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We report on the erosion of flat linoleum “pebbles” under steady rotation in a slurry of abrasive
grit. To quantify shape as a function of time, we develop a general method in which the pebble is
photographed from multiple angles with respect to the grid of pixels in a digital camera. This reduces
digitization noise, and allows the local curvature of the contour to be computed with a controllable
degree of uncertainty. Several shape descriptors are then employed to follow the evolution of different
initial shapes toward a circle, where abrasion halts. The results are in good quantitative agreement
with a simple model, where we propose that points along the contour move radially inward in
proportion to the product of the radius and the derivative of radius with respect to angle.

PACS numbers: 45.70.-n, 83.80.Nb, 91.60.-x, 02.60.Jh, 81.65.Ps

Pebbles on a rocky beach or river bank are often flat,
and exhibit a wide variety of smooth rounded forms. This
must arise from the combined effects of the initial pebble
shapes, the material properties of the pebbles, and the
entire history of erosion processes. For Geology, an im-
portant issue would be to decipher this history from the
observed collection of pebble shapes [1]. For Physics, an
important issue would be to isolate and understand the
physical action of different classes of erosion processes. It
is not known, for example, whether the variety of shapes
in some actual set of pebbles reflects the initial conditions
and the duration of an erosion process that would even-
tually produce perfectly circular pebbles. Another possi-
bility is that the responsible erosion process is stochastic,
giving rise to a variety of shapes for any initial conditions.

Several models for the kinetics of two-dimensional peb-
ble erosion have recently been proposed. The simplest is
a “polishing” model, where the normal velocity of con-
tour points is proportional to the local curvature and is
zero where the curvature is negative [2]. Under this ac-
tion, any initial pebble shape approaches a circle in the
limit of vanishing area [3]. This is similar in spirit to
what might be called the “Aristotle” model, where the
velocity of contour points would be directed toward the
center of mass and grow with radial distance [4]. We are
aware of no actual data that are explained by either of
these models. A stochastic “cutting” model has also been
proposed, where a straight cut is made from a random
contour point with a length drawn from an exponential
distribution [2]. This model successfully captures some
features of laboratory erosion of clay pebbles in a rotat-
ing tray. However it is incapable of generating concave
regions of negative curvature, which exist in the labora-
tory experiments and which may or not be important for
natural erosion processes. And more recently, an ana-
lytically tractable “chipping” model has been proposed,
where a randomly selected corner is broken off [5]. This
model produces nontrivial anisotropic shapes.

Comparison of data to such models requires that shape
be quantified. In Geology, shapes are often described
verbally (angular, rounded, elongated, platy) or by com-
parison to a standardized charts [1]. It is also common

practice to construct dimensionless ratios from measured
values of long vs intermediate vs short axes [6–10]. To
better connect with the microscopic action of erosion,
other shape quantifiers have been constructed in terms
of the curvature [2] or the turning angle [5] at each point
along the contour. Intuitively, regions of high positive
curvature are more exposed and hence subjected to faster
erosion. Unfortunately, as reviewed in the Appendix of
Ref. [11], it remains difficult to reliably measure curva-
ture from digital images because this involves numerical
computation of a second derivative.

Thus it would be useful to explore a specific erosion
process with reproducible deterministic action. And it
would be useful to establish reliable means for extracting
curvature from digital images. Towards these ends, we
conduct experiments on the abrasion of soft flat shapes
by rotation in a slurry of abrasive grit. We show that
the erosion is deterministic and reproducible, and gives
rise to circular shapes of nonzero size. This does not cor-
respond to either the “polishing” or “Aristotle” models,
but can be described by another similarly simple evolu-
tion equation. In addition we introduce a straightforward
measurement procedure in which multiple digital pho-
tographs are taken at different orientations, in order to ef-
fectively average over pixelation noise. We show that this
permits the local curvature to be measured with an un-
certainty that is purely statistical and of well-controlled
magnitude.

I. MATERIALS AND METHODS

A. General

In order to have a set of flat pebbles with uniform
isotropic consistency, we choose linoleum tiles of thick-
ness 1/8 inch (3.175 mm). Linoleum is a commercial floor
covering made from renewable materials such as solidi-
fied linseed oil, pine rosin, ground cork dust, wood flour,
and mineral fillers such as calcium carbonate. The prod-
uct we chose has no backing or fibrous content. Initial
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FIG. 1: Binarizied photographs of four flat linoleum squares,
prior to erosion. Note that the construction process produces
some level of variability and degree of negative curvature in
the contours.

shapes are formed with a standard tile cutter, and then
filed down to remove surface texture. These include four
squares with approximate edge lengths of 2.5 and 5 cm;
a hexagon with edge length 3 cm; a triangle with edge
length 6 cm; and a 2.5 × 5 cm2 rectangle. Photographs
of the squares are displayed in Fig. 1, converted from
grayscale to binary. Note that the tile cutter does not
produce identical shapes, and that the edges all possess
slight concave regions with small negative curvature. A
6 mm mounting hole is drilled through the center of each
shape. An additional 3 mm fiducial marker hole is drilled
1 cm from the center, for determining the orientation of
the shape in photographs.

Erosion is accomplished by rotation in a slurry of sil-
icon carbide grit (16 mesh, McMaster-Carr product No.
4780A34) completely submerged in water. The container
holding the slurry has diameter of 12.5 cm, and is filled
with grit to a depth of 10 cm; water covers the slurry
by a few cm. The grains have irregular shapes, an aver-
age size of d = 1.1 mm, a polydispersity of about 50%,
a density of ρg = 3.21 g/cc, and a packing fraction of
about 60%. The pebbles are mounted by screw and lock-
washer to a vertical steel rod attached to a Barnant series
20 mixer. The pebbles are carefully lowered H = 5.5 cm
into the grit. The rotation is exclusively clockwise at a
rate of 250 rpm, except for one square where the rate is
150 rpm. As erosion proceeds, linoleum debris floats to
the surface of the water, where it is regularly skimmed
off.

At regular intervals the pebble is removed from the
grit, laid on a lightbox, and photographed from directly
above with a Nikon D70 six-megapixel digital camera
equipped with a Nikon AF Micro Nikkor 60mm lens.

The magnification is such that pixels collect light from
0.04× 0.04 mm2 regions on the pebble. Images are con-
verted to binary, and the skeletonized contour is identi-
fied, using built-in LabVIEW commands. Example con-
tours are shown for four shapes in Fig. 2. Note that
the erosion is chiral and is faster at leading edges, in ac-
cord with the clockwise sense of rotation. Note also that
the contour spacing decreases, showing that the abra-
sion slows down as the final circular shape is approached.
One convenient feature of our choice of system is that this
process comes to completion within roughly one day. An-
other convenient feature is that the grit is much harder
than the pebbles, and does not change as the pebble
erodes.

The flow of the slurry in response to pebble rotation,
and its variation around the perimeter of the pebble,
would be important for a first-principles model of the
abrasion process. Unfortunately, however, the grit is
opaque so we cannot visualize the flow very well. At the
translucent wall of the container, some motion could be
observed in the plane of the pebble with a height about
7 to 8 mm. The rate of this flow decreases toward zero
as the pebbles become circular. The surface of the slurry
always remains at rest. Several dimensionless numbers
help characterize the forces at play. The first is the
Reynolds number based on grain size d and the speed
v at the perimeter, which also sets the scale for rela-
tive grain motion near the perimeter: Re=ρfvd/η ≈ 103,
where ρf and η are the fluid density and viscosity respec-
tively. This means that the flow of the water at the edge
of the pebble and also between the surrounding grains
is mildly turbulent, such that the viscosity of the water
plays no major role. The corresponding Stokes number,
for the ratio of grain inertial to fluid viscosity forces, is
three times larger since the grains are three times denser
than the water. Another important number would be
the ratio of grain inertial to friction forces, which can be
estimated as ρgv2/[µ(ρg − ρf )gH] ≈ 2, assuming a fric-
tion coefficient µ of order one. In short, the fluid inertial,
grain inertial, and friction forces are all comparable and
much greater than viscous forces.

The remainder of this section concerns experimental
details and is organized as follows. The following two
subsections describe our multiple photograph method for
eliminating systematic pixelation errors in the contour
location and for calculating statistical errors. Then the
final subsection reviews the shape descriptors to be em-
ployed for quantifying shape evolution by rotational abra-
sion and for comparing to a model in subsequent sections.

B. Multiple photographs

The skeletonized contour points given by analysis of a
digital image is satisfactory only for computing the area
and linear dimensions of the pebble. Since the points
are all on a square grid, neither the number of points
nor the sum of distances between adjacent points give
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FIG. 2: (Color online) Contour sequences for linoleum pebbles abraded by clockwise rotation in a slurry of grit. The top row
shows experimental data at equal intervals of 7500 rotations; the bottom row shows the evolution of the initial contours under
the action of Eq. (3) with α = β = 1. The square pebble is the one labeled (a) in Fig. 1.
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FIG. 3: (Color online) Cloud of pixel data (small red dots) and vertex points for the final polygonal contour (large solid blue
circles), shown in pixel units (0.04 mm) at various levels of magnification. The cloud consists of the skeletonized contours from
100 digitial photographs taken at different angles, with approximately 5000 pixel points per contour.

an accurate measure of the perimeter. The difficulty is
compounded for computing the unit tangent vector T,
and even more so for the curvature vector K = dT/ds,
where s is arclength. The approach taken in Refs. [2, 11]
was to fit radius vs angle to a cubic polynomial, aver-
aging over a range of acceptable fitting windows. Here
we develop an alternative approach in which the pebble
is photographed at multiple orientations with respect to
the grid of pixels in the digital camera. For this, the
lightbox on which the pebble rests is placed on a rota-
tion stage directly under the camera. Both the camera
and the stepper-motor for the stage are automated by
LabVIEW to take 100 photographs at equal angle inter-
vals over a range 0 − π/4. Pixelized contour points are
then aligned to a common coordinate system according
to the location of the mounting and fiducial holes. An
example of the final cloud of raw pixel points is shown in
Fig. 3 at three levels of magnification, zooming from the

entire contour down to the pixel scale. Note that this
pebble is about 1200 pixels across, and that the align-
ment of the multiple images is good to the pixel scale.
Also note that the pixel points cluster densely with only
a little systematic structure.

The nature of the noise in the pixel points is investi-
gated in Fig. 4 by a normalized histogram for the dis-
tance between pixel points and the estimated location of
the actual contour. Note that this distribution is approx-
imately Gaussian, and has a standard deviation close to
1/2 pixel, σo = `/2. Thus we may safely treat the pixel
points as having random uncorrelated Gaussian noise.
By contrast, the uncertainties in adjacent points on a
single skeletonized image are highly correlated, and can
lead to unknown systematic errors in the computation of
the local tangent.
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FIG. 4: (Color online) Normalized histogram of deviation of
pixel points from contour. Positive values are for points out-
side the contour and negative values are for points inside the
contour. The blue dashed curve depicts a Gaussian with stan-
dard deviation of 0.5 pixels.
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FIG. 5: (Color online) Fractional uncertainty in curvature,
Eq. (2), plotted vs the number M of pixel points per photo-
graph that are averaged together into a vertex point. Exam-
ples are shown for a contour of perimeter P/` = 5000 pixel
units photographed at N different angles, as labeled. The
open plus sign marks the combination of parameters used in
our experiments.

C. Polygonal contour and uncertainty

The final step in treating the data is to construct a
polygonal contour with roughly equal segment lengths
based on the cloud of pixel points obtained from N mul-
tiple images. For this we begin by sorting all contours by
angle. Then we divide one of the contours into intervals
with M pixel points, and average all the points in each
interval to create ‘seed’ points for the vertices of the final
polygon. The position of each seed point is then refined
by averaging together the closest M pixel points from
each of the N images. This process is repeated three
times, which is sufficient for convergence. The final ver-

tex points for a polygonal contour are shown in Fig. 3, as
solid blue circles, for the choice M = 50. In this exam-
ple, there are N = 100 images consisting of roughly 5000
pixels; therefore, there are roughly 100 evenly-spaced ver-
tices in the final polygonal contour, each formed by the
average of NM = 5000 pixel points. The choice M = 50
is made so that the statistical uncertainty in the local cur-
vature falls below the one percent level, as demonstrated
next.

The statistical uncertainty of the local curvature may
be estimated as follows, using the Fig. 4 result that each
pixel point has a random Gaussian uncertainty of one
half pixel size, σo = `/2. First note that the curvature
at a vertex is K = θ/S where θ is the turning angle
between adjoining straight line segments of approximate
length S = M`. The uncertainty in K is due entirely to
turning angle uncertainty, which equals the uncertainty
σo/
√
NM in the vertex positions perpendicular to the

contour divided by S. The
√
NM reduction assumes

that the NM pixel points per vertex are all uncorrelated.
Three vertices are involved in defining the bending an-
gle, and this gives an additional factor of

√
6. Normal-

izing by the average curvature 〈K〉 = 2π/P , where P is
the perimeter, gives the estimated percent uncertainty in
curvature as

∆K
〈K〉

=

(√
6 σo

S
√
NM

)
S

P

2π
, (1)

=
√

6
4π

P/`√
NM5

. (2)

The term in round brackets in Eq. (1) is the uncertainty
in turning angle, and the simplification to Eq. (2) was
made using σo = `/2 and S = M`. Thus the curvature
uncertainty scales as the number P/` of pixel points in
the skeletonized image contours divided by

√
NM5 where

N is the number of images and M is the number of pixel
points per image that contribute to each vertex of the
final polygonal contour.

The Eq. (2) result for the fractional uncertainty in cur-
vature, ∆K/〈K〉, is plotted in Fig. 5 vs the number M
of pixel points per image that are averaged together into
vertex points for the final polygonal contour. Here the
value of P/` was taken as 5000, which is the typical num-
ber of pixel points in skeletonized contours for a compact
pebble that fills the field of view of a six megapixel dig-
ital camera such as ours. For only one image, N = 1, a
window size of M ≈ 20 is needed for ∆K to be smaller
than 〈K〉; this explains the difficulties and pains taken to
deduce the curvature from polynomial fits in Refs. [2, 11].
For N = 100 images, the curvature uncertainty falls be-
low the one percent level for M = 50, as denoted in Fig. 5
by a large open plus sign. This corresponds to the exper-
iments reported here, as illustrated by the solid blue ver-
tex points in the example of Fig. 3. While a larger choice
for M would reduce the uncertainty further, it would
give fewer than 100 points in the final polygonal contour
and the resulting straight-line segments would eventually
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begin to deviate from the cloud of pixel points. Further
reduction in curvature uncertainty could also be obtained
by increasing the number N of images taken. To obtain
an independent sampling of the contour against the grid
of pixels, the minimum rotation increment between suc-
cessive images should cause each contour point to move
by at least one pixel; furthermore the maximum total ro-
tation should be π/4. Therefore, a hard upper limit on N
would be one-eight P/`. Our choice of N = 100 is large
enough for good statistics, but safely below this limit.
The statistical uncertainty in other quantities, such as
perimeter and area, could also be estimated; these will
be significantly less than ∆K/〈K〉 since curvature com-
putation involves differentiation.

D. Shape descriptors

The concept of “shape” is somewhat nebulous and sub-
jective. We choose to quantify it using several different
descriptors, all of which are demonstrated in Fig. 6 show-
ing evolution vs number of rotations in the abrasive slurry
of grit for the four linoleum squares pictured in Fig. 1.
The first two shape descriptors are simply the perimeter
P and the area A, both normalized by their initial values.
The second two are the caliper aspect ratio C/A and the
compactivity. The caliper aspect ratio is the ratio of the
largest to smallest values measured by a caliper as the
pebble is rotated. The compactivity is a standard mea-
sure of circularity, equal to P 2/(4πA). Note in Fig. 6
that all four of these measures are consistent with the
pebble evolving from a square to the largest inscribed
circle, for which the normalized perimeter and area both
decay from 1 to π/4, the caliper aspect ratio decays from√

2 to 1, and the compactivity decays from 4/π to 1.
The remaining three shape descriptors shown in Fig. 6

are all based on the curvature, measured at each vertex
of the polygon as the turning angle per segment length.
The simplest is the “angularity”, which we define as the
fraction of the perimeter with negative curvature. This
quantifies a similar notion found in textbooks [1]. Next
is the “compactivity”, which is a standard quantity de-
fined as the difference in area between the convex hull
[12] and the actual shape, divided by the area of the ac-
tual shape. Both the angularity and the concavity are
zero for a shape that is purely convex. And last is the
width σ/〈K〉 of the curvature distribution around the
perimeter, divided by the average curvature. This quan-
tity, along with the cumulative distribution function of
the curvature, were used in Refs. [2, 11]. For the four
squares, the initial angularity is large but the compactiv-
ity is small, consistent with the small wavy imperfections
and regions of slight negative curvature seen in the im-
ages of Fig. 1. Note that the angularity, the concav-
ity, and the width of the curvature distribution all de-
crease toward zero as the the squares abrade into circles.
Note also that of all the shape descriptors, σ/〈K〉 is far-
thest from its asymptotic value when the experiment was
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FIG. 6: (Color online) Dimensionless shape descriptors vs
number of rotations, for the four different square pebbles pic-
tured in Fig. 1. Consistent with evolution toward the largest
inscribed circle, the normalized perimeter and area both ap-
proach π/4, the caliper aspect ratio C/A and compactivity
both approach 1, and the angularity, concavity, and width
σ/〈K〉 of the curvature distribution all decrease toward zero.

stopped; the curvature distribution is thus most sensitive
in detecting the unabraded flat regions seen by eye in the
image sequences of Fig. 2.

II. SHAPE EVOLUTION

Using the above procedures, we now analyze image
data in terms of shape descriptors in order to quantify
the evolution of the initial shapes toward final circular
shapes. The qualitative evolution was already seen in
Fig. 2 for different initial shapes, and the quantitative
evolution was already seen in Fig. 6 for four squares. The
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FIG. 7: (Color online) Dimensionless shape descriptors vs number of rotations, for four different initial shapes. The top plots
show size reduction; the middle plots show difference from a circle; the bottom plots show curvature-based descriptors. Data
are displayed as discrete points; the model Eq. (3) is displayed as solid curves. If the final shape is the largest inscribed circle,
then data in the top plots should approach the dashed lines with indicated values, data in the middle plots should approach 1,
and data in the bottom plots should approach 0. Note that the range of each plot type is kept constant to better contrast the
behavior of the different initial shapes. The square pebble is the one labeled (a) in Fig. 1.
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FIG. 8: (Color online) Schematic illustration of a geomet-
ric “cutting” model. Due to rotational motion, material
is removed by cuts normal to the radial direction: |dr| =
r(θ)− r(θ − dθ) cos(dθ).

latter includes two nominally two-inch squares rotated at
250 rpm. Comparison of their respective shape descrip-
tors shows a fair degree of reproducibility, both in initial
shape details and also in evolution. Fig. 6 also includes
a nominal two-inch square rotated more slowly, at 150
rpm. All its shape descriptors agree reasonably well with
those for the faster abrasion, when plotted vs number
of rotations rather than vs time. The same holds for a
nominal one-inch square rotated at 250 rpm, though in
this case the initial shape is closer to a perfect square and
the perimeter, area, and caliper aspect ratio all approach
their asymptotic values a bit more slowly than the other
shape descriptors. Altogether, these observations show
that abrasion by rotation in a slurry of grit is essentially
independent of size and rate, and hence is controlled by
geometry and materials properties alone.

In Fig. 7 we display the evolution of all the shape de-
scriptors for the square, hexagon, rectangle, and trian-
gle, whose contour sequences are depicted Fig 2. For all
four shapes, the top plots in Fig. 7 show the normalized
area and perimeter, plus the asymptotic values for the
largest inscribed circle; the middle plots show the caliper
aspect ratio and compactivity, which both asymptote to
one; the bottom plots show the width of the curvature
distribution, the angularity, and the concavity, which all
asymptote to zero for the largest inscribed circle. Note
that initial shapes that are closer to a circle decay more
rapidly toward the final shape. In particular, the 1/e de-
cay constants for the normalized areas and perimeters are
approximately 30K revolutions for the hexagon, 60K rev-
olutions for the square, 90K revolutions for the triangle,
and 160K revolutions for the rectangle.

III. ROTATIONAL ABRASION MODEL

In this final section we attempt to model the abra-
sion processes and compare with quantitative shape data.
Since the abrasion is due to rotation, we seek the rate of
change of the radial coordinates r of the vertex points.
For the first ingredient, in accord with Aristotle [4], we

suppose that the erosion is faster for points farther from
the rotation axis, in proportional to a power of the tan-
gential speed (ωr)α. For the second ingredient, we con-
sider the extent to which a segment moves into the slurry.
This is determined by the magnitude and sign of the
derivative of radius vs angle, dr/dθ. If zero or negative,
there is no abrasion since the segment moves parallel to
or away from the slurry. The greater the positive mag-
nitude, the more the segment penetrates into the slurry
during rotation. Altogether, we thus propose the rate of
change of vertex radii to be

dr
dt
∝

{
−rα(dr

dθ )β dr/dθ > 0
0 otherwise (3)

For any positive values of the powers α and β this model
gives abrasion that halts as the shape approaches a circle,
where the radius is constant independent of θ around the
entire contour. Note, however, that this model becomes
unphysical for pebbles where r(θ) is not single-valued.
For shapes far from a circle, where r varies greatly with θ,
higher-order derivatives as well as non-local effects could
become important.

The evolution of a given set {ri} of vertex radii under
Eq. (3) may be found by finite differencing as follows. At
each time step, points with ri > ri−1 are incremented by

dri = −∆rmax

(
ri

∆rmax

)α (
ri − ri−1

∆rmax
∆θmin
θi − θi−1

)β
,

(4)
where ∆rmax is the largest difference ri−ri−1, and ∆θmin
is the smallest difference θi − θi−1. This corresponds to
a variable time step of

dt ∝ ∆rmax

(
1

∆rmax

)α (
∆θmin
∆rmax

)β
, (5)

so that the ratio of Eq. (4) to (5) gives Eq. (3). This time
step is sufficiently small by construction, as confirmed by
repeating with even smaller time steps. While the model
is not linear, analytic solution has been achieved; see
companion paper [13].

The pebble evolution given by Eq. (3) for the simplest
choice of α = 1 and β = 1 is depicted qualitatively by
contours in Figs. 2 and quantitatively by the shape de-
scriptors in Fig. 7. In these figures the agreement with
actual data for the hexagon, square, and triangle is very
good. For the rectangle, the agreement is satisfactory at
early stages but becomes less so at later times. On the
other hand, good agreement is found if the model is ini-
tiated with a later-stage contour that is more compact.
For all four shapes the same proportionality constant was
used in Eq. (3), as determined by matching the 1/e decay
constant for the hexagon. We note that similar degrees
of agreement are found by fixing β = 1 and taking α as
1/2, 1, 2, or 3; thus the model is relatively insensitive to
the value of α, which we thus take as 1 for simplicity. By
contrast, poor agreement is found by fixing α = 1 and
taking β as 1/2 or 2.
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The observations α = β = 1 can be understood as
follows in terms of a geometric cutting model. Given
two consecutive angles θ− dθ, θ and the associated radii
values r(θ − dθ, t), r(θ, t) at time t, one can compute
the time evolution of r(θ, t) under a microscopic cut of
the profile. In our case of rotating pebbles, the cutting
forces act normally to the radial direction, as displayed
in Fig. 8. One thus has dr = r(θ, t + dt) − r(θ, t) =
−[r(θ, t) − r(θ − dθ, t) cos(dθ)], and taking the limit of
continuous variables gives dr/dt = −w dr/dθ, where w is
the fraction of angle removed by unit time. Note that the
dependence of dr/dt on dr/dθ, is a direct consequence of
the assumed tangential orientation of the cuts: a value
of β = 1 is imposed in our experiments by the rotation
geometry. The parameter w carries information on the
length and frequency of each successive microscopic cut,
which is a function, for a given material and abrasion
agent, of the tangential velocity only. One would thus
expect w to be proportional to the radius r, compatible
with a value α = 1 in the model presented above.

IV. CONCLUSION

In summary we have developed a method for mea-
suring the contour of flat pebbles using multiple pho-
tographs from different angles. This method produces
accurate contours, and allows curvature to be deduced
with a known degree of statistical uncertainty without

systematic error. It is our hope that this general pro-
cedure will be broadly applicable to research involving
shape quantification, in the field and in the lab. Us-
ing this advance, we have explored an erosion process
where abrasion is caused by steady rotation in a slurry
of grit. By comparing different size squares and differ-
ent rotation speeds, we found that the sequence of shapes
evolves deterministically toward the largest inscribed cir-
cle. By comparing different initial shapes, we have found
that those closest to a circle approach the limiting shape
more rapidly. We have successfully modeled this behavior
quantitatively with a simple differential equation, where
contour points move radially inward in proportion to ra-
dius and the derivative of radius with respect to angle.
This model is different from both the deterministic “pol-
ishing” and “Aristotle” models, and is the only deter-
ministic model of which we are aware that accounts for
actual data. It is our hope that these models may serve
as a starting point for future theories of stochastic ero-
sion, perhaps by the addition of a noise term, in order to
compare with natural erosion processes.
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