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Oscillatory regulatory networks have been discovered in many cellular pathways. An especially
challenging area is studying dynamics of cellular oscillators interacting with one another in a pop-
ulation. Synchronization is only one and simplest outcome of such interaction. It is suggested
that the outcome depends on the structure of the network. A phase-attractive (synchronizing) and
phase-repulsive coupling structures were distinguished for regulatory oscillators. In this paper, we
question this separation. We study an example of two interacting repressilators (artificial regulatory
oscillators based on cyclic repression). We show that changing the cooperativity of transcription
repression (Hill coefficient) and reaction timescales dramatically alter synchronization properties.
The network becomes birhythmic — it chooses between the in-phase and anti-phase synchroniza-
tion. Thus, the type of synchronization is not characteristic for the network structure. However, we
conclude that the specific scenario of emergence and stabilization of synchronous solutions is much
more characteristic.

PACS numbers: 87.16.Yc, 05.45.-a, 87.18.-h

A. Introduction

Regulatory molecular networks are collections of inter-
acting molecules in a cell. One particular kind, oscilla-
tory networks, has been discovered in many pathways.
Well-known examples are the circadian clock [1] and the
cell cycle [2], where the oscillatory nature of the process
plays a central role. Abnormalities of these processes
lead to various diseases, from sleep disorders to cancer
[3, 4]. For this reason, the regulatory oscillators attract
significant attention among biologists and biophysicists.

These natural regulatory networks are very complex
and include many types of molecules, from genes to small
messengers. It is necessary to study the regulatory mech-
anisms by means of highly simplified models. These mod-
els are particularly valuable because artificial regulatory
networks can be engineered experimentally [5–11]. The
qualitative agreement between models and experiments
is remarkable and validates the mathematical approach
to the analysis of regulatory networks. Our goal is reveal-
ing general principles of cellular regulation by studying
various artificial networks.

Modeling studies suggest several designs for artificial
oscillatory networks. There are different implementa-
tions of hysteresis-based oscillators, [5, 9, 12, 13]. An-
other artificial oscillatory network called the repressilator
[7] borrows the idea of a ring oscillator coming from engi-
neering. Our computational study [14] suggests that the
oscillatory mechanism of the repressilator is qualitatively
different from that in other genetic oscillators.

A challenging area of the research is communication
among cells in a population or organism. It is proposed
to serve multiple very important functions from quorum
sensing to differentiation [16]. In many cases, mecha-
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FIG. 1: The minimal scheme of repressilator with AI
production [15].

nisms of this intercell communication remain unknown.
Artificial communication among cells containing regula-
tory oscillators can lead to various effects from synchro-
nization to suppression of oscillations [13, 15, 17, 18].
These collective dynamical effects further contrasted arti-
ficial regulatory oscillators different by the design. A ho-
mogeneous population composed of repressilators, along
with some other networks, was shown to display robust
in-phase synchronization [15, 17, 19]. The property was
regarded as a characteristic of the regulatory structure
that they have in common. Accordingly, the coupling
structure was called phase-attractive as opposed to the
phase-repulsive that leads to the anti-phase synchroniza-
tion [18]. In this paper, we question that the in-phase
synchrony is the only option in such systems. We show
that changing timescales and transcription cooperativity
may dramatically alter synchronization properties and
lead to other interesting dynamical effects in the network.

The idea for the oscillatory mechanism of the repressi-
lator is based on connecting an odd number of inverters
(negative control elements) in a ring. Its genetic imple-
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mentation uses three proteins that cyclically repress the
synthesis of one another by inhibition of corresponding
mRNA production (Fig. 1). A small molecule, autoin-
ducer (AI), carries out the coupling function which is
based on quorum sensing [15, 17]. The following system
of dimensionless equations describes the behavior of cou-
pled repressilators [15]:

dai

dt
= −ai + α

1+Cn

i

; dAi

dt
= −β(Ai − ai)

dbi

dt
= −bi + α

1+An

i

; dBi

dt
= −β(Bi − bi)

dci
dt

= −ci + α

1+Bn

i

+ κ Si

1+Si

; dCi

dt
= −β(Ci − ci)

dSi

dt
= −ks0Si + ks1Ai − η(Si −QS̄)

The uppercase letters Ai, Bi and Ci denote protein
concentrations, while lowercase ai, bi and ci are propor-
tional to the concentrations of mRNA corresponding to
those proteins, Si denotes AI concentration, where i is a

cell index. S̄ =
1

N

N∑

i=1

Si, where N is the total number

of cells; N = 2 in this work. All negative terms in the
right-hand side represent degradation of the molecules.
The nonlinear function f(x) = α

1+xn reflects synthesis of
the mRNAs from the DNA controlled by regulatory el-
ements called promoters. α defines transcription rate in
the absence of the repressor (x). α indirectly depends on
several factors, such as the abundance of the RNA poly-
merase and that of the repressilator plasmid in the cell.
Therefore, this parameter may take very different values
and we choose α as a bifurcation parameter, i.e. one to
be varied. n is called Hill coefficient or cooperativity and
reflects multimerization of the protein required to affect
the promoter. Parameter Q reflects degree of the AI di-
lution in the medium. It is proportional to population
density Vcell

Vmedium

and can be varied from 0 (AI is strongly

diluted) up to 1 (dense cell packing) [15]. The parame-
ter β is a ratio between the decay rates of proteins and
mRNAs. The three proteins are assumed to have identi-
cal kinetics, making the model symmetric.

The system and the scheme on Fig. 1 present a highly
simplified model of the oscillatory network. In particular,
intermediate reaction steps such as binding of an effector
to a promoter are assumed to be very fast and, there-
fore, are not explicitly shown in the model. The system
has been shown to oscillate both in experiments and in
simulations for big enough α [7, 20, 21].

The simulations were performed by the numerical in-
tegration package XPP [22]. The numerical bifurcation
analysis was done by AUTO [23] separately or in con-
junction with the interface provided by XPP.
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FIG. 2: The network switches from in- to anti-phase
synchrony when the transcription cooperativity n is
elevated. (a) n = 2, the in-phase limit cycle is stable;
(b) n = 2.6, the in-phase cycle loses stability at higher

values of α, the anti-phase one becomes stable as α
increases. Solid (dashed) lines and solid (empty) circles

denote stable (unstable) steady state and periodic
solution, respectively. HB — Hopf, PF — pitchfork and

PD — period doubling bifurcations. Parameters are:
β = 1.0, κ = 25.0, ks0 = 1.0, ks1 = 0.01, η = 2.0,

Q = 1.0 [15].

B. Anti-phase oscillations emerge at a higher

cooperativity n

In-phase oscillations have been shown stable and ro-
bust in a model of a cell population bearing the repres-
silator plasmid with embedded system of quorum sens-
ing [15]. An anti-phase synchronous solution must also
exist, although its stability is a question. In the model
cooperativity parameter n = 2.0 was used for all promot-
ers. Later, a higher value around 2.4 was experimentally
measured for one of those promoters, and the value was
found to fluctuate dynamically [24]. Fig. 2(a) confirms
the stability of the in-phase synchronization and shows
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that the anti-phase synchronous solution is repelling at
any synthesis rate α and n = 2.0.

Remarkably, the above picture is highly dependent on
the cooperativity n. Higher values of n were numerically
estimated for different promoters [25, 26]. If the cooper-
ativity is elevated to 2.6 and further, the anti-phase so-
lution becomes stable at a sufficiently high synthesis rate
α (Fig. 2(b)). The solution becomes stable as a result of
two sequential pitchfork bifurcations of limit cycles (PF1

and PF2) and remains stable when α increases further.
By contrast, the in-phase solution loses its stability as α
increases at this elevated n. All together, the synchro-
nization properties are controlled by the parameters of
the regulatory connections.

C. Fast mRNA kinetics provides birhythmicity in a

wide range of α

We examine whether the ratio of mRNA and protein
timescales β contributes to the synchronization proper-
ties. The ratio β is 1 in Fig. 2. This matches previ-
ous publications (e.g. [15]) and was achieved artificially
by accelerating protein degradation [7]. Usually, protein
kinetics, in particular degradation, is slower than that
of mRNA (β < 1). It has been shown experimentally
that lifetime of mRNA is of the order of 1 minute [27]
while that of protein is about 1 hour [28]. Fig. 3 presents
changes in the synchronous solutions as β is reduced to-
wards more natural values. First, the sequence of the
Hopf bifurcations changes: HBant occurs first now, and
HBin occurs next. Fig. 3(a) shows how the value αHB for
these two Hopf bifurcations depends on the ratio β. The
bifurcation sequence changes at β = 0.135. Second, the
stability of the limit cycles emerging at the Hopf bifurca-
tions changes too. The anti-phase limit cycle, emerging
first, (Fig 3(b), HBant) is initially stable. The in-phase
limit cycle, emerging then, is unstable.

Three bifurcations always precede the birhythmic pa-
rameter regime when α increases. The in-phase solution
must become stable. This occurs as a result of a repelling
invariant torus emanating from the limit cycle (Fig. 3(b),
TR1). The other two bifurcations are unexpected: The
anti-phase limit cycle first loses its stability, and then re-
gains it. Both transitions are pitchfork bifurcations of
limit cycles (Fig. 3(b)). The second bifurcation cancels
the effect of the first one on the stability of the anti-phase
solution. Thus, in an interval of the synthesis rate α, the
anti-phase solution is unstable.

The pitchfork bifurcation PF1 gives rise to a whole
cascade of complex oscillatory solutions. One of them is
a periodic solution different from the anti-phase by an
amplitude mismatch between the cells (inhomogeneous
anti-phase oscillations; Fig. 4(a)). Other complex dy-
namical regimes are shown in the Fig. 4(b),(c) and are
not revealed by the bifurcation analysis (see Fig. 3(b)).
More detailed analysis of the complex dynamical regimes
is left for the future work.
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FIG. 3: (color online) A reduction in the timescale β
provides birhythmicity in a wide range of α. (a) The
sequence of the Hopf bifurcations changes when β

passes the value of 0.135. (b) At β = 0.1 and n = 2.6,
in-phase and anti-phase rhythms are stable at both

moderate and high α. PF1 gives rise to inhomogeneous
anti-phase solutions — stable (blue crosses) and

unstable (red squares), which are separated by a torus
bifurcation (TR). PF2 gives rise only to an unstable
inhomogeneous anti-phase solution (green triangles).
Other parameters and notations are the same as in

Fig. 2(b).

Thus, there is an interval of moderate α where in-phase
solution coexists with anti-phase and/or complex oscilla-
tory solutions.

D. Discussion

In this work, we have presented a novel scenario of
emerging birhythmicity and switching between the in-
phase and anti-phase solutions in regulatory oscillators.
The population can switch from in-phase to anti-phase
synchronization when the transcription cooperativity is
elevated. Stabilization of the anti-phase solution has
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FIG. 4: (color online) Timeseries for complex anti-phase
oscillations. A1 is in red; A2 is in green.β = 0.1 and
other parameters are the same as in Fig. 2(b). (a)

α = 4.60; (b) α = 4.70; (c) α = 4.75.

been attributed to highly nonuniform motion speed along
the oscillatory cycle [29]. There are two sources of such
non-uniformity in the system analyzed here: First, the
steepness of the nonlinear dependence (transcription co-
operativity) translates into sadden acceleration and slow-
ing. Second, increasing synthesis rate α in the repressila-
tor leads to such a nonuniform motion as well [30]. Ad-
ditionally, the population displays regimes where both
stable in-phase and anti-phase rhythms coexist.

Many biophysical systems display certain properties
found here. Stabilization of the anti-phase solution
is consistent with other publications [29, 31–36]. The
birhythmicity of the in-phase and the anti-phase oscilla-
tions is found in models of pancreatic β cells [37], yeast
glycolysis [38], and coupled neural oscillators [31]. Re-
cently, the anti-phase oscillations are shown to be stable

in the repressilators with more complex, combinatorial
regulation at the promoter level [39]. The question of
general design principles governing synchronization prop-
erties remains open. Therefore, our results are related to
a wide range of biophysical problems.

A central question in the analysis of regulatory net-
works is how to connect structural characteristics to dy-
namical and functional properties of a network. We have
shown that the same network may display either in-phase
or anti-phase synchronization, as well as the birhythmic-
ity. Thus, the type of synchronization is not character-
istic for the structure. The sequence in which the syn-
chronous solutions emerge also depends on the param-
eters. However, the bifurcation scenario may be much
more characteristic.

Variations of this bifurcation scenario were observed
in a few works [31, 34, 38]. In [38] the first pitchfork
bifurcation of the anti-phase solution is merged with the
Hopf bifurcation, in which the solution emerges. In many
other systems, the anti-phase solution becomes stable via
a torus bifurcation (see e.g. [31]). These include a classi-
cal case of coupled Brusselators. In this paper, we never
observe a torus bifurcation for the anti-phase solution.
The anti-phase solution always undergoes two pitchfork
bifurcations. This separates our results from those men-
tioned above.

Particular values of the synthesis rate α at the bifur-
cation transitions between the regimes depend on other
parameters of the system. As we mentioned before, the
transcription cooperativity n strongly influences bifurca-
tions, not only quantitatively, but qualitatively changing
parameter regimes. The parameters that influence syn-
thesis of autoinducer (ks0,ks1) also significantly shift the
regimes, although bifurcation scenario does not change.
Remarkably, the autoinducer dilution parameter Q does
not shift the regimes in the parametric space much.
Thus, our results are valid in a wide range of the popu-
lation density. A thorough exploration of the parameter
space for a larger population will be presented in a future
work.
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