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We describe experimental observations of fully developed, large-amplitude bars under the action
of a shearing fluid. The experiments were performed in an annular tank filled with water and sheared
above by a steady motor source. The same steady shearing flow can produce a variety of different
erodible bed manifestations: advective or precessive bars, which refer to bar structures with global
regularity and a near-steady precession velocity; interactive bars, whose structure depends on local
rearrangements which are in turn a response to complex background topography; and dispersive
bars, which are created when an initially isolated mound of sand evolves into a train of sand ripples.
Of these the most amenable to analysis are the precessive bars. For precession bars we find that
the skin depth, which is the non-dimensionalized mean-field transport rate, grows exponentially as
a function of the shear velocity. From this we arrive at an analytical expression that approximates
the precession speed of the bars as a function of shear velocity. We use this to obtain a formula
for sediment transport rate. However, in intense flows the bars can get large engendering boundary
layer separation, leading to a different dynamic for bar formation and evolution. Numerical flow
calculations over an experimentally-obtained set of precessive bars are presented and show that
classical parameterizations of mass flux in terms of bottom gradients have shortcomings. Within
the range of shear rates considered, a quantity that does not change appreciably in time is the aspect
ratio, which is defined as the ratio of the average bar amplitude, with respect to a mean depth, to
the average bar length.

PACS numbers: 47.57.Gc

I. INTRODUCTION

Pattern formation in granular matter driven by hy-
drodynamic forcing can be classified through a series of
dichotomies, pertaining to the nature of the forcing, its
temporal symmetries, the mechanisms of transport, and
the significance of nonlinearities. Perhaps the most ob-
vious distinction of context is between aeolian (wind-
driven) [1–4] and fluvial (water-driven) [5]. This has rele-
vance to the relative importance of forces experienced by
individual grains [6] and the structure of the nonlocal re-
lationship between the profile of the granular surface and
the local shear stress. (Reptation under steady flow con-
ditions, for example, plays a lesser role in the fluvial case
because of the higher viscosity of water, when compared
to the aeolian situation). This relationship has been the
subject of theoretical investigations in the context of fluid
dynamics [7–9]. The temporal symmetry of the forcing,
whether steady [10, 11] or oscillatory [12–16], has a clear
impact on the symmetry of the patterns and the over-
all transport of material [17]. The distinction between
suspended sediment and bedload is a key one in deter-
mining the actual dynamics of sediment transport [6],
and the regime of bedload transport has received much
attention in the recent physics literature [18–20]. Finally,
there is the dynamical distinction between the nature of
the linear instability of the planar surface and the fully-
nonlinear dynamics of large-amplitude ripples.

In contrast to studies that focus on the linear instabil-
ity of ripples, our emphasis is on the nature of the fully-
developed nonlinear ripples that appear under steady
shear. We focus on the case of steady shear in an annular

tank, the apparatus consisting of a pair of large, concen-
tric plexiglas cylinders forming a quasi-one-dimensional
chamber in the annulus. It is based on a smaller version
first constructed in collaboration with S. Gubser [21], and
of the type used later by Rehberg et al. [11] in the study
of the linear instability of a flat layer and ripple formation
[22]. Of particular relevance to the present paper is the
study by the same group, [23], in which they consider the
long time behavior of ripples. The primary difference in
our experimental setup is much larger tank dimensions,
which as we show can have a significant effect. Interest in
devices with this geometry derives from the simplifying
features that the complex free-boundary problem of the
air-water interface, which in theoretical treatments in-
troduces great complexity or is replaced by a prescribed
free surface, simply becomes a fixed-height, fixed-velocity
boundary condition at the rotor, and that end-effects are
eliminated because of the periodic boundary conditions.
Of course, the side walls and rotor introduce control is-
sues of their own, discussed below. Nevertheless, the
fluid and sand dynamics are sufficiently constrained that
a theoretical treatment would appear to be tractable.

For intense shearing flows the theoretical treatment
would have to take into account that the same steady
shearing flow can lead to a variety of different types of
erodible structures. The simplest of these we call pre-
cessive or advection-dominated bars. We will give a de-
scriptive analysis of these precessive bars, but we will
also take the opportunity to show, however briefly, other
types of bar structures. Figure 1 shows the space/time
evolution of precessive bars. The bed was prepared to
be as flat as possible. A considerable amount of time
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FIG. 1: (Color online) Space/time contour plots illustrating
simple precession ripples. The bars gain and lose sand in
time, however, their characteristics do not alter much even
over long periods of time. The bar speed depends on the
shear velocity but more directly on the amount of sand flux
due to the shearing. The shear flow is directed upward in the
figure. Toward the left of the figure we see some of the initial
unsteady topographical configuration. Shown here is the time
frame 3600-28200 sec. Rotor speed: 159 cm/s, rotor height:
10 cm, P140 sand.

passes before the precessive bars, with a particular pre-
cession velocity, take over. In the figure one can see (on
the left) evidence of a slower and more disorganized to-
pographic state, which then gives way to a more per-
manent and regular state. When preparing the initial
bottom configuration the small perturbations are eas-
ily removed, but channel-length trends, however small,
are not. The larger scale gradients are persistent and
can be seen in experiments that take weeks or more to
perform. The advectively-dominated bars have a very
regular shape, moving in time at a steady rate, which in
turn depends on the fixed shearing velocity. Their ampli-
tude and length shows considerable regularity, and thus
their evolution and maintenance is largely derived from
uniform erosion due to steady shearing in a tank that
imposes periodic spatio-temporal constraints. Precessive
bars are the most common experimental outcomes when
the erodible bed is prepared initially to be as level as
possible.

Two examples of different topographical configurations
will be shown later: an interaction case in which the
sand flux is different, depending on the mean bottom
topography gradient, and an example of dispersion, in
which sand is collected into a mound, which when sheared
will produce a downwind bar system, each bar in the
system affecting the next, smaller ones downwind.

Even under very controlled experimental conditions
the variability of the data was high, hysteretic. A near-
constant of motion in the experiments was the ratio of
the height of the bars to their lengths, even across differ-
ent sand sizes and different fixed shearing speeds. Fischer

et al. [24] have noticed the significance of this height to
length ratio in the context of desert dunes and denote it
the shape parameter ε. Below we will define this topo-
graphical ratio and call it the aspect ratio, to distinguish
it from the differently-defined shape parameter of Fischer
et al.

II. EXPERIMENTAL APPARATUS

Two sections of plexiglas tubing (Reynolds Polymer),
0.635 cm thick, and with outside radii of 43.18 and 45.72
cm, are fused to a thick plexiglass base plate to form a
watertight annular tank. An acrylic resin was poured into
the chamber to a depth of 6 cm to raise the chamber floor
for visualization purposes. Four CCD cameras (Sony,
XC75) equipped with fisheye lenses (f/l=3.6 mm, f.o.v.
91 degrees) view the quadrants of the chamber through
adjustable mirrors. Images from the four cameras are
acquired at prescribed time intervals in rapid succession
by a multi-channel frame grabber (Imagemill Technolo-
gies, IC2-VS-NDOC), under the control of Labview and
Advanced IMAQ Vision (National Instruments). Some
of the data was obtained with a variation of the optical
capturing apparatus just described: a single 14MPixel
Nikon D90 camera was pointed upwards and placed be-
low the tank. The camera focused on a spherical mir-
ror made of milar-covered plastic. The image was “un-
wrapped” and cropped to produce strips of 360o views
of the data. Distortions inherent in the images, from the
wide-angle lenses and geometric constraints on the place-
ment of cameras, are removed by an image correcting al-
gorithm developed by D. Patterson [25]. Briefly, images
of a reference cartesian grid placed against the inner wall
of the chamber are obtained for each camera and then
used to define a nonlinear six-parameter mapping which
minimizes in a suboptimal way the global norm of the
distortion. Once this mapping is obtained it is then ap-
plied to every image obtained by the cameras. The ripple
height is obtained from each image by examining vertical
transects of the pixel images: under the assumption that
the bar profile is a single-valued function, nearest neigh-
bor pixel comparisons lead to an approximate height of
the bars. This algorithm yields a piece-wise constant in-
terpolation of the data. The interpolated data is then
averaged using a 3-point filter with 2/4/2 weights. This
is then followed by a cubic spline interpolation of the
data. The data files are recorded with a horizontal res-
olution of 0.2 cm and a vertical resolution of 0.06 cm.
Figure 2 depicts the test apparatus.

The shearing of the fluid is effected by a rotor in the
shape of a hoop, machined from a single sheet of Mic-6
aluminum, attached to a DC motor ME-3353 (Belden).
The width of the hoop is nearly the same as the width
of the annulus tank. The motor is directed by a Value-
motion control card (National Instruments) and UMI-4A
Universal Motion Interface. The rotor itself is attached
to a large aluminum and plywood framework, designed
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TABLE I: Diameter range for the various glass sphere types
used in the experiments.

Type/name Range of diameters (mm)

P140 0.025-0.035

MIL4 0.425-0.6

MIL8 0.15-0.22

MIL10 0.09-0.15

MIL12 0.063-0.106

so as to prevent racking. The rotor imparts steady shear
on the fluid.

Water fills the gap between the granular material and
the driving rotor. Experiments were conducted using
two types of sand: monodisperse glass spheres with den-
sity ρ = 2.5 g/cm3. We used P140 (Potters Industries),
as well as three different sizes of Mil-spec monodisperse
glass spheres (Ceroglass). Table I summarizes the glass
sphere diameter ranges of the several materials used in
the experiments. For each sand, experiments were run at
5-6 different rotor speeds across the relevant and experi-
mentally feasible range.

FIG. 2: (Color online) Apparatus for the study of steady-
shear generated sand ripples. The X-shaped trusses connect
the rotor hoop on the bottom to the motor assembly. Within
the annular tank the circular rotor hoop and the light colored
solid floor made of smooth acrylic resin contains the water
and the glass-bead sand. Shown in the center of the figure is
the image-capturing assembly.

III. OUTCOMES

The flow was fully turbulent, even when no sand was
present; the Reynolds number was on the order of 104.
This is based on a channel width w = 1.9 cm, rotor’s tan-
gential velocity U ∼ 100 cm/s, and kinematic viscosity of
water (ambient temperature was 20oC), of 10−2 cm2/s.
In addition to the periodized geometry, there are a cou-
ple of other features of this flow that make it unlike the
typical natural fluvial or aeolian setting: the tank side
walls are close enough to each other and thus the wall
boundary layers interact. Secondly, the solid aluminum
hoop that drives the flow is close to the sand bed, so
that when the bed evolves into interesting topographies
significant downwind pressure gradients develop. A fun-
damental consequence of the first of these is that one
cannot assume that the fluid flow is described by the
standard plane Couette flow. In Figure 3a we depict the
vertical profile of the horizontal velocity, under two differ-
ent configurations: the constant shear case corresponds
to the assumption that the flow is periodic in the down-
wind direction, has a prescribed velocity at 10 cm above
a smooth bottom, no-slip at the bottom; the domain is
two-dimensional and thus there are no side walls. The
other case corresponds to putting two no-slip side walls,
a distance of 2.3 cm apart. Figure 3b shows the estimated
shear velocity

ub :=

√
ν
du

dt

∣∣∣∣
0

as a function of rotor speed. Figure 3 was obtained by a
full 3D Navier-Stokes computation using COMSOL. The
numerical results were further checked with NEKTON5
(see [26]). We used ν = 8.13 × 10−3 cm2/s. The linear
fit for the relationship between the shear velocity s and
the rotor velocity r is s = 0.1172 + 0.001197r cm/s. The
fit has an rms error of 0.067 cm/s.

Further, though the tank radius is large the effects
of curvature due to the side walls, while small, can be
seen imprinted in the bars (see Figure 2). This struc-
ture evolves quickly when compared to the time scales
on which the dunes advect and interact, thus making it
clear what aspects of the bar morphology are due to cur-
vature effects.

In terms of sediment motion, the experiments were in
the bedload regime. This is argued as follows: The ratio
of particle density to water density was approximately
2.5; particle buoyancy prevailed over time-averaged lift
forces for the range of shear rates in the experiments
(cf. [26], [27], [28]). If we estimate the settling veloc-
ity vsettle of an individual grain from Stokes flow drag
6πηRvsettle = 4π∆ρgR3/3, we find vsettle ' 2 cm/sec
(for the P140 glass spheres). As we shall see, typical rip-
ple amplitudes are several centimeters, so settling on the
scale of the ripple height occurs within a fraction of a
second. Particles that are launched from the top of the
ripples, near where vortex separation occurs, have lat-
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FIG. 3: (Color online) (a) The vertical profile of the horizontal
velocity. Prescribed velocity at 10 cm of 1.121 cm/s, zero slip
condition on the smooth bottom. Flow is periodized in the
downwind direction. The linear profile corresponds to making
the tank unbounded in the transverse direction. The upper
curve is the horizontal velocity under the same conditions as
above, but when 2 smooth zero slip side walls are added to the
computation, a distance of 2.3 cm away from each other. (b)
Relationship between the shear velocity and the rotor veloc-
ity; the latter is used in subsequent plots and analyses. The
dashed curve is associated with the 2D calculation, the solid
one to the 3D calculation (See text).

eral velocities less than vsettle, so they stay close to the
ripples except at the very highest velocites studied. The
calculation of the settling velocity in terms of the Stokes
flow drag formula, in turn, is justified by the smallness of
the particle Reynolds number: P140 mean diameter, the
ub, and the viscosity of water ν, this Reynolds number is
about one tenth.

Prior to running the experiment we flattened out the
erodible bed, as much as possible. The first few hours of
data were ignored. Data was sampled every 30 seconds.
Repeatability of the experimental outcome got progres-
sively better as the shear rate increased. The shear rate
range over which experiments could be performed was
bounded below by repeatability issues and above by lim-
itations of the driving motor, as well as conditions in
which centripetal forces are prevalent. For low speeds
the repeatability issue is related to the highly variable
shear rate threshold for sand motion initiation and dis-
lodgement. Geometry-dependent factors related to bed
configuration and particle-particle geometry contributed

bump

shear stress

space

pressure

FIG. 4: (Color online) Initial bed growth and origin of bar
asymmetry. Qualitative description of the stresses. A sym-
metric solid bump of the form ab2/(x2 + b2) is subjected to
a linear steady shear, from left to right. Here, a and b are
constants. On the surface of this symmetric bump the shear
stress (top curve) and pressure, the diagonal component of
the stress, (negative curve), according to Benjamin’s weakly
nonlinear analysis [7], are asymmetric about the bump max-
ima. The shear stress and the pressure depicted here are those
at locations hugging the bottom topography. Amplitude and
length units, arbitrary. At the bump, for low Reynolds num-
bers the shear is several times greater than the pressure in
magnitude. As the Reynolds number gets large, their mag-
nitude becomes similar and their role in forcing the erodible
bottom equally important. Downstream from the top of the
bump the shear indicates a mild flow reversal. Downstream
the pressure dies off very slowly. The pressure and shear max-
ima are not in phase. If this symmetric bump is subjected to
a sediment flux that depends on the shearing rate, as depicted
here, the idealized bar will develop an asymmetric shape.

to this variability.
The time evolution of the erodible bed, starting from

a mostly initially flat case to fully developed bars, has
two dynamic stages: a small scale instability regime, and
once there is boundary layer separation in the fluid flow,
a fully nonlinear regime. Initially small defects in the
sand profile encourage fluctuations in the pressure and
shear stress field in the fluid and the sand. The force
fluctuations occur at the locations of the topographical
defects. Even when the defects on the topography are
symmetric about their local maxima the bars quickly
evolve into an asymmetric shape. The asymmetry is
largely derived from the asymmetry of the shear stress
and the pressure. The situation is well captured by Ben-
jamin’s [7] analysis, although strictly speaking applicable
to laminar flows. Figure 4 illustrates the (negative) pres-
sure and shear velocity across a symmetric bump of the
form y = ab2/(x2 + b2), where a and b are constants.
Benjamin’s analysis is restricted to smooth bottom to-
pographies and laminar near-flow conditions. The shear
asymmetry will have consequences in any mass conserva-
tion statement that specifies how the fluxes are related
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FIG. 5: Typical shape of the advective bars, in the long-time
and fully developed flow regime. The sand has been subjected
to a steady shearing flow, from left to right. The height of the
bars, from trough to peak, is 2.7 cm, and the wavelength or
repetition length is approximately 22 cm. The rotor velocity
was 166 cm/s. Rotor height: 10.5 cm, P140 sand.

to the flow velocities/shear stresses. When the pertur-
bations grow further the fluid streamlines separate near
the crest of the bars and a different prevailing mechanism
is responsible for the maintenance and evolution of the
bars.

Figure 5 displays a typical sand structure, up close. In
this more nonlinear regime sand is picked up at the bar
crest and taken to the front of it, by vortical structures
in the overlying fluid flow, that fit within the interbar
spacing. These vortical structures precess, and so do the
bars.

It is worth noting that there is some uncertainty in the
literature as to whether the quantities bar speed, ampli-
tude, and wavelength should continue to grow with time
or saturate. In their similar experimental setup, Betat et
al. [23] observed a stable saturation, although it took on
the order of days for this to occur. Such saturation has
not been observed in most cases in experiments in a wa-
ter flume [29], [30], although the finite length of the flume
plays an important role. Neither was saturation observed
in the numerical simulation done by Lagrée [31], although
it is difficult to capture the nonlinearities involved in the
fully developed ripples. In our experiments, saturation
was observed after hours of shearing, and the quantities
appearing in our figures are the average values of these
saturated values.

A. Advectively-Dominated Precessive Ripples

After transients associated with the development of
ripples from a flat bed die away, we find that the dom-
inant behavior of the ripples is simple advection. In
space-time portraits like Figure 1, the straight-line tracks
running diagonally represent these structures. Figure 6a
shows the relationship between the precession velocity
and the shear velocity. Experimentally, the rotor veloc-
ity is the most easily controlled and measured variable.
However, since the shear velocity is a more useful parame-
ter, we have converted the rotor velocity to shear velocity
using the linear relationship and calculations presented
in Figure 3. Note that the precession velocity is very
small in magnitude compared to the fluid velocity and
the shear velocity; direct observation indicates that the
dynamically active grains are confined to a very thin layer
at the ripple surface, so the orders of magnitude differ-
ence between the precession and driving velocities is a
reflection of the small thickness of this dynamic layer.
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FIG. 6: (Color online) Advective bar results. (a) Precession
velocity of the advection ripples as a function of the shear
velocity; (b) advection ripple wavelength versus shear velocity.
(c) Maximum amplitude, measured from mean-to-peak, as a
function of the shear velocity. Rotor height: 9.9 cm, MIL8
sand. In this Figure and others that follow the dashed straight
line connecting the data is a visual aid. The solid lines in (a)
and (c) are fits to the data as discussed in the text.

The interbar spacing (or wavelength) of the advection
ripples, as a function of shear velocity, appears in Fig-
ure 6b. This spacing is defined as the average repetition
length (the bars have a different gradient on the stoss and
the lee sides). The amplitude of the bars, as a function of
the shear velocity, appears in Figure 6c. The amplitude
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is defined as the average height over the mean height of
the whole erodible bed, at a given time. Unlike the non-
linear dependence of the precession velocity on the shear
velocity, the height and the wavelength of the bars are
seen to grow almost linearly as a function of the shear ve-
locity, suggesting a topological scaling rule for the bars.
We return to this idea more fully in Section IV.

Betat et al., [23] have published results on ripple forma-
tion using an experimental device similar to ours. There
are significant differences between the setups, the most
significant of these are the difference is size: our annu-
lar tank has a diameter roughly 3.3 times larger; and
the depth of our water layer, which is roughly 7 times
larger. The driver is also different: we use a hoop rotor,
which affects the fluid pressure, while they use a disc.
We also use different particle sizes in our experiments.
As noted in [23], the effect of tank size is not well under-
stood, and our results add another piece to the puzzle.
In Figure 13 of [23], ripple amplitude and precession ve-
locity are plotted against shearing velocity (in their case
a particle Reynolds number is the independent variable,
but this is equivalent to shear velocity times the scalar
mean grain diameter divided by kinematic viscosity of
water; hence the qualitative shape is the same). Their
precession velocity curves traced out sigmoidal, S-shaped
curves. This is similar to our Figure 6a, except that the
velocity in most of our experiments did not level off. The
reasoning behind this apparent discrepancy seems to be
in the experimental ranges. We should expect the preces-
sion velocity in Figure 6a to level off at higher shear ve-
locities, but these were inaccessible due to experimental
constraints mentioned earlier. Converting the Reynolds
number in [23] to a shear velocity, it should be noted
that the shear velocity at which the procession velocity
levels off decreases with decreased sand diameter. At our
smallest-diameter sand tested, the MIL12 sand, the pre-
cession velocity did have the sigmoid shape, and so the
results are consistent.

The biggest difference between our experimental re-
sults and those of Betat et al. is in the shape of the
amplitude curves. They observed a sigmoid shape there
as well, while we observed a roughly linear dependence
for all sands. It is expected that the amplitude should
not grow indefinitely, so again, there is likely a leveling
off in our experiments at higher, inaccessible shear speeds
(this was the case for the MIL12). However, we did not
see the slow increase at lower speeds that would corre-
spond to an S shape. This difference should be related to
the quantization effect imposed by a finite length tank,
which affects the wavelength and consequently influences
the amplitude. This effect is amplified in a smaller sys-
tem, and may be more dominant at lower shear stress,
possibly accounting for the discrepancy.

Skin depth. The mechanism for precession of the bars
is the result of particle mass traveling downwind. The
interaction of the bars with the vortical flow generates
and maintains the bars. This mass transfer is related to
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FIG. 7: (Color online) Skin depth δ, as a function of shear
velocity, for advection bars. MIL8 sand, 9.9 cm rotor height.

the skin depth. The skin depth is defined as

δ := Avp/avs,

where A is the bar amplitude, a the particle diameter,
and vp and vs the precession and shear velocity, respec-
tively. Hence, the skin is a nondimensional transport
rate. The dependence of the skin depth on the shear ve-
locity is illustrated in a semi-log plot in Figure 7. It is
computed using the experimental mean values for A and
vp, for the a = 0.015 cm particle sand. The nearly linear
relation between log δ and vs enables us to write

δavs = Avp = c1avse
c2vs , (1)

where c1 and c2 are constants. We can obtain a quanti-
tative formula for the nonlinear relationship between the
precession velocity vp and the shear velocity vs by ap-
proximating A with a linear fit as A = c3 + c4vs. Using
the data plotted in Figure 6c, a least squares fit yields
c3 = 0.148, c4 = 4.521. Similarly, c1 and c2 are obtained
from Figure 7 as c1 = 3.008 × 10−4, c2 = 36.612. These
linear fits are included in the Figures. Inserting these
values into Equation (1) and solving for vp yields a func-
tion vp(vs) which is plotted as the solid line in Figure 6a.
The 2-norm relative error in this fit is 19.3%.

The relationship between skin depth and shear veloc-
ity can also be used to obtain an analytical estimate of
sediment transport rate Q in terms of shear velocity vs.
First, Q is defined by

Q :=

√√√√〈(∂h
∂t

)2
〉

(2)

where h(x, t) is the height of the sand surface and the
angled brackets denote spatial averaging (see [23]). Con-
servation of mass in this 1D geometry is expressed as

∂h/∂t = −∂J/∂x,
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FIG. 8: (Color online) Superposition of ∂h/∂x (solid) and
40 times ∂h/∂t (dashed) at t = 27600 sec, corresponding to
the precessive case shown in Figure 1. Note that the partial
derivatives are, to within a constant, approximately the same.

where J is the mass flux. Generally speaking, J is a
complex function of h as well as vs, and perhaps moving-
layer depth and microscopic (geometric factors) in or-
der to account for fluidization events. Restricting to
advectively-dominated bars, we take vp to be constant,
for a given vs, which implies J = vph(x, t), and thus
∂h/∂t = −vp∂h/∂x. To check the validity of this, we
computed approximations of the time and space deriva-
tives of h using the data connected to Figures 1, at time
t = 26700 sec. A sample comparison of ∂h/∂t and ∂h/∂x
appears in Figure 8, showing that they are roughly pro-
portional to a good approximation. Thus, we should be
able to write

v2
p

〈(
∂h

∂x

)2
〉

= Q2. (3)

We estimate the sand slope with a linear profile so that
∂h/∂x = 2ε, where ε = A/λ is the ripple aspect ratio.
Hence, Q = 2εvp. As we further describe in Section IV, ε
appears to be a constant independent of shear rate for a
given sand. Hence, we find that the sediment transport
rate is approximately proportional to the precession ve-
locity, and we can use Equation (1) to write Q as a func-
tion of shear velocity vs. It seems that as the shear rate
increases the depth of the layer of movable sand increases
as well. The velocity profile of this layer of movable sand
should decrease exponentially with depth, as is seen in
granular avalanching (see [32]).

It should be noted, however, that the estimate of vp,
and accordingly the estimate of Q, are invalid if vp lev-
els off as expected at high rotor speed. Also, the for-
mula for Q ignores the inherent asymmetry in the bars.
Making things slightly more complex, we would have
∂h/∂x = 2αε, where α is a geometrical constant account-
ing for the asymmetry. In the case of the MIL8 sand, we
computed the transport rate Q using the discrete version
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FIG. 9: (Color online) Sediment transport rate Q, assuming
(3) is valid, as a function of shear velocity, for advection bars.
MIL8.

(a)

NPPP PPPP

(b)

PP PPPPPPNP NP

FIG. 10: (Color online) Fluid flow over a portion of the
bottom topography, for the case shown in Figure 1, at
time=26700 sec. The portion chosen spans from 66 cm to
168 cm. The rotor speed for this case was 159 cm/s. The
rotor was located 10 cm over the bed. The flow is calcu-
lated using the steady Navier Stokes equations with no-slip
boundary conditions, except that the flow was periodized in
the transverse direction. In color is the pressure field: red re-
gions correspond to positive pressure and are labeled PP, and
blue is negative and labeled NP. The streamlines appear as
the thick black lines. (a) Simulation using the experimental
bottom topography. Of note is the clear boundary layer sepa-
ration of the flow over the troughs. The range of pressure for
this case is −3.10×10−3 to 5.40×10−4 Pa (b) Simulation us-
ing the same bottom topography, however, it has been scaled
down in amplitude by 0.25, the amount of scaling required,
other conditions being equal, to see the disappearance of the
flow separation. The range of pressure for this case is −9.03
to 6.25× 10−5 Pa.

of Equation (2). For each rotor speed, we took a fixed
number of spatial points from the data, and averaged
(∆h/∆t)2 over multiple time steps for each point. We
then computed Q as the square root of the average over
the spatial points. We then compared to the formula
Q ≈ 2εvp, where for this sand ε ≈ 0.12. The result ap-
pears in Figure 9. The general shape is consistent, though
it is at best a rough approximation, with a 2-norm error
of 22.7%.
Fluid flow. The analysis above made no reference to the
fluid flow. To better understand possible sources of error
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FIG. 11: (Color online) Accelerations and bottom gradient
associated with the flow and bottom topography shown in
Figure 10a. (a) The x-component, and (b) y-component, of
the acceleration evaluated at the surface of the bottom to-
pography. The lighter red lines correspond to the viscous
components and the darker black lines to the total acceler-
ation (viscous, plus pressure contribution). In dashed-blue
we show the derivative of the bottom topography, dh/dx; the
vertical scale of the gradient is arbitrary, the actual maximum
gradient was approximately 0.3.

in the preceding simple analysis, we turn next to examin-
ing the fluid flow. Figure 10a was generated numerically.
It depicts the stationary solution to the Navier Stokes
equations, for water over a time-steady bottom topogra-
phy. The bottom topography used in the calculation is a
portion of an experimentally-obtained erodible bed pat-
tern, shown in Figure 1. The flow has been periodized
at the ends. At a height of 10 cm, the fluid velocity was
specified: it was a constant 159 cm/s, from left to right.
No-slip boundary conditions were imposed at the bot-
tom. Shown is the pressure field, in color, and a few of
the streamlines, in black. The pressure is highest at the
bar stoss side. These “form” pressure fluctuations are
significant in this experimental setup due to the proxim-
ity of the rotor hoop to the sand bed. This needs to be
remembered when results from this experiment are ex-
trapolated to the situation occurring more typically in
nature. Of note is the streamfunction recirculations in
the troughs, indicating that boundary layer separation
was taking place and thus there was an inflection point
in the velocity giving way to flow reversal. Associated
with Figure 10a is Figure 11, which shows the transverse
(x) and vertical (y) components of the acceleration. The
black curve is the total acceleration, and the red curves
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FIG. 12: (Color online) Accelerations and bottom gradient
associated with the flow and bottom topography shown in
Figure 10b. (a) x-component, and (b) y-component of the ac-
celeration evaluated at the surface of the bottom topography.
Bottom gradient has an arbitrary scale, but the maximum
amplitude is about 0.075. See Figure 11 for comparison and
for figure details.

correspond to the viscous component. The acceleration
is defined as

−1
ρ
p+ ν[∇u+ (∇u)>].

The pressure is p, the density of water is ρ, the water
viscosity is ν, the fluid velocity is u. The “viscous com-
ponent” excludes the pressure contribution. Of note is
that the viscous component is less significant, and that
the viscous component is larger in the x-direction than
the y-direction. The correspondence between the bottom
gradient and the accelerations is not obvious. We also
calculated the steady solution to the Navier Stokes equa-
tions for the same flow parameters, however, we scaled
down the bottom topography data by 0.25. The numer-
ical experiment we performed was to gradually reduce
the amplitude of the topography, by decrements of 0.05,
until we obtained no discernible flow separation. Some-
where between a scaling reduction of 0.3 and 0.25 the flow
separation ceases to exist. In Figure 10b we show the re-
sulting flow, for comparison with Figure 10a. Figure 12
shows the resulting accelerations for a gradient which is
approximately 0.075, maximally. We note again that the
viscous component is largest in the x direction, moreover,
the viscous component is nearly entirely capturing the x
component of the total acceleration in x. In the y direc-
tion the viscous component has little to no contribution
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FIG. 13: (Color online) The vorticities evaluated at the bot-
tom topography for the real and 0.25-reduced amplitude bot-
tom topography simulation.

to the total y component of the acceleration. Of note
is that in this reduced-gradient case, with no flow sepa-
ration, there is, arguably, significantly more correlation
between the acceleration and the gradient of the bottom
topography. We also see that the x-component of the
acceleration is not negative, as is the case in Figure 11.

Figure 13 shows the vorticity evaluated at the bottom
topography for the real and the reduced-amplitude to-
pography calculations. The most important difference
between both cases is the existence of negative vorticity
for the case associated with Figure 11. It is also clear
that the vorticity is nearly entirely captured by ∂u/∂y,
and thus consistent with the acceleration pictures above.

These numerical calculations demonstrate the complex
nature of the fluid flow once flow separation occurs at
the larger bar amplitudes corresponding to higher shear
stress.

B. Interaction-Dominated Ripples

The behavior of ripples dominated by interaction
mechanisms is far more complex than the advectively-
dominated counterparts. One manifestation of complex-
ity is the local fluidization of the bed. The result is
a speedup of topographic evolution (compared to the
local center-of-mass speed of the whole bed). While
constantly-precessing bars are on the order of centimeters
in amplitude, the fluidization events lead to interaction
bars of a tenth to a fifth in size. Fluidization events affect
locally the inherent nature of the flux of sand. We never
saw fluidization affecting the entire length of the erodi-
ble bed at a given instance in time; by the same token, it
was not clear whether the events were triggered by finite-
length effects of the tank: it is possible that over time the
symmetries imposed by quantization deteriorate, leading
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FIG. 14: (Color online) Faster interaction ripples interspersed
between the slower precession ripples. Rotor speed 173 cm/s,
rotor height 10.5 cm; P140 sand. Elevation is indicated by
color, with red representing the highest values; the highest
and lowest regions are labeled ’High’ and ’Low’, respectively.
See Figure 15 for initial and final bed topography, as well as
for height scale.

to imbalances in the fluid shear forces and a higher ener-
getic state arises. These in turn lead to fluidization events
which persist until the water/sand system reestablishes
an overall lower energy balance. Another possibility is
that this large scale/small scale interplay is a “granular
chain reaction,” the result of a complex manifestation of
the geometric stick-slip response of the bed. Many newer
models for erodible beds under the action of steady shear-
ing, such as the “minimal model” capture the saltation
and/or reptation processes by adding a mass flux com-
ponent with grain scale parameterizations (e.g., see [24]
and [33]).

Fluidization events are usually short-lived, infrequent,
and unpredictable. However, when a background large-
scale structure in the bottom topography is imposed, the
occurrence of fluidization events is far more frequent.
Figure 14 shows an example of this; the bars associ-
ated with fluidization are clearly visible and are frequent:
they are the smaller and faster ones. The larger precess-
ing bars are nonlinearly affected by the smaller ones, as
mass exchanges between the larger and smaller bars force
changes in the influx and outflux of the larger bars. The
larger precessing bars thus change in height, wavelength
and speed, as a result of the interaction. Figure 15 shows
the initial and final bed topography corresponding to the
portion of the experiment shown in Figure 14. Observe
in Figure 15 that while the very high frequency features
of the initial configuration are removed by the action of
the imposed shearing flow, the final configuration remem-
bers the large scale features; hence the ripples in the fi-
nal configuration are superimposed on the larger scale
structure. This accounts for the horizontal red and blue
bands in Figure 14, which correspond to the maximum
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FIG. 15: Initial (dashed) and final (solid) bed topography:
amplitude as a function of position. (A portion of the space-
time portrait for this case is shown in Figure 14). Flow from
left to right. The initial configuration of the bed was given
large scale variations in height. The final configuration is
pictured, after 26 hours, approximately. The initial bottom
configuration persists, even after approximately 7 precession
lengths. Rotor speed: 173 cm/s, rotor height: 10.5 cm. P140
sand.

and minimum locations in the initial bed topography. It
was generally the case that the initial bed configuration
showed little change even when subjected to intense and
extensive fluid shearing, provided that the structure in
the initial conditions had length scales much larger than
the tank depth.

C. Dispersion-Dominated Ripples

Another topographical manifestation of the erodible
material subjected to steady shear is what we call dis-
persion. One way to obtain a clean representation of the
phenomenon is as follows: Sand was initially placed to
form a single pile, roughly 15 cm in length and 2.5 cm
in height in a tank. The rotor-to-bottom distance was
9.9 cm. The rotor was started impulsively, imparting a
steady shearing force nearly immediately. The pile dis-
played erosion first, on the stoss side, near the top. The
stoss side grew in length and the pile developed a series
of bars that are roughly organized by height, downwind.
Figure 16 depicts the space-time plot of the experiment,
soon after the pile starts to resolve itself into a series of
ripples. The smaller ripples that form part of the struc-
ture travel faster than the larger ones.

IV. PERSISTENCE OF THE ASPECT RATIO

We define the aspect ratio ε, as the ratio of topographic
mean trough-to-peak bar amplitude to mean bar length
(or repetition length). For the simple advective ripples
we find that the aspect ratio is nearly constant as a func-
tion of the shearing velocity. This trend extended to dif-
ferent sand particle sizes, although the value of ε changed.
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FIG. 16: (Color online) Dispersion ripples emanating from a
sand pile under the action of a steady shear. Flow directed
upwards in this figure. Rotor speed 142.8 cm/s. Contour
heights in cm. Rotor height: 9.9 cm. P140 sand.

As mentioned in Section II, experiments were conducted
with three different particle sizes of MIL-spec sand, all
with similar dispersion characteristics, as well as P0140
sand. All four sands demonstrated similar behavior. In
particular, the amplitude and wavelength increased lin-
early with shear rate, implying a nearly constant ratio of
amplitude to wavelength for all sands. Figure 17 shows
how ε depends on particle size. For the MIL-spec sand,
the larger particle size leads to a lower ratio. To further
explore this, we measured the avalanche angle of single
piles of the MIL-spec sands, in water, shearing absent.
The avalanche angles, in radians, for each of the sand
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FIG. 17: Aspect ratio ε, defined as the mean bar amplitude
(mean height to top) to length ratio, as a function of particle
size. (From top to bottom): P0140 sand, with mean radius
0.025 cm (diamonds). The next sets are all Mil-spec sand of
similar dispersion characteristics, MIL12, MIL8, MIL4. The
error bars are omitted: the experimental uncertainty was
±0.05 cm/cm.
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sizes were: MIL4: 0.3, MIL8: 0.31, MIL12: 0.33, al-
though it should be noted that the error associated with
this measurement was about 0.02 radians. Nevertheless,
the variation of the avalanche angles with particle size
seems to be consistent with the variation of the ratios
given in Figure 17, suggesting that the avalanche angle
may be a key parameter in the size of the sand bars. The
P0140 ballotini sand does not conform to this trend; its
particle dispersion specifications are different.

Further evidence for the insensitivity of ε to shearing
velocity is provided by the following experiment: we al-
lowed the experiment to run overnight, with a rotor speed
of 119.0 cm/s, developing bars from an initial flat con-
figuration. We then changed the rotor speed to 166.6
cm/s and found that the precession velocity increased,
as did the wavelength and amplitude of the bars, such
that the ratio ε remained roughly constant. We also tried
the reverse experiment, wherein we produced bars at the
higher shear rate and then ran the experiment at the
lower speed, leading to the opposite effect: a significant
change in the precession and a decrease in wavelength
and amplitude, but not in the ratio.

V. SUMMARY

In this paper we have presented the results of experi-
ments on the fluid driven motion of fully developed sand
bars and ripples under intense shear flow. An annular
tank with a large circumference-to-width ratio was uti-
lized, with shearing due to a fixed height rotor. Running
the experiment over long periods of time enabled us to
study the behavior and structure of fully developed rip-
ples. However, even in this relatively constrained fluid
dynamics environment and allowing for initial instabili-
ties to develop into fully formed sand bars, the particu-
lars of the motion are inherently complex, characterized
by nonlinear behavior, transient interactions, and non-
uniform motion of sand particles. Accordingly, our fo-
cus was on the larger structure, analyzing the advective
speed of the ripples and pattern formation in terms of
the amplitude and wavelength of sand bars.

Shortly after the flat erodible bed is subjected to shear-
ing, bars develop on the surface, quickly developing an
asymmetric shape with a distinctive steeper downwind
face. This small-amplitude range of dynamics is con-
trolled by the asymmetry in the pressure and bed shear
in the fluid flow, generating in turn an asymmetric flux
rate across each bar’s length.

We identified three types of bar structures: advec-
tive, interactive, and dispersive. The most common type
of bar structures, the precessive, advectively-dominated
ones, emanated from an initially-flat bottom. These con-
sisted of a train of uniform ripples, more or less trav-
eling at a constant speed. Periodicity and translational
symmetry leads to uniformity of the mass flux rate and
near-constancy of bar phase speed. The speed of the
bars is nonlinearly related to the shearing velocity vs in-

duced by the steadily moving rotor. An approximation of
this relation was derived based on two observations: (i)
that the skin depth increased exponentially with vs, and
(ii) the amplitude increased linearly with vs. The resul-
tant formula for the bar speed agreed fairly well with the
data. However, a comparison with a previous study in
a similar setup [23], as well as results from our smallest
sand, suggest that the bar speed should level off at higher
shear velocities which were inaccessible in our setup. In-
terestingly, our results differed the most from [23] in the
increase of amplitude at small shear speed. This is likely
due to the significant difference in tank dimensions, al-
though the exact mechanism is unclear.

Constancy of the precession speed vp, and approximate
consistency between ∂h/∂t and ∂h/∂x, for a given shear
velocity, suggested that the flux gradient ∂J/∂x could be
expressed as vp∂h/∂x. This was used to derive a formula
for the sediment transport rate as a function of shear
stress. This produced a fairly poor fit to data, especially
when the shearing was intense. We conjecture that this
discrepancy can be partially understood in terms of the
complexity of the fluid flow. A numerical calculation of
the fluid flow suggested that once the bars grow suffi-
ciently large the boundary layer separates: the troughs
of the bars are filled with a vortical flow. The calcula-
tions suggested that there is no obvious correspondence
between the stresses at the surface of the erodible bed
and the gradient of the bottom topography, in intense
shearing.

The interactively-dominated bars are far more com-
plex. What makes these a unique category is that the
sand flux is a local quantity. While overall mass preser-
vation is observed, bars can gain or lose sand locally and
thus it is far more difficult to identify consistent coherent
structures. The most predictable manifestation of these
was in response to background topography. The under-
lying large scale structure affects, locally, the bar shape,
triggering frequent fluidization events. Moreover, these
large-scale but shallow features persisted over very long
times: there was an inherent low-pass mechanism in the
erosion of the bed. This is perhaps related to the very
small thickness of the moving layer or skin depth: its
thickness is related to the time scales of bar evolution.
This time of evolution is longer than the time scales of
particle motion and vastly shorter than the time scales
over which large scale and shallow features are affected by
small mass fluxes. Hence, these large-scale features will
change in time, however, not significantly over the time
scales over which we ran the experiments (days). The
shallowness is a requirement related to the variations in
shearing by the fluid in the tank: a large scale structure
that had considerable height would be affected quickly
due to the vastly different shearing forces it experiences.
This was the case of dispersion.

An interesting feature we observed was the near-
constancy of the aspect ratio, which is the ratio of the
mean height to mean wavelength of the precession bars.
The amplitude and the wavelength of the bars grow



12

nearly linearly with the rotor speed, while the preces-
sion rate grows nonlinearly with rotor speed. The value
of the aspect ratio was found to depend on the size of
the particles making up the erodible bed. Thus parti-
cle geometry and packing play a role. Among the three
cases of MIL-spec sand, the ratio itself decreased with
increased particle size, and thus seems to be connected
to the avalanche angle of the sand. While further ex-
periments may be useful to further explore/confirm these
results, it remains an intriguing characteristic in the con-
text of pattern formation. Experiments on determining
the role played by the vortical flows in the high shearing
range of precessive bar evolution may also prove fruitful.
In intense shearing conditions the boundary layer sepa-
rates and vortical flows can be seen to ”fit” the interbar
spacings. This, in turn, suggests that there may also be a

relationship between the bar aspect ratio and the aspect
ratio of the vortices, perhaps leading to insights on how
the fluid flow enters the dynamics of the evolving bed
topography.
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