA bead concentration (B(y)) from 5
simulations collected over the last 200 configurations of
each trial is shown in figure 1. The bead concentra-
tion profile corresponds to the flourescence intensity pro-
file measured in experiments[5, 6]. It is observed that
DNA migrates towards lower temperatures (T linearly
decreases as y increases). With ∂T/∂y = 0.4K/µm, one
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DNA Length (kbp) DT (µm2/s/K)
67.9 0.36±.1
48.5 0.53±0.09
19.4 0.62±0.06

TABLE I: Dependence of DT on DNA length. The total num-
ber of DNA beads (110 beads, or 5, 10, and 20 chains)in
the simulation and the number of salt molecules (220 ions,
110 molecules)were the same for each simulation. Error in
the measurement was calculated from the standard deviation
of concentration measurements from five simulations started
with different random initial conditions.

obtains B(y) = exp(0.4ST y) for B << 1 from eq. (2)[37].
The slope of log(B(y)) vs y yields ST , from which DT is
determined to be 0.53µm2/s/K. This value is within the
range of values reported in experiment for different De-
bye lengths [5, 6]. When electrostatic interactions and
ions are neglected, DT was measured to be 0.4µm2/s/K
in both experiment and simulation[5, 24].

Table 1 shows DT for different lengths of DNA. DT in-
creases as chain length decreases as in some experiments
[1, 6]. This length dependence arises due to the inclusion
of dissolved salt ions and the electrostatic force. In previ-
ous simulations without electrostatics, no length depen-
dence was observed [24]. This is qualitatively the same
as the difference between the experiments in [5], which
did not show length dependence of DT , and [6] which
did. Many experiments with neutral polymers have not
observed this length dependence [2], our results do not
contradict these experiments since the length dependence
arises from the electrostatic interaction with dissolved
salts.

However, the quantitative dependence of DT and ST

on DNA length in our simulations is different from that
in [6]. This may be attributed to the significantly dif-
ferent DNA lengths studied in [6] from the ones modeled

0.006 0.010 0.014 0.018 0.022
0.2

0.4

0.6

0.8

1.0

1.2

[Salt]−1/2 (no. mol./µ m3)1/2

S
T
 (

1/
K

)

FIG. 2: Dependence of ST on [salt]−1/2, or Debye length

(λD ∝ [salt]−1/2). The line represents a linear fit to the
data. The calculation is done with λ-DNA, k = 0.0003 is
held constant, and ∆T = 2K.

here. The short DNA in the experimental study is smaller
than the dsDNA persistence length and is rod-like. The
DNA modeled here is coil-like. In addition, the salt con-
centration in the simulation is much lower than in the
experiments due to the computational constraint on the
total number of molecules. Other experiments have also
shown a difference in size dependence of DT of colloids
from the results in [6] due to the complexity of the inter-
actions between particles and solvent [8] .

A. Debye length dependence of ST

Simulations at various salt concentrations were per-
formed to determine the dependence of ST on Debye
length. Figure 2 shows that ST increases as λD increases
since λD ∝ [salt]−1/2. Fig. 2 shows that simulations
of polyelectrolytes also exhibit a linear dependence, pre-
dicted in [6]. Others have observed or proposed other
functional forms for the dependence of ST on Debye
length for spherical SDS miscelles[13]. Our results may
differ due to these differences in geometry. In addition,
our simulation has only a small number of charges for
each polyelectrolyte molecule and a small number of salt
molecules due to the computational time necessary to
run simulations with more species. This might limit the
applicability of our results.

Effects of the electrostatic strength on thermophoresis
is further investigated by changing k, which also changes
the Debye length. Fig. 3 shows that as k increases, ST

increases as well. It is found that for sufficiently large k,
ST ∝

√
k. This agrees with the prediction in [5], that

ST ∝ k ∗ λD ∝
√

k. For k smaller than the range plotted
in Fig. 3, normal diffusion dominates and fluctuations in
bead density are too large to observe a gradient in DNA
concentration, suggesting that DNA migration towards
the colder region is hindered.

3 4 5 6 7 8 9

x 10
8

0.1

0.3

0.5

0.7

S
T
, (

1/
K

)

 

 

k1/2 (Nµ m2/C2)1/2

FIG. 3: Dependence of ST on electrostatic force. The line
represents the linear fit to the data. The calculation is done
with λ-DNA, 220 salt ions, and ∆T = 2K.



6

B. Mechanism of Thermophoresis

To understand the complex particle dynamics during
thermo-migration, the time evolution of the particle con-
centration profile for DNA and the ions are examined, as
shown in Fig. 4. The smaller ions have higher diffusion
coefficients than the DNA beads, and they migrate faster
to the cold region. As seen in Fig. 4, the ion concen-
tration profile reaches steady state in under 30 seconds,
while the DNA bead concentration profile does not reach
steady state until after 250 seconds. This indicates that
there is a competition between the osmotic pressure due
to the non-uniform ion concentration profile that hinders
DNA chain migration, and the electrostatically and ther-
mophoretically driven migration of DNA chains towards
the colder region.

Fig. 5 shows a non-uniform ion concentration profile
and a resulting electric field developed as proposed in
[13]. The local charge in a xz-cross sectional slice of the
channel (2∆x × 1∆x × 20∆x) is shown across the chan-
nel. The system is neutral with the same number of pos-
itive and negative charges, but the larger DNA, which is
negatively charged, migrates in the temperature gradi-
ent more slowly than the small positive counterions. A
small positive charge on the cold side and a small neg-
ative charge accumulation on the hot side develops due
to this difference in the Soret coefficients of the charged
DNA and dissolved salts. The portion in between the
cold and hot regions is effectively neutral. We expect that
for a larger channel with a higher concentration of salt
molecules, the neutral portion would be larger than in our
small system. This charge difference between the hot and
the cold regions must affect DNA chain migration. DNA
beads will be attracted to the cold side. This acts to
enhance thermophoresis. This mechanism is the similar
to that proposed in [13] for the enhancement of thermal
migration of micelles by an induced electric field gener-
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1

 

 

0 1 2 3 4 5
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0
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t=270s to 300s

t=0s to 30s

DNA

Salt

Salt

DNA

FIG. 4: Density profile of DNA beads(•) and salt
molecules(�) averaged over t=0s to t=30s (top) and t=270s
to t=300s (bottom). The best fit line is shown for each plot
to show the development of the concentration gradient.

ated by differentially migrating charged species. When
the electrostatic strength is weak, this attraction becomes
negligible and overcome by the osmotic pressure caused
by the non-uniform ion concentration.

Other than electrostatics, the interparticle forces that
affect thermodiffusion are the short ranged entropic ex-
cluded volume force and the long ranged hydrodynamic
interactions, which are repulsive. If the strength of the
electrostatic attraction is reduced, then the DNA bead
migration is hindered by excluded volume and hydrody-
namic forces, as well as the ion osmotic pressure. The
DNA thermal diffusion coefficient would then decrease
as k decreases until it reaches 0. In the case with no elec-
trostatic interactions, the steady state is analogous to
the size segregation induced by thermophoresis in gran-
ular media [38, 39], where the granular particles only
repel each other. Of the repulsive forces, the dominance
of excluded volume can be inferred from the enhanced
thermophoresis in its absence. If both the electrostatic
and excluded volume forces are reduced to 0, the thermal
diffusion coefficient of λ-DNA is more than doubled, with
DT = 1.3µm2/s/K for the same conditions as the data
plotted in Figure 1.

IV. CONCLUSION

The results indicate that the mechanism governing
thermophoresis is complicated and many factors con-
tribute to polyelectrolyte migration. These include the
salt concentration, the thermophoresis of the ions, the
charge of the ions, strength of the electrostatic interac-
tion, and the interparticle entropic repulsion. While data
shows that a decrease in salt concentration increases ST ,

0 1 2 3 4 5
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FIG. 5: Net charge in units of q, the charge of a single DNA
bead, in a 2∆x×1∆x×20∆x (1µm x 0.5µm x 10µm) slice. For
this simulation, 10 DNA molecules with 330 salt molecules are
simulated with a 2K temperature difference. The net charge
in a region is calculated by summing the charge of all species
in a region. Shown is the average over the final 200 time steps.
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we also find that when the strength of the electrostatic
interaction is decreased, the DNA chains do not migrate.
This indicates that the electrostatic interaction and ex-
cluded volume repulsion between DNA and dissolved ions
are integral in determining ST .

What then is the impact of the dissolved ions on the
system? It seems as though one explanation cannot fit
the entire data set. Similar to studies on miscelle ther-
mophoresis conducted by Vigolo and colleagues [13] and
polymer thermophoresis by Stadelmaier and Kohler [3]
and Rauch et al. [4], we find that there are two regimes
of mobility. In [13], ST of SDS micelles was found to
depend on the thermal migration of an additional elec-
trolyte species. If the migration of the cation and anion
of the electrolyte were sufficiently different, an electric
field developed in the solution and electrostatic interac-
tions partially determined the migration of the micelles.
In this study, we also find the development of an electric
field that enhances thermal migration when the electro-
static interaction is strong enough.

In polymer thermophoresis studies [3, 4], it was found
that mobility of polymers did not significantly change
with a change in polymer concentration in the dilute
regime; however, near the glass transition, mobility de-
creases markedly with increasing concentration, suggest-
ing two regimes. In the dilute regime, the friction the
polymers experience is constant throughout the system
and the solvent viscosity determines DT . In the concen-
trated regime,the effective local viscosity becomes more
important and the environment near the polymer is key.

In our work, when the electrostatic interaction is de-
creased, forces that are local to a single DNA bead
and neighboring salts such as excluded volume repulsion
become dominant. The dominance of short-ranged lo-
cal interactions is also supported by our previous work
in which the near field hydrodynamic stress gradient
is found to cause thermophoresis of a neutral polymer
[24]. However, as FE becomes dominant, long range ap-
proaches are more appropriate.

The predictions from this study need to be further
verified with new experiments to test the effects of in-
creasing electrostatic strength. First, adding multi-valent
ions should enhance thermophoresis since increasing k in
eqn. 15 is mathematically equivalent to increasing the
charge of the dissolved ions. However, care needs to be
taken to prevent DNA molecules from undergoing the
coil-globle transition when multivalent salt is added [40].
This study also suggests that by adding a smaller species,
such as nanoparticles, to polyelectrolyte solutions, poly-
electrolyte thermophoresis may be hindered. In addition,
since the simulation is a coarse grained model of DNA,
we expect our results are applicable to the experimental
studies of other polyelectrolytes as well.
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