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Abstract

A completely generalized version of an inhomogeneous scaled particle theory (I-SPT) for hard

particle fluids confined by hard walls is presented, whereby the reversible work of cavity insertion

can be determined for a cavity of any radius located at any distance from the hard wall. New exact

and approximate conditions on the central function G of I-SPT are developed, where G is related

to the average value of the anisotropic density of hard-sphere centers at the surface of the cavity.

The predictions of the work of insertion and the form of G are quite accurate up to moderate bulk

densities as compared to molecular simulation results. The accuracy of I-SPT begins to decline

at high densities, due to limitations of certain needed approximations required for a complete

description of G. Finally, interesting insights into the origin of depletion effects between a hard-

sphere solute and the hard wall are generated via this version of I-SPT. The oscillatory nature

of depletion forces, exhibiting both attractive and repulsive domains, is found to arise from the

interplay between bulk SPT and I-SPT relations.
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I. INTRODUCTION

In light of the success of scaled particle theory (SPT), originally introduced in 1959[1], in

describing the behavior of both hard particle and soft-core fluids[2–19], an initial extension

of SPT to inhomogeneous hard particle fluids was recently developed[20, 21]. Labeled as I-

SPT, the nonuniform fluid density that develops near a hard, structureless wall was explicitly

taken into account during the derivation of standard SPT relations. As a result, new physical

and geometric insights were generated into the structural changes brought about by the

insertion of cavities near a wall. While accurately predicting the reversible works of cavity

insertion, this version of I-SPT was limited to those cases for which the cavity exposed to the

nonuniform fluid adjacent to the wall has a volume equal to or less than that of a hemisphere.

In addition, only cavities that were “grown” radially about a fixed center coordinate were

considered.

A subsequent paper[22] showed how cavities beyond the hemisphere, though still inter-

secting the wall, could be included into I-SPT. Rather than growing a cavity radially at

a fixed location, this version of I-SPT considered instead the (effective) forces needed to

“push” a cavity into the fluid when starting from a position behind the wall. Such a route

was chosen since it allowed for additional conditions to be incorporated into I-SPT, as well

as avoiding some (at the time) unresolved issues that arise if one were to consider the radial

growth of cavities beyond the wall. This version of I-SPT also provided useful information

about the physical and geometric origins of depletion interactions in hard particle systems

[23–28]. Given that the cavities were required to intersect the wall, depletion interactions

could only be generated over a small range of the full depletion potential.

Despite their successes, neither of the two above-mentioned forms of I-SPT reach the

desired for goal that provided the initial intent for extending SPT to inhomogeneous sys-

tems: describing the radial growth of cavities that are centered at any coordinate relative to

the hard wall. Since their introduction, however, the understanding of the boundary ther-

modynamics of cavities intersecting a wall has improved[29]. As such, previously missing

information has now become available for the development of a sufficiently accurate and

fully generalized form of I-SPT. And so, we present in this paper a version of I-SPT that

yields expressions (some exact, others approximate) for the reversible work of inserting a

cavity of any radius located at any distance from a hard wall. We identify a number of new
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I-SPT conditions, based again on physical and geometric arguments, each of which provides

additional insights into the behavior of hard particle fluids near planar surfaces, as well as

improving the accuracy of some earlier versions of I-SPT.

While the further development of I-SPT is important in itself, our aim is not simply to

extend the range of applicability of I-SPT. For one, as discussed in Ref. [29], a form of

I-SPT that can describe cavities that are grown radially at any location is necessary for

an accurate determination of the line tension of cavities that intersect a planar surface. A

generalized version of I-SPT will provide the required inputs, such as the work of cavity

formation, needed to estimate this important thermodynamic property.

Furthermore, due to the equivalence of cavities and hard-sphere solutes, I-SPT relations

can be used to predict the depletion, or entropic, force between a hard sphere solute and

a hard wall. The development of accurate expressions for entropic forces are of interest,

given that entropic interactions are important in governing the behavior of hard-sphere-like

fluids and can be utilized to control the self-assembly of model colloidal dispersions [30–36].

SPT was previously employed to estimate the depletion force between a hard colloid and

a hard wall[37], though the use of bulk relations led to inaccurate predictions at high fluid

densities. I-SPT, with its explicit incorporation of the nonuniformity of the hard sphere

fluid near the hard wall, is well suited to studying depletion interactions. One of the earlier

versions of I-SPT[22] yielded predictions of the depletion force exerted on a large diameter

hard-sphere colloid near a wall that were in excellent agreement with molecular simulation

results. As noted earlier, the range of the depletion force that was described by this version

of I-SPT was limited, which the current extension presented here overcomes. Hence, I-

SPT can now generate predictions of the depletion force for all separations and for all hard

sphere solute diameters. Here, we use I-SPT to provide insight into the origin and oscillatory

nature of depletion forces. In particular, both attractive and repulsive depletion forces are

easily explained using bulk SPT and I-SPT relations, which manifest the different behaviors

exhibited by cavities within SPT and I-SPT.

The paper is organized as follows. In Section 2, a review of bulk SPT and all the current

versions of I-SPT is provided. In Section 3, the further extension of I-SPT is presented.

Here, the new conditions required to describe the radial growth of cavities at all distances

from the hard, structureless wall are introduced. In addition, the interpolations needed to

describe the average contact density around the cavity, beyond the ranges at which this
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quantity is known exactly, are presented. The comparison between the predictions of I-SPT

and the results of molecular simulation are included in Section 4. A discussion of depletion

effects and how they can be determined from I-SPT is provided in Section 5. Conclusions

are presented in Section 6.

II. REVIEW OF SPT AND EXTANT I-SPT

Before introducing the updated version of I-SPT, we first present a review of both SPT

for the homogeneous hard-sphere (HS) fluid and the various existing versions of I-SPT (more

detailed discussions of SPT and I-SPT can be found in Refs. [1, 38–41] and Refs. [20–22],

respectively). The starting point of any version of SPT is the introduction of a cavity of

radius λ into a solvent of HS of diameter σ, where the cavity is defined as a spherical region

devoid of HS centers. A cavity in a HS fluid can also be considered as a HS solute of radius

σs, where λ = (σs + σ) /2[1] (albeit with the possibility of negative diameters, in which

λ ≥ 0 implies σs ≥ −σ/2). Accordingly, the cavity becomes equivalent to a solvent HS

when λ = σ.

For uniform, unconfined fluids, all thermophysical properties are related to the central

SPT function G (λ), where ρG (λ) is defined as the local density of HS centers at the surface

of a cavity of radius λ and ρ is the number density of HS centers far from the cavity. Since

ρG (λ) kT is the local stress normal to the cavity surface (in which k is Boltzmann’s constant

and T is the absolute temperature), the reversible work, W (λ), of growing or adding a cavity

of radius of at least λ within the fluid is related to G via the following integral[1]

W (λ) = 4πρkT

∫ λ

0

G (r) r2dr. (1)

G is known exactly for λ ≤ σ/2, after which it is represented by one or more interpola-

tion functions that are constrained by several exact conditions[1, 39–42]. Typically, the

interpolation(s) takes the form of a Laurent series[1, 43]

G (λ) = α0 (ρ) +
α1 (ρ)

λ
+
α2 (ρ)

λ2
+
α4 (ρ)

λ4
+ · · · (2)

in which several of the fitting parameters, αi (ρ), are related to particular thermophysical

properties of the HS fluid. For example, in the final (or only, if a single interpolation

function is invoked) Laurent series, one notes that α0 (ρ) = G (∞) = p/ρkT , where p is
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the pressure of the HS fluid, while α1 (ρ) = γ∞σ
2/2kT , where γ∞ is the surface (or, more

properly, boundary) tension of a planar surface in contact with a HS fluid. Once G(λ) is

known, numerous other properties of the HS fluid may be obtained from the chosen set of

interpolations for G (λ).

Inhomogeneous SPT is the application of SPT ideas to a HS fluid confined by planar

walls. I-SPT, however, must acknowledge the following two major departures from SPT: 1)

a cavity may intersect a wall and 2) the properties of the fluid near the wall are not uniform.

Due to the loss of radial symmetry about a cavity in a nonuniform fluid, one is required to

introduce a modified version of G (λ) that includes information about the cavity’s location

relative to a wall. Thus, the central I-SPT function is G (λ, θ, h), where ρG (λ, θ, h) is the

local density of HS centers at a position identified by λ, θ, and h[20] (and is yet again

related to the local stress normal to the cavity surface at that same position). As shown

in Fig. 1(a), h locates the position of the cavity relative to the effective wall (or the z = 0

plane, indicating the closest approach of HS centers to the wall) and θ is the azimuthal angle

that identifies a particular position on the cavity surface. The introduction of an average of

G (λ, θ, h) over θ, denoted by G (λ, h), proved useful for further manipulations. For example,

for cavities in which h ≤ 0, the work of adding a cavity to the system is given by[20]

W (λ, h) = 2πρkT

∫ λ

0

G (r, h)
(

r2 + rh
)

dr. (3)

Furthermore, G for h ≤ 0 and λ ≤
√

h2 + (σ/2)2 is known exactly and is equal to[20]

ρG (λ, h) =

∫ λ+h

0
ρ (z) dz

(λ+ h)
(

1 − π
∫ λ+h

0
ρ (z)

[

λ2 − (z − h)2] dz
) λ ≤

√

h2 +
(σ

2

)2

, (4)

where ρ (z) is the local density of HS centers at a position z relative to the wall (see Fig. 1).

[Note that I-SPT requires some form of ρ (z) as input, and cannot in its present development

be used to generate ρ (z) independently.] Beyond this range of cavity radii, a Laurent series

interpolation of the following form was proposed as an approximation of G[20]

G (λ, h) = β0 (ρ, h) +
β1 (ρ, h)

λ+ h
+

β2 (ρ, h)

λ (λ+ h)
+

β4 (ρ, h)

λ3 (λ+ h)
λ >

√

h2 +
(σ

2

)2

, (5)

where the fitting coefficients βi (ρ, h) were obtained via additional exact conditions on G.

These exact conditions include the continuity of G and its first derivative with respect to

λ at λ =
√

h2 + (σ/2)2, the asymptotic limit of G(∞) = p/ρkT and a condition related to
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the excess chemical potential, µex, of the HS fluid. Unlike bulk SPT, which can be used

to generate a prediction of p and µex, I-SPT requires that these quantities be provided

from an outside source, such as the Carnahan-Starling equation of state[44]. A modified

interpolation and a new condition relating β1 to γ∞ (the value of which is again provided

by an equation of state) not included in the original formulations of I-SPT were introduced

in Ref. [22].

To extend the ideas of I-SPT to cavities located at h > 0, a different version of I-SPT was

derived, in which the cavity is “pushed” into the fluid from behind the wall while holding

λ fixed[22] rather than “growing” the cavity from a static center point. A different type of

average I-SPT function was necessary and was denoted by F (λ, h), though it is still related

to an integral of G (λ, θ, h). F is proportional to the force perpendicular to the wall exerted

by the fluid on the cavity and, like G, is known exactly for certain configurations and must

be interpolated thereafter. Here, the work of adding a cavity to the fluid is given by[22]

W (λ, h) = 2πρkT

∫ h

−λ

F (λ, z) dz. (6)

For the cases previously considered, such that the cavity always intersected the wall or

h ≤ λ, F is exactly known for h ≤ −
√

λ2 −
(σ

2

)2

[22]

F (λ, h) =

∫ h+λ

0
ρ (z) (z − h) dz

ρλ2
(

1 − π
∫ h+λ

0
ρ (z)

[

λ2 − (z − h)2] dz
) h ≤ −

√

λ2 −
(σ

2

)2

. (7)

Beyond this exact limit, F was interpolated not using a Laurent series but with a set of

polynomials that satisfactorily mimicked the true behavior of F . The fitting coefficients

were again obtained by invoking various exact conditions on F , such as the continuity

of F and its first derivative with respect to h at h = −
√

λ2 − (σ/2)2 as well as formal

limits of macroscopic thermodynamics[22]. Other approximate, though reasonably accurate,

conditions were generated in order to better match the behavior of F at intermediate values

of h. The interpolation procedure for F is much more complex than that for G, though

nonetheless proved to be highly accurate up to moderate fluid densities and, perhaps more

importantly, uncovered new phenomena in the physics of depletion forces in HS colloidal

dispersions[22].

While successful, these previous versions of I-SPT were, however, limited in application

to those cavities that intersect the effective wall. As such, they provided no description of
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G (λ, h) for h > 0. Additionally, the previous versions of I-SPT provided no firm theoretical

justification for the chosen interpolation series. The interpolation series were based partly on

expectations of macroscopic thermodynamic results and partly on intuition. Taken together,

these two issues provide the motivation for revisiting I-SPT and extending this previous

framework to the description of cavities for which h > 0 and λ < h.

III. I-SPT: RADIAL GROWTH OF CAVITIES CENTERED AT h > 0

The earlier versions of I-SPT were successful in their stated aim of computing the work

of inserting cavities that intersect a planar surface. We are now, however, interested in

describing any cavity that is located near a planar surface, specifically those locations that

satisfy h ≥ 0 without also requiring λ > h (i.e., no overlap of the z = 0 plane). For various

reasons, we choose to extend the G description of cavities to h > 0. Hence, the derivation

of the new extension of I-SPT will proceed via the I-SPT derivation presented in Ref. [20].

In our examination of cavities centered at h > 0, we again utilize the coordinate system

identified in Fig. 1(a). Furthermore, as illustrated in Fig. 1(b), the accessible values of θ for

λ < h now span from 0 to π, rather than 0 to cos−1 (−h/λ) as is the case for λ > h. Finally,

we again define an I-SPT function G (λ, θ, h) such that ρG (λ, θ, h) is the local density on

the cavity surface at an angle θ, with ρG (λ, θ, h) kT providing the local stress normal to the

cavity surface at θ.

A. I-SPT Functions and Definitions

Using arguments identical to those invoked to obtain G (λ, h) for h ≤ 0 in Ref. [20], the

reversible work required to differentially increase the radius of a cavity centered at h may

be written as

dW =

(
∫

A(λ,h)

ρG (λ, θ, h) kTdA

)

dλ, (8)

where A (λ, h) is the surface area of the cavity accessible to the fluid of hard-spheres (i.e.,

that portion of the cavity residing at z ≥ 0 in Fig. 1). The above equation, in essence, states

that the differential work of growing the cavity is the total normal force on the cavity surface

multiplied by the differential change in radius. Equation 8 is valid for any value of h and,

through subtle manipulation, could be transformed to describe the work of growing a cavity
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near any confining surface. (Chapter 4 of Ref. [45] includes a discussion of an entirely

general I-SPT based on this idea.) As was done previously, though not explicitly noted,

A (λ, h) is easily transformed to an integral over θ and some terms related to λ. Unlike the

previous derivation for h ≤ 0, A (λ, h) cannot, however, be represented by a single function.

Due to the abrupt change in the bounds of θ at λ = h (where the cavity just touches the

z = 0 plane) we are required to write one expression valid for λ ≤ h and another for λ > h.

∂W/∂λ must therefore be expressed as

∂W

∂λ
=







2πλ2
∫ π

0
G (λ, θ, h) sin θdθ λ ≤ h

2πλ2
∫ cos−1(−h

λ
)

0 G (λ, θ, h) sin θdθ λ > h
. (9)

Following Ref. [20], we now replace the integrals of G (λ, θ, h) by some other function,

since G (λ, θ, h) cannot be recovered directly from W . Just as G (λ, h) for h ≤ 0 was defined

as an average of G (λ, θ, h) over the surface of the cavity, we likewise define a similar function

for h > 0. Again due to the abrupt change in A (λ, h) at λ = h, the relevant definitions of

G (λ, h) for h > 0 are given by

G (λ, h) =























2πλ2
∫ π

0
G (λ, θ, h) sin θdθ

2πλ2
∫ π

0
sin θdθ

λ ≤ h

2πλ2
∫ cos−1(−h

λ
)

0 G (λ, θ, h) sin θdθ

2πλ2
∫ cos−1(−h

λ
)

0 sin θdθ
λ > h

=











1

2

∫ π

0
G (λ, θ, h) sin θdθ λ ≤ h

λ

λ+ h

∫ cos−1(−h

λ
)

0 G (λ, θ, h) sin θdθ λ > h
(10)

in which we note that

A (λ, h) =







4πλ2 λ ≤ h

2π (λ2 + λh) λ > h
(11)

Substitution of Eq. 10 into Eq. 9, followed by integration from λ = 0 to a final radius of λ

allows the reversible work of growing a cavity of radius λ centered at h to be written as

W (λ, h) =







4πρkT
∫ λ

0
G (r, h) r2dr λ ≤ h

W (h, h) + 2πρkT
∫ λ

h
G (r, h) (r2 + rh) dr λ > h

, (12)

where, for convenience, W (h, h) represents an integral from the first line of the above equa-

tion. While W (h, h), the work of inserting a cavity of radius h that is located a distance h

from the effective wall, is identically zero for h ≤ 0 (where here λ = |h|), W (h, h) 6= 0 for
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h > 0. The definition of G for λ > h is identical to that for h ≤ 0 and all values of λ[20]. We

repeatedly find that expressions related to W or G for λ > h > 0 are common to all values

of h, a property that derives from A (λ, h) being described by a similar function provided

that λ > h (which is automatically satisfied when h ≤ 0).

For λ = h, we note that the two expressions for G both yield

G (h, h) =
1

2

∫ π

0

G (h, θ, h) sin θdθ. (13)

Given that G is proportional to the normal stress at the surface of the cavity, which in turn

is related to the density distribution of HS centers around the cavity, there is no reason to

expect that G (h, θ, h) changes discontinuously as λ → h from above and below. Thus, Eq.

13 indicates that G (h, h) is continuous at λ = h. (As we discuss later, the continuity of G

at λ = h may be confirmed exactly for h ≤ σ/2 while simulation results for larger h support

this conclusion.)

Continuity does not extend, however, to the first derivative of G with respect to λ eval-

uated at λ = h. For λ < h, we find that

∂G

∂λ
=

1

2

∫ π

0

∂G (λ, θ, h)

∂λ
sin θdθ λ ≤ h, (14)

while for λ > h, we have that

∂G

∂λ
=

λ

λ+ h

∫ cos−1(−h

λ
)

0

∂G (λ, θ, h)

∂λ
sin θdθ

+
h

(λ+ h)2

∫ cos−1(−h

λ
)

0

G (λ, θ, h) sin θdθ − h

λ2 + λh
G

(

λ, cos−1 (−h/λ) , h
)

λ > h. (15)

Evaluating both derivatives at λ = h and taking the difference, we obtain

∆

[

∂G

∂λ

]

λ=h

≡ ∂G

∂λ

∣

∣

∣

∣

λ=h+

− ∂G

∂λ

∣

∣

∣

∣

λ=h−

=
1

2

∫ π

0

(

∂G (λ, θ, h)

∂λ

∣

∣

∣

∣

λ=h+

− ∂G (λ, θ, h)

∂λ

∣

∣

∣

∣

λ=h−

)

sin θdθ

+
1

2h

[

G (h, h) −G (h, π, h)
]

, (16)

where the superscripts ‘-’ and ‘+’ indicate that the given term is evaluated infinitesimally

below or above λ = h, respectively. The above result suggests that ∂G/∂λ is in general

discontinuous at λ = h, since previous work indicates that G (h, h) ≤ G (h, π, h). For the
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cavity just touching the z = 0 plane, a large density enhancement of HS centers occurs within

the cusp region (θ → π), in which G (h, π, h) ≥ p/ρkT [21], while G (λ, h) ≤ p/ρkT [20],

implying that the third line of Eq. 16 is always negative. Nevertheless, the sign of the

discontinuity of ∂G/∂λ is not entirely clear, since the integral portions of Eq. 16 may not

cancel identically. Although G (λ, θ, h) is continuous at λ = h, the manner in which the

local density along the cavity surface varies with λ may be different (particularly for θ → π)

when the cavity is already intersecting the wall and its radius decreases to the limit where

it just touches the wall as compared to when the cavity begins by not intersecting the wall

and its radius increases to the limit where it again just touches the wall. In the former case,

HS centers can only reach θ = π when λ → h; in the latter case, HS centers always have

access to θ = π except when λ→ h[25–27, 46, 47].

Exact expressions for G provided below do reveal that the integral term in Eq. 16 does

vanish for λ ≤ σ/2 (though the remaining term is not zero). Yet, the approximations invoked

to describe G at larger λ, as well as a boundary thermodynamic analysis for macroscopic

cavities, suggest that the integral term is not zero in general. (Due to sampling problems

inherent in the determination of G (λ, θ, h), and particularly its derivative with respect to λ,

molecular simulations results were unfortunately inconclusive about the sign of this integral

term.)

B. Exact I-SPT Expressions

Similar to previous versions of SPT and I-SPT, we now relate G (λ, h) to the probability

of observing a cavity of radius of at least λ centered at z = h, P0 (λ, h), and then make

use of exact knowledge of P0 to identify G exactly under certain conditions. Given that

P0 = exp (−W/kT ), Eqs. 9 and 10 indicate

ρG (λ, h) =











−1

4πλ2

∂ lnP0 (λ, h)

∂λ
λ ≤ h

−1

2π (λ2 + λh)

∂ lnP0 (λ, h)

∂λ
λ > h

(17)

The relation for G in terms of P0 for λ > h is again identical to that for h ≤ 0[20].

Now, P0 may be interpreted in the following manner[1, 22]. Suppose that spheres of

radius λ are drawn concentric with all solvent hard-spheres in a particular configuration.

Then, for that configuration, the probability of locating a cavity of radius of at least λ
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centered at z = h is the area fraction of the z = h plane not eclipsed by the spheres of

radius λ. P0 is then obtained by ensemble averaging over all possible configurations. With

this interpretation, P0 is given by[22]

P0 (λ, h) = 1 +

∞
∑

m=1

(−1)m Fm (λ, h) , (18)

where Fm (λ, h) is the average area fraction of the z = h plane eclipsed by the mutual

intersection of m spheres of radius λ. Depending on the value of λ, not all Fm terms are

required[22]. For example, when λ ≤ σ/2 and h > 0, two spheres of radius λ concentric

with solvent HS (of diameter σ) cannot intersect on the z = h plane. Hence, only F1 is

needed. Similarly, two spheres of radius λ may intersect for σ/2 < λ ≤ σ/
√

3, but three

may not, requiring that Fm (λ, h) = 0 for m ≥ 3 in this subdomain, and so on. Computation

of Fm is then accomplished by identifying the various radial subdomains and representing

the necessary Fm terms by nontrivial integrals that count successive overlapping circles that

eclipse the z = h plane. Following Refs. [20–22], F1 may be expressed as

F1 (λ, h) =







π
∫ h+λ

h−λ
ρ (z)

[

λ2 − (z − h)2] dz λ ≤ h

π
∫ h+λ

0
ρ (z)

[

λ2 − (z − h)2] dz λ > h
, (19)

Referring to Appendix A of Ref. [22], F2 may be written as

F2 (λ, h) =







π
∫ h+λ

h−λ
dz1

∫ h+λ

h−λ
dz2

∫ rmax

0
ρ[2] (z1, z2, r)Ω2 (z1, z2, r, λ, h) rdr λ ≤ h

π
∫ h+λ

0
dz1

∫ h+λ

0
dz2

∫ rmax

0
ρ[2] (z1, z2, r)Ω2 (z1, z2, r, λ, h) rdr λ > h

, (20)

where ρ(2) (z1, z2, r) is the pair distribution function for two hard-spheres located at z1 and

z2 with an in-plane distance (parallel to the wall) r between them and Ω2 (z1, z2, r, λ, h) is

the area on the z = h plane eclipsed by the mutual overlap of the circles projected by spheres

of radius λ concentric with the same two hard-spheres. The value of r for which Ω2 vanishes

for a given z1 and z2 is rmax =
√

λ2 − (z1 − h)2 +
√

λ2 − (z2 − h)2. As shown in Ref. [22],

Ω2 yields a divergent third derivative of F2 with respect to λ as λ → σ/2+, which implies

that ∂2G/∂λ2 → −∞ as λ→ σ/2+ for h > 0.

As stated previously, only F1 is required for λ ≤ σ/2. Entering P0 = 1 − F1 into Eq. 17

11



yields the following exact expression for G

ρG (λ, h) =































∫ h+λ

h−λ
ρ(z)dz

2λ
(

1 − π
∫ h+λ

h−λ
ρ(z)

[

λ2 − (z − h)2] dz
)

λ ≤ σ
2

λ ≤ h
∫ h+λ

0
ρ(z)dz

(λ+ h)
(

1 − π
∫ h+λ

0
ρ(z)

[

λ2 − (z − h)2] dz
)

λ ≤ σ
2

λ > h

(21)

With the above equation, Gmay be determined up to λ = σ/2 when a suitable representation

of ρ (z) is provided. Additionally, Eq. 21 confirms that G is continuous at λ = h, provided

that λ ≤ σ/2.

Equation 21 also provides exact information about the limit of G as the cavity initially

grows. For example, taking the limit of G as λ → 0 (which necessarily implies λ ≤ h), we

find that

lim
λ→0

G (λ, h) =
ρ (h)

ρ
, (22)

which differs from the h ≤ 0 case where G (−h, h) = p/ρkT [20]. (For h = 0, these results

are identical as ρ (0) = p/kT .) As h → ∞, i.e., we are growing the cavity within a bulk

fluid, we recover the SPT result of G (0,∞) = 1 since ρ (h) → ρ at a sufficient distance from

the hard wall. Equation 22 does align with our intuition regarding cavity growth, since one

expects the limiting stress normal to a cavity of zero radius to equal the local density of the

HS fluid multiplied by kT .

A second limiting property of G obtained from Eq. 21 for h > 0 is

lim
λ→0

∂G

∂λ
= 0, (23)

which is quite different from the initially negative slope of G for h ≤ 0[20], though identical

to the λ → 0 limit of ∂G/∂λ for bulk SPT. This difference follows from the fully spherical

shape of the cavity for λ < h, manifested by the nonzero lower bounds of the integrals in

Eq. 21. Since the limiting slope of G is zero, it is unclear whether G increases or decreases

for λ infinitesimally larger than zero. Proceeding to the second derivative of G, however,

one finds that

lim
λ→0

∂2G

∂λ2
=

1

3ρ

∂2ρ (z)

∂z2

∣

∣

∣

∣

z=h

, (24)

which may be positive, negative, or even zero, since the curvature of ρ (z) varies between

positive and negative concavity. Hence, the curvature of ρ (z) at z = h controls the initial
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behavior of G for h > 0, positive curvature leading to an initial increase in G and vice

versa. As noted before, G behaves quite differently from the bulk G (λ), which is always a

monotonically increasing function of λ.

We may also examine the discontinuity in ∂G/∂λ at λ = h for λ ≤ σ/2. After differenti-

ation of Eq. 21, we find that

∆

[

∂G

∂λ

]

λ=h

=

∫ 2h

0
ρ(z)dz

4ρh2
(

1 − π
∫ 2h

0
ρ(z)z [2h− z] dz

) − ρ (0)

2ρh
(

1 − π
∫ 2h

0
ρ(z)z [2h− z] dz

)

=
1

2h

[

G (h, h) −G (h, π, h)
]

λ ≤ σ/2, (25)

where the second line follows from various relations provided in Refs. [21, 22]. Comparison of

Eqs. 16 and 25 reveals that ∂G (λ, θ, h) /∂λ is continuous at λ = h, so that the integral term

in Eq. 16 vanishes, provided that λ ≤ σ/2. Lastly, since G ≤ p/ρkT [20] and G (h, π, h) ≥
p/ρkT [21, 22] (where we note that ρ(0)/ρ = p/kT and the denominator in the expression

for G (h, π, h) is less than unity), this discontinuity in ∂G/∂λ is negative. For λ > σ/2, we

cannot definitively say that ∂G (λ, h, θ) /∂λ is continuous at λ = h and, consequently, the

discontinuity in ∂G/∂λ could be positive. For further discussion, see Appendix B of Ref.

[45].

Additional exact conditions on G can be obtained by considering the behavior of G at

λ = σ/2. Using Eq. 18, examination of the exact form of G for λ = σ/2−ǫ and λ = σ/2+ ǫ,

with ǫ → 0, indicates that G is continuous up to the first derivative with respect to λ at

λ = σ/2, as was the case previously[20]. This is not the case, though, when h = σ/2. Here,

λ = σ/2 coincides with λ = h, so that Eq. 25 must apply and only G itself is continuous.

A condition on the second derivative of G can also be obtained, though which proves more

difficult to apply. In Eq. 20 we expect Ω2 to supply a divergent third derivative of F2

with respect to λ as λ → σ/2+ as noted previously[22], implying that ∂2G/∂λ2 → −∞
as λ → σ/2+ for h > 0. For h = σ/2, additional finite terms would appear upon further

differentiation of Eq. 16, but the behavior of F2 still suggests that the divergence of ∂2G/∂λ2

to −∞ should persist. These conditions complete the set of conditions on G that may be

derived using solely statistical geometric arguments. Like all previous versions of SPT, we

now appeal to macroscopic thermodynamics to provide additional information about G.
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C. Conditions on G (λ, h) for λ > σ/2

In Ref. [20], three exact conditions on G for λ > σ/2 were identified for h ≤ 0. An addi-

tional exact condition was available for h = 0 only, necessitating a semi-empirical condition

relating the G interpolation for h < 0 to the hemispherical (h = 0) case. An aforementioned

exact condition related to γ∞ was derived later[22], becoming the fifth exact condition of

I-SPT for h ≤ 0. The net result is that different sets of conditions on G become available

for different values of h, which is again the case for h > 0.

1. Exact Conditions

The connection between SPT and macroscopic thermodynamics provides several exact

conditions on G. For finite h and large enough values of λ, the cavity eventually intersects

the z = 0 plane. As shown in Ref. [29], the reversible work of growing a cavity that intersects

a planar wall is given by

W = pV (λ, h) − γ∞Awall (λ, h) + γλA (λ, h) + τλL (λ, h) , (26)

where V (λ, h) = π (2λ3 + 3λ2h− h3) /3 is the volume of the cavity that develops beyond

the wall (z = 0 plane), Awall = π (λ2 − h2) is that portion of the wall covered by the cavity,

γλ is the surface tension of the cavity of radius λ when it is placed far away from the wall

(and the dividing surface is coincident with the surface of the cavity), τλ is the line tension of

the cavity and L (λ, h) = 2π (λ2 − h2)
1/2

is the linear interface generated by the intersection

of the cavity and the wall. Using either Eq. 9 or Eq. 17, differentiation of Eq. 26 once with

respect to λ shows that[20]

lim
λ→∞

G (λ, h) =
p

ρkT
, (27)

which requires that the average normal stress on the cavity surface equal the system pressure

as λ→ ∞. Differentiating W a second time reveals that [22]

lim
λ→∞

[

λ2∂G (λ, h)

∂λ

]

= − γ∞
ρkT

. (28)

When a Laurent series is introduced to interpolate G for macroscopic radii, Eqs. 27 and 28

are used to determine the first two interpolation coefficients, respectively. Another condition

that follows from Eq. 26 is the requirement that W not contain terms proportional to lnλ
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as λ→ ∞[48], which can be satisfied through an appropriate choice of the I-SPT interpola-

tion function. Lastly, Widom’s inverse potential distribution theorem (or, equivalently, the

invariance of the chemical potential in an equilibrium nonuniform fluid) requires[49, 50]

ρ (r1)

ρ (r2)
= exp

[

W (r2) −W (r1)

kT

]

, (29)

where ρ (ri) is the local density of HS at position ri and W (ri) is the reversible work of

inserting a HS at that same location. Application of the above to the nonuniform density

that develops near the wall (noting again that λ = σ is equivalent to another HS solvent

particle), we conclude that

exp

[

µex −W (σ, h)

kT

]

=
ρ (h)

ρ
, (30)

where µex is the excess chemical potential of the HS fluid, i.e., the work of inserting a HS

within the bulk fluid far away from the wall. The above equation constrains the integral of

G up to λ = σ (through Eq. 12) as opposed to restricting G itself.

2. Pseudo-Exact Conditions

While several exact conditions on G can be invoked, our initial attempts to describe G

revealed that additional conditions were needed to generate interpolations that were reliable

over large ranges of both λ and h. Another condition, for example, follows from noting that

the reversible work of inserting a cavity is path-independent. Consequently, one may write

the work of growing a cavity in terms of either F (λ, h) or G (λ, h). So, for a cavity of radius

λ = h located at h, W (h, h) is formally equal to

W (h, h) = 4πkT

∫ h

0

G (r, h) r2dr = 2πkTh2

∫ h

−h

F (λ, h) dz. (31)

Of course, F (λ, h) is approximated over most of its domain, so the application of Eq. 31

is an approximate condition that becomes dependent on the accuracy of the interpolations

describing F (λ, h). Nevertheless, the predictions of W (λ, h) obtained from F (λ, h) were

shown to be quite accurate (in comparison with W obtained via molecular simulation), so

this condition may be considered as pseudo-exact. This relation is only useful for h > σ/2,

though, since W (h, h) is known exactly for smaller h and is equal to zero for h < 0. (As

a note of interest, we point out that this condition makes an interpolation of G for h > 0
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dependent on the interpolation for G at h = 0 since W (λ, h = 0) is itself a condition on

F [22].)

Another condition may be again obtained from Eq. 26. Given that γλ can be expanded

in inverse powers of λ about γ∞ as follows[29]

γλ = γ∞

(

1 − 2δ∞
λ

+ · · ·
)

, (32)

in which δ∞ is the Tolman length[51], one finds that

lim
λ→∞

[

λ2

2

∂

∂λ

(

λ2∂G (λ, h)

∂λ

)]

= τ∞ − 2γ∞δ∞ , (33)

where τ∞ is the limiting value of the line tension as λ → ∞. If a Laurent series is used to

interpolate G, the above can be used to determine one of the interpolation coefficients. Both

γ∞ and δ∞ can be determined from an accurate version of bulk SPT, as was developed, for

example, in Ref. [42], and can be considered as (almost) exactly known. τ∞, however, has not

been previously obtained for the HS fluid, the form of which and its relation to other surface

thermodynamic properties having only been properly derived in Ref. [29]. One complication

that arises concerning the use of Eq. 33 is that τ∞ could be a function of h, and so it is not

known in general. In fact, one would normally invoke Eq. 33 to predict the values of τ∞

from some version of I-SPT, rather than impose Eq. 33 as a condition within I-SPT. But,

various physical and geometric arguments put forth in Ref. [29] strongly suggest (though

do not prove) that τ∞ is independent of h. For finite values of h, all cavities intersecting the

wall eventually approach a hemispherical cavity as λ→ ∞. Since an accurate expression for

G already exists for h = 0, we therefore compute τ∞ for the hemispherical case (evaluating

W for the hemisphere and applying Eq. 26 as λ→ ∞) and then assume that this τ∞ applies

to all other values of h. The accuracy of the results, including the need to impose Eq. 33 as

another condition, provide an indirect test of the assumption that τ∞ is not a function of h.

3. An Approximate Condition

The final condition that we introduce is an approximation of the value of G (h, h) for

h > σ/2. [G(h, h) is known exactly for h ≤ σ/2.] Some approximate knowledge of G (h, h)

was found to greatly assist in fitting G (λ, h) for any h larger than about σ. Among the

conditions discussed above, the only one relevant to λ > σ while not in the limit of λ→ ∞
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is Eq. 31, which constrains the integral of G (λ, h) up to λ = h rather than the value

itself. Consequently, an interpolation of G that does not include some information about

G (h, h) directly could produce an unreasonable value of G (h, h), impacting the calculation

of W for λ > h. [We observed, for example, that interpolations without a condition on

G (h, h) usually predicted values of G (h, h) well below those found from simulation. In

turn, predictions of W for λ > h fell unacceptably below simulation results.] To generate a

condition for G (h, h), we follow Ref. [40], in which the potential distribution theorem[49, 50]

is again utilized to relate the local density of HS centers at a given θ on the cavity surface

to the reversible work of inserting a HS particle or an equivalent σ-sized cavity. Using Eq.

29, one can show that

G (h, h) =
p

2ρkT

∫ π

0

exp

[

Wσ (rref) −Wσ (λ, θ, h)

kT

]

sinθdθ , (34)

where Wσ (λ, θ, h) is the work of inserting a HS or growing a cavity of radius σ at the

specified position and Wσ (rref) is the work of inserting a HS at a location far away from

the λ-sized cavity but whose center resides at the z = 0 plane (where the local density

of HS is p/ρkT ). Equation 34 is formally exact, although Wσ is not rigorously known in

general. Thus, an approximate expression for Wσ must be used. We compute the various

components of Wσ using a “surface thermodynamic” approximation, which is discussed in

detail in the Appendix. Our present approximation is similar in inspiration to the “ideal

gas approximation” invoked in Ref. [40] to provide a sixth condition for bulk SPT, but is

higher order in that it incorporates more accurate thermodynamic information about the

cavity. The resultant approximation for G (h, h) is quite accurate up to ρσ3 = 0.65, though

it produces poor predictions thereafter. Numerical results for our approximated G (h, h) are

discussed later in the paper.

D. Summary of Conditions on G (λ, h)

In all, 10 conditions (most exact) are employed to constrain the form of G (λ, h) for λ

greater than its upper exact limit. As a summary, the conditions on G (λ, h) used by I-SPT

are:

1. G (λ, h) is continuous at its exact limit, λ =
√

h2 + (σ/2)2 for h < 0 and λ = σ/2 for

h ≥ 0
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2. ∂G/∂λ is continuous at its exact limit, except for h = σ/2

3. ∂G/∂λ at λ = σ/2+ is known exactly for h = σ/2

4. G (λ, h) is continuous at λ = h

5. G (h, h) is computed approximately via Eq. 34

6. exp [(µex −W (σ, h)) /kT ] = ρ (h) /ρ

7. W (h, h) = 2πρkTh2
∫ h

−h
F (h, z) dz

8. limλ→∞G (λ, h) = p/ρkT

9. limλ→∞

[

λ2∂G (λ, h) /∂λ
]

= −γ∞/ρkT

10. limλ→∞

[

(λ2/2) ∂
(

λ2∂G (λ, h)
)

/∂λ
]

= (τ∞ − 2γ∞δ∞) /ρkT

E. Interpolation Functions for G (λ, h)

As in previous forms of SPT and I-SPT, we require an interpolation function to represent

G for values of λ outside the exact domain. The form of this interpolation for λ ≥ h is again

suggested by the surface thermodynamics of macroscopic cavities. Surface thermodynamics

does not, however, state anything definitively about the form of G for σ/2 ≤ λ ≤ h (which

is only relevant for h > 0). In addition, since G has a discontinuous first derivative at λ = h,

an approximate representation of G should be based on the combination of two separate

functions, one for σ/2 ≤ λ ≤ h and the other for λ ≥ h, both of which become equal at

λ = h. So while the interpolation function for λ ≥ h is more or less dictated by surface

thermodynamics, we are free to select an appropriate interpolation for λ ≤ h.

In Ref. [29], the limiting form of dW for macroscopic cavities (λ→ ∞) that intersect the

wall was shown to be given by the following expansion

dW = 2πPλ(λ+ h)dλ+ πγ∞(2λ+ h)dλ+ φ1(ρ, h)dλ+
φ2(ρ, h)

λ2
dλ+ · · · (35)

where φi(ρ, h) is a function of ρ and h only. The above indicates that G must expand as

G (λ, h) = ψo(ρ) + ψ1(ρ)
(2λ+ h)

λ (λ+ h)
+

ψ2(ρ, h)

λ (λ+ h)
+

ψ4(ρ, h)

λ3 (λ+ h)
+ · · · (36)
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in which only the coefficients ψo and ψ1 are functions of ρ, while all higher-order coefficients

are also functions of h. A more convenient expansion of G can be obtained from Eq. 36

(which appears in Ref. [45]) after some straightforward algebra

G (λ, h) = β0 (ρ) +
β1 (ρ)

λ
+

β2 (ρ)

λ (λ+ h)
+

β4 (ρ, h)

λ3 (λ+ h)
+

β5 (ρ, h)

λ4 (λ+ h)
+ · · · , (37)

where after invoking some of the previously derived limiting conditions on G we find that

β0 (ρ) = ψo(ρ) =
P

ρkT

β1 (ρ) = 2ψ1(ρ) =
γ∞
ρkT

β2 (ρ) = ψ2(ρ, h) − hψ1(ρ) =
τ∞ − 2γ∞δ∞

ρkT

βi (ρ, h) = ψi(ρ, h) i ≥ 4 . (38)

β2 (ρ) is listed as only being a function of ρ, since, as noted earlier, arguments provided in

Ref. [29] strongly suggest that τ∞ is independent of h. Again no term containing λ2 (λ+ h)

appears in the denominator, which would lead to an unphysical logarithmic contribution to

W as λ→ ∞[48]. Equation 37 differs slightly from the interpolation in Ref. [20], but is the

proper limiting form of G. (Ref. [20] did not rely upon the correct expansion of dW that

now appears in Ref. [29].) Strictly speaking, Eq. 37 is only valid in the large cavity limit,

but, like bulk SPT, we again apply this interpolation function to microscopic cavity sizes

for λ ≥ h.

The surface thermodynamic analysis that leads to Eq. 37 does not provide any definite

suggestions concerning the form of G for λ ≤ h. In fact, the properties of these completely

spherical cavities are not in general well understood since they are neither “bulk” cavities

in a uniform fluid nor do they intersect the planar wall at z = 0. Hence, a Laurent series

interpolation for G does not necessarily apply for λ ≤ h. We note, however, that for values

of h far from the wall, where the HS fluid density profile is uniform and equal to ρ, W (λ, h)

should be identical to the bulk SPT value of W (λ), at least until λ is large enough such

that some portion of the HS fluid surrounding the cavity begins to “feel” the presence of the

wall at z = 0. In practice, h does not need to be exceedingly large before a small enough

cavity views its immediate environment as being that of a bulk system. For example, even

for a bulk density of ρσ3 = 0.914, the HS density profile is uniform about 7σ away from the
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wall. At such a high density and h position, even small cavities could be well-described by

the bulk SPT relation.

Outside of requiring that G for λ ≤ h mimic to some extent bulk SPT properties for large

enough values of h, this condition does not provide a generally valid form of G, since bulk

behavior can no longer be invoked for small h or for values of λ approaching h (from below)

where one side of the cavity is close enough to the hard wall. In the absence of a suggested

form of the interpolation, we nevertheless propose that a simple Laurent series still be used

to approximate G for σ/2 < λ ≤ h. For one, a Laurent series ensures that W (λ, h) is

composed of terms proportional to λ3, λ2, etc., that are associated with volume and surface-

area contributions to W . Additionally, this matches the similar known form of W for the

growth of bulk cavities at large h. Also, the use of just one additional function, instead of

multiple functions within the same range, greatly simplifies the entire interpolation scheme

required by I-SPT. Therefore, we choose to interpolate G for σ/2 < λ ≤ h by

G (λ, h) = ξ0 (ρ, h) +
ξ1 (ρ, h)

λ
+
ξ2 (ρ, h)

λ2
+
ξ4 (ρ, h)

λ4
+ · · · , (39)

where all the series coefficients ξi are floating parameters dependent on both ρ and h. This

dependence on h follows from the various conditions on G, which are functions of ρ and h

and so are not necessarily equal to the analogous coefficients of the bulk G (λ). Note that

Eq. 39 does not include a term proportional to λ−3, which would yield a logarithmic term

in W . The suppression of a logarithmic term in W is not strictly required since it would

not be dependent on λ for λ > h. But, to ensure that G (λ, h) becomes identical to the bulk

fluid G(λ) for h ≫ 0, our chosen interpolation of G for σ/2 < λ ≤ h does not contain such

a term.

Assembling the interpolation function(s) for a particular h requires some effort since

the conditions listed in subsection IIID are not applicable to every value of h or to the

subdomains of λ. Table I contains a summary that lists the ranges of h, each of which is

given a “Region” number, and the set of conditions applicable to that Region. Additionally,

the table lists which conditions apply to each subdomain of λ, σ/2 ≤ λ ≤ h and λ ≥ h

(for h > 0). The number of conditions applicable to each subdomain of λ determines the

number of fitting conditions available for the interpolation for each subdomain (Eqs. 37 and

39). As an example, the table indicates that for h = 3σ/4 (Region V), eight conditions are

available, from which we compute (ξ0, ξ1, ξ2, ξ4) and (β0, β1, β2, β4, β5).
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h-domain
Region

Name

Number of

available

conditions

Interpolation

Conditions for:

Interpolation

Conditions for:

- λ ≥

√

h2 + (σ/2)2

h < 0 I 5 - 1∗, 2∗, 8, 9, 10

σ/2 ≤ λ ≤ h λ ≥ h

h = 0† II 5 - 1, 2, 6, 8, 9

0 ≤ h < σ/2 III 6 - 1, 2, 6, 8, 9, 10

h = σ/2 IV 6 - 1, 3, 6, 8, 9, 10

σ/2 < h < σ V 8‡ 1, 2, 5, 7 5, 6, 8, 9, 10

h = σ VI 7‡ 1, 2, 5, 6 5, 8, 9, 10

h > σ VII 8‡ 1, 2, 5, 6, 7 5, 8, 9, 10

TABLE I: Summary of the interpolation scheme for G (λ, h) for all possible h-domains. Column

two connects the h-domain to the “Region Name” used in the text. Columns three, four, and five

give the number of conditions for each h-domain and lists those conditions by their identification

numbers used in Section IIID.

∗For h < 0, conditions 1 and 2 are the continuity of G and ∂G/∂λ at λ =
√

h2 + (σ/2)2, respec-

tively.

† The interpolation for G for h = 0 provides τ∞ and, hence, condition 10 is satisfied automatically.

‡Since condition 5 appears in both interpolations, the count in columns three and four does not

add up to the number in column two

IV. RESULTS

Using the above mentioned interpolations of and conditions on G, values of G and,

thereby, W for a variety of HS bulk fluid densities can be computed and compared to

results obtained from molecular simulation. As discussed previously, the determination

of G requires information about ρ (z), either by an approximation or direct simulation

measure. ρ (z) may be generated in a number of ways, including direct measurement by

molecular simulation[20, 22], theoretical approximations[52–55], and statistical mechani-

cal density functional theory using a nonlocal HS functional[56–58]. Here, we calculated

ρ (z) using Monte Carlo simulation, as was done in the previous I-SPT papers[20–22]. G
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was determined within the exact domain via a straightforward numerical integration of the

simulation-generated ρ (z) according to Eq. 21. HS thermodynamic properties (e.g., p, γ∞,

γλ, and δ∞ as functions of the bulk density ρ) were computed via the thermodynamically

consistent version of SPT that invokes the Carnahan-Starling-based[44] version of SPT (CS-

SPTM )[41, 42]. τ∞ was determined from Eq. 26 and various relations contained within Ref.

[29], which requires input from I-SPT for a hemisphere (h = 0) as well as these same bulk

spherical cavity results again obtained with CS-SPTM .

All relevant simulation data were generated via the Monte Carlo (MC) method within

the isothermal-isobaric ensemble (constant N, p, T , where N is the number of particles) with

hard walls in one direction (arbitrarily designated as the z-direction) and periodic boundary

conditions in the other two directions. Both ρ (z) and W (λ, h) were determined using the

simulation methods described in Refs. [20] and [22]. W (λ, h) profiles were determined for

h = 0.25σ, 0.5σ, 0.75σ, σ, 1.25σ, and 3σ. For comparison at certain h and ρσ3, G (λ, h) was

computed from simulation measurements of W . To obtain G (λ0, h) from W , we fit W in

the vicinity of λ0 to a polynomial and entered ∂W/∂λ from the regression function into Eq.

17 (using W = −kT lnP0).

A. Approximation of G (h, h)

In order to validate the surface thermodynamic approximation that was invoked in Eq.

34 (also see the Appendix) when generating another condition on G, we also determined the

values of G (h, h) from simulation for different bulk fluid densities. G (h, h) was computed

indirectly from simulation in the following manner. First, W (λ, h), which was directly

calculated from the simulation, was fit to a third-order polynomial over the domain h−0.1σ <

λ < h + 0.1σ. Then, G was determined by taking the derivative of the resulting fit of W

with respect to λ. Values of G (h, h) for five bulk densities and a few representative values

of h are provided in Table II. (Note that G (λ, h) is continuous at λ = h, so that W and its

first derivative are also continuous at this same point. Thus, W can be fit to a completely

smooth function across λ = h if only information about G (h, h) is required. This approach

cannot, of course, yield information about the apparent discontinuity in the first derivative

of G at λ = h.)

The approximation for G (h, h) is quite accurate for the three lowest densities considered,
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ρσ3 = 0.3 ρσ3 = 0.5 ρσ3 = 0.6 ρσ3 = 0.7 ρσ3 = 0.85

h/σ Sim. I-SPT Sim. I-SPT Sim. I-SPT Sim. I-SPT Sim. I-SPT

0.75 1.583 1.588 2.007 2.125 2.432 2.532 2.766 3.502 3.392 16.635

1 1.682 1.675 2.486 2.368 2.853 2.929 3.466 4.199 4.318 17.602

1.25 1.735 1.729 2.609 2.524 3.289 3.177 3.803 4.577 5.064 16.853

3 1.874 1.863 2.956 2.926 3.790 3.792 - 5.308 - 12.741

p
ρkT 1.967 3.262 4.283 5.710 9.099

TABLE II: Values of G (h, h) computed by MC simulation (marked “Sim.”) and the surface

thermodynamic approximation in Eq. 34 (marked “I-SPT”) for several densities below the freezing

transition and h where the approximation is used to interpolate G (λ, h). The value of G (∞, h) =

p/ρkT is also provided in the last row. G (h, h) should not exceed p/ρkT , and we find that the

surface thermodynamic approximation does predict G (h, h) > p/ρkT for ρσ3 > 0.74.

differing from the simulation results by no more than 6%. Common among these three lowest

densities is that the approximation overpredicts G (h, h) for small h (particularly h < σ),

though it is quite close to the simulation values for larger h. At h = 3σ, the approximation

for G (h, h) is within 1% of the simulation value for ρσ3 = 0.3, 0.5, and 0.6. That our

approximation becomes more accurate as h increases is unsurprising, as the approximation

used in Eq. 34 will automatically yield G (h, h) = p/ρkT in the limit of h → ∞ (see the

Appendix), which is of course identical to the limiting value of G (λ, h) itself.

For the largest densities, ρσ3 = 0.7 and 0.85, the approximation, however, breaks down

quite suddenly, overpredicting G (h, h) for all values of h while incorrectly predicting that

G (h, h) > p/ρkT for ρσ3 = 0.85 (while there is no rigorous proof requiring that G always

remain less than p/ρkT , surface thermodynamics strongly suggests that for large cavities

G should approach p/ρkT from below; in addition, simulation has so far only shown that

G ≤ p/ρkT ). A more detailed analysis (not shown here) reveals that the approximation

yields G (h, h) > p/ρkT for ρσ3 > 0.74, which provides a strict upper limiting density on

the validity of the approximation. In practice, though, the approximation begins to predict

G (h, h) unreliably for ρσ3 % 0.65. For smaller ρ, the approximation for G (h, h) is quite

reliable and so can be used for the computation of W via I-SPT. Note that G (h, h) is known
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exactly for h ≤ σ/2, so accurate results are obtained for all HS fluid densities at these values

of h.

B. Comparison of G (λ, h) and W (λ, h) Predictions to Simulation for h > 0

To provide a basis for comparison and for identifying interesting features inG (λ, h) at h >

0, Figs. 2 and 3 plot G (λ, h = 0) and G (λ, h = 0), respectively for reduced densities between

0.2 and 0.7, and Fig. 4 compares W (λ, h = 0) for ρσ3 = 0.3, 0.5, and 0.6 obtained from both

I-SPT and MC simulations. Similar plots have already been extensively discussed[20], but

we again highlight the important aspects of G (λ, h = 0): it has an initial value of p/ρkT ,

immediately decreases to its minimum value at λ < σ/2, and then increases asymptotically

toward p/ρkT as λ→ ∞.

We begin our examination of I-SPT predictions with a comparison of simulation and

theoretical results for h = 0.25σ, which utilizes the interpolation for Region III. Figure 5

contains plots of G (λ, 0.25σ) for reduced densities between 0.2 and 0.7, in which G is exactly

known for λ ≤ σ/2. The most obvious feature of the plot is the discontinuous slope of G

at λ = h = 0.25σ, which becomes more noticeable as ρ increases. The change in slope at

λ = h for this value of h is always negative, which agrees with the prediction from the exact

analysis of G (λ, h). (Furthermore, this result implies that G (h, π, h) > G (h, h), verifying

the intuitive arguments presented earlier.) We also observe that G (0, 0.25σ) is much less

than p/ρkT , as anticipated by the exact analysis. Yet, G (0, 0.25σ) > 1 in all cases, a

required result since ρ (0.25σ) > ρ for the density profiles associated with these ρ (see Eq.

22). The reduction in G (0, 0.25σ) compared to the hemispherical case is representative

of the decrease in ρ (z) between z = 0 and z = 0.25σ. From λ = 0 to h, G increases

monotonically. Yet, the discontinuity in ∂G/∂λ at λ = h is sufficiently negative to yield a

sign change in the slope so that a sudden and short-ranged decrease in G occurs before it

resumes a monotonic increase. The decrease in G is relatively small in all cases, with, for

example, an absolute total decrease of only 0.013 for ρσ3 = 0.7. After the discontinuity,

the asymptotic increase in G is very similar to that of the hemispherical case, effectively

reaching the limiting value of p/ρkT by λ = 5σ. The similarity between G at any h and the

hemispherical G interpolation at large cavities is not surprising, since the first two terms in

the corresponding interpolations are identical (deviations appear at the term proportional
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to β2 and higher).

Figure 6 contains predictions ofW (λ, h) for h = 0.25σ at ρσ3 = 0.3, 0.5, and 0.6, obtained

both from I-SPT and MC simulations. On the scale of the plot, there is no discernible

difference between these two sets of results, confirming that G is well-represented by our

chosen interpolation scheme. For ρσ3 = 0.3, the I-SPT values of W differ from simulation

values by no more than 0.31kT up to λ = 3σ. Between λ = σ/2 and 3σ, the relative

difference is typically less than 1%, reaching 3% for only a small range of cavity radii. A

similar pattern is observed for ρσ3 = 0.5 and 0.6, where the absolute error is less than

0.2kT for ρσ3 = 0.5 and less than kT for ρσ3 = 0.6. In relative terms, these differences

are less than 2.5%. The values of W for ρσ3 = 0.5 are particularly accurate, falling within

0.5% of the simulation points for 2σ < λ < 3σ. For these three densities, the errors are

small enough to be considered statistically insignificant, given that estimates of the standard

deviations of the values of W computed from simulation are around 1.5-2%. Based on the

rapid convergence of G to its asymptotic value, we expect the accuracy of W to continue

for larger λ, and any error should continue to decrease relative to simulation. Comparison

with the hemispherical work values, W (λ), also indicates that W (λ, 0.25σ) usually exceeds

W (λ, 0) and is always larger in the limit of λ→ ∞, a consequence of the extra volume the

cavity possesses when centered at h > 0. For ρσ3 = 0.6, W (λ, 0) is larger than W (λ, 0.25σ)

for very small radii (< 0.2σ), which follows from the sharp reduction in G around λ = 0

relative to the hemisphere that cannot be overcome at these radii by the larger cavity volume.

The examination of the I-SPT predictions becomes more interesting for larger h, where

the conditions at λ = h are now required. Figure 7 contains G (λ, h) plotted for h = 0.75σ

(Region V). Much of the discussion regarding the qualitative structure of G for h = 0.25σ

applies verbatim to h = 0.75σ. The most noticeable new feature in G is the sudden change

in shape at λ = h for ρσ3 = 0.7, where the slope decreases abruptly, though stays (barely)

positive. Based on Table II and the associated discussion, however, this is an artifact of

the condition on G (h, h), which is overpredicted at this higher density. Consequently, we

surmise that the proper shape of G for ρσ3 = 0.7 is more like the other densities in the

plot, and that we should not consider the predicted G (and, in turn, W ) to be especially

accurate for this density. A more detailed examination of the discontinuous change in the

slope at λ = h also reveals an interesting trend as ρ increases. The discontinuous change

in the value of the slope at λ = h is negative for ρσ3 < 0.4, is very nearly zero for 0.4,
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and becomes positive for ρσ3 = 0.5 and 0.6, before returning to a negative slope change

for ρσ3 = 0.7. Since G (h, h) was provided by an approximation, it is questionable whether

the observed trend in ∆(∂G/∂λ)λ=h, specifically the positive discontinuity in the slope of

G is reflective of the true behavior in G. For comparison, Fig. 5 also includes simulation

estimates of G at ρσ3 = 0.6 and 0.7. Though it is difficult to discern in the figure, close

examination of the simulation results at both densities indicates that ∆(∂G/∂λ)λ=h > 0.

These simulation results along with others not shown confirm the idea that, in light of Eq.

16, the discontinuity is not solely determined by
[

G (h, h) −G (h, π, h)
]

/2h (which should

always be negative) and should still depend upon the integrals over ∂G/∂λ at both λ = h−

and λ = h+.

As shown in Fig. 8, the I-SPT calculations and simulation results for W at h = 0.75σ

are again in good agreement at large cavity radii, with no significant differences for λ ≥ 3σ.

At λ = 3σ, the two differ by less than 1% at all three of the chosen densities. For σ/2 <

λ ≤ σ, however, the differences become greater. At ρσ3 = 0.3, the relative error is minor,

remaining below 1%. However, for ρσ3 = 0.5 and 0.6 the relative error exceeds a 2% and

7% overprediction, respectively (in absolute terms, the error is always less than 0.12kT , but

the small value of W amplifies the relative error for these cavity radii). Based on the results

presented in Table II, most of the error is probably due to the slight overprediction ofG (h, h),

with some additional error arising from the chosen interpolation scheme. Nevertheless, the

simple Laurent series approximation of G between λ = σ/2 and h is still quite accurate. For

λ > h, the relative error remains below 1.5% for both ρσ3 = 0.3 and 0.5. For ρσ3 = 0.6,

however, the error approaches 7% in the vicinity of λ = h. Examination of the fitting data

indicates that this error arrives via the condition on W (h, h) that was derived from F (λ, h)

(see Eq. 31). For λ = 0.75σ, F (λ, h) and, hence, W (h, h) becomes increasingly inaccurate

as ρσ3 increases[22].

The final case we consider is for h > σ. Since this region is the largest of all regions,

we present I-SPT data for two groups of cavities, one centered at h = 1.25σ and another

at h = 3σ. Hence, our discussion includes cavities centered fairly close to the wall where

ρ (z) is still oscillating for moderate and high densities and those centered farther from

the wall where ρ (z) is effectively uniform except at the highest bulk densities. Figures 9

and 10 contain plots of G (λ, h) for h = 1.25σ and h = 3σ, respectively. For h = 1.25σ,

G exhibits oscillations after λ = σ/2 as it approaches its asymptotic limit that are more
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prominent at higher density. These oscillations are much larger than those seen in Fig. 7.

For comparison, Fig. 9 includes simulation estimates of G at ρσ3 = 0.6 and 0.7. Both

simulation traces show oscillatory structure, but while the interpolation is quite accurate at

ρσ3 = 0.6, the interpolated G is exaggerated at ρσ3 = 0.7. The reasons for this exaggerated

behavior are limitations and deficiencies in the interpolation scheme that together give rise to

the error. First, as discussed in Section IVA, G (h, h) is overpredicted by the approximation

in Condition 5 for ρσ3 ≥ 0.65. Second, the interpolation scheme fixes the integral of G to

λ = σ via Condition 6 instead of the value of G itself. Since G (h, h) is larger than it should

be, G is necessarily decreased in some regions such that the condition on W (σ, h) is satisfied.

This type of error in G, given the present interpolation scheme and fitting conditions, should

be common for high density (as defined by the limitations in our approximation of G (h, h))

and h in the vicinity of σ. For larger h, the oscillation should become less prominent

or nonexistent, since the condition on W (σ, h) is further removed from the approximated

value of G (h, h). Accordingly and among all the interpolation regions, we should expect

predictions of G and, thereby, W to be least accurate for Regions V, VI, and VII in the

vicinity of λ = σ. Consistent with this reasoning, we see in Fig. 10 that the oscillatory

structure in G is not present for h = 3σ. As expected, for this value of h, G quickly

approaches the bulk G (λ). For the higher densities, G is smaller than G (λ) between λ = σ/2

and h, which is another signature of a depletion effect [i.e., W (λ, h) < W (λ, h→ ∞)].

Finally, the discontinuity in the slope at λ = h is becoming ever smaller as h increases,

being barely perceptible for h = 3σ. The discontinuity is quite obvious for h = 1.25σ at

ρσ3 = 0.7, but this discontinuity is likely exaggerated given the previous discussion.

Comparison of W (λ, h) predicted by I-SPT to simulation results for h = 1.25σ and 3σ

yields many conclusions similar to h = 0.75σ. Figures 11 and 12 contain W (λ, h) for the

same densities discussed previously, though we have computed the results up to λ = 5σ for

h = 3σ so as to examine results for λ > h. For h = 1.25, all three densities exhibit only

minor differences between the theoretical and simulation results. The error for ρσ3 = 0.3

does not exceed 0.5kT , but the error does creep up to nearly 2.2kT for ρσ3 = 0.5 and 3kT

for ρσ3 = 0.6. On a percentage basis, these correspond to less than 1.6% error at λ = 3σ

for all three densities. Thus, as the cavities become large, the I-SPT predictions are still

well within the error margins of simulation calculations. Between λ = σ/2 and λ = 1.25σ,

however, the percentage error is somewhat larger, which follows from the discussion above
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and is consistent with that observed for smaller values of h. For all three densities shown,

the error never exceeds 3.1% in this domain of λ where the interpolation is known to be

least accurate. It is reassuring to see that the error is smaller than that for h = 0.75σ, from

which we conclude that the simple Laurent series interpolation utilized between λ = σ/2 and

h is becoming ever closer to the true form of G. The improving accuracy is probably also

obtained by the increasing accuracy of the approximation for G (h, h). Results for h = 3σ

are much the same case, exhibiting only small differences between the I-SPT predictions and

simulation values of W . In fact, on the scale of Fig. 12 the error is not appreciably larger

than that for h = 1.25σ. Examination of numerical results confirms this observation. The

results for ρσ3 = 0.3 differ by less than 3% for all values of λ, exceeding 1% only between

λ = σ/2 and h. For ρσ3 = 0.5 the error is as much as 2% prior to λ = h, but remains below

1.6% thereafter. Even in absolute terms the errors for these densities is small, being less

than 3.7kT in both cases. (This larger error is not of great concern because W is on the

order of 650kT, leading to a small relative error.) At the reduced density 0.6, the error is

seemingly larger, becoming as large as 16kT at λ = 5σ, but the value of W is about 1100kT ,

so the percentage error is only 1.5%. Even for extremely large values of W , I-SPT is proving

to be a robust method of computing W , falling within the error margins of simulation in

the large cavity limit. The error does, however, give reason for future improvements to I-

SPT, perhaps by modifications to the interpolation or fitting conditions. Given the present

understanding of I-SPT, the current results strive to be as accurate as possible.

V. COMPARISON OF THE I-SPT G (λ, h) TO THE SPT G (λ): DEPLETION EF-

FECTS

As follows from Widom’s inverse potential distribution theorem[49, 50], or Eq. 29, the

local density of a hard-solute sphere or its equivalent cavity at a particular point in the

system is related to the reversible work required to insert the cavity at that point. The

ratio of the local densities at two locations is therefore determined by the exponential of the

difference in the works of insertion at these locations. This difference in works of insertion is

nothing more than a potential of mean force defined between these two points, the derivative

of which is related to the mean, or effective, force (based on the ensemble average of all the

solvent particles) required to keep the solute fixed at a particular location. In the colloidal
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literature, this potential of mean force is called a depletion potential, which accounts for the

additional (effective) forces that arise between colloidal particles or between particles and

various surfaces[23, 24, 31, 59, 60].

A comparison of the relative shapes ofG (λ, h) and bulk G (λ) sheds light on the properties

of the depletion potential that develops between a cavity (or equivalent solute) and a hard,

structureless wall. In a sense, G (λ, h), as it compares to G (λ), is a visual tool that helps in

the understanding of depletion effects in hard-particle fluids. As noted above, a depletion

potential and its corresponding depletion force exist when the free energy of a particle or

other object at some position relative to some inhomogeneity differs from the free energy

that particle or object would have in the absence of the inhomogeneity (i.e., either a bulk

fluid or a position in the fluid very far from the inhomogeneity). For our system of cavities

near a hard wall, a depletion potential exists when the W (λ, h) for a cavity differs from

W (λ, h→ ∞), where W (λ, h→ ∞) is equal to W (λ) for a cavity grown in a bulk HS

fluid at the same state point (i.e., bulk density) as the inhomogeneous fluid. As such, the

depletion potential, Us (λ, h), is defined as

Us (λ, h) = W (λ, h) −W (λ, h→ ∞) (40)

which using I-SPT and SPT may be expressed as

Us (λ, h) =







∫ λ

0
ρkT

[

G (r, h) −G (r)
]

4πr2dr λ ≤ h

W (|h| , h) −W (|h| , h→ ∞) +
∫ λ

|h|
ρkT

[

G (r, h) 2π (r2 + rh) −G (r) 4πr2
]

dr λ > h

(41)

(Note that Eq. 41 provides Us for all cavities, including those that do not correspond to

hard-spheres with positive diameters.) Since Us is an integral of an appropriate subtraction

of G (λ) from G (λ, h), any difference between these two functions may signal a (likely)

difference in the corresponding values of W , and so a non-zero value of Us. We must point

out, however, that Us is not solely determined by the differences in G (λ, h) and G (λ). Each

W term in Eq. 40 has different geometric terms in its integrand that are related to the

surface area or, equivalently, the differential volume of the cavity. When determining W ,

G (r, h) is multiplied by 4πr2ρkT for λ ≤ h and 2π (r2 + rh) ρkT for λ > h, while G (r) is

always multiplied by 4πr2ρkT . Hence, even if G (λ, h) and G (λ) were identical over a given

range of cavity radii, Us would not necessarily be zero for λ > h due to possible differences

in the (full) volume of the cavity at h→ ∞ and the (nonoverlapping with the z = 0 plane)
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volume of the cavity at various values of h. In fact, since our analysis already requires

G (λ, h) = G (λ) in the limit of λ → ∞, we should expect Us 6= 0 at some large λ > h by

geometric arguments alone.

To better understand how the differences between G (λ, h) to G (λ) may generate the

corresponding depletion potential, we plot G (λ, h) and W (λ, h) at ρσ3 = 0.6 for h = 0,

0.25σ, 0.5σ and h→ ∞ in Figs. 13 and 14, respectively, and Figs. 15 and 16 for h = 0.75σ,

1.25σ, 3σ and h → ∞. In both sets of figures, W (λ, h) is plotted up to a value of λ

after which qualitative trends do not change [e.g., W (λ, 0) < W (λ, 0.25σ) < W (λ, 0.5σ) <

W (λ, h→ ∞) for Figs. 14] unless otherwise noted. For the following discussion, we focus

our analysis on cavities with radii less than λ = 1.25σ. (Note that for these values of λ, the

cavity is equivalent to a hard-sphere solute when h ≥ 0.5σ.)

At h = 0, the value of G (λ, h) is larger than G (λ) for all λ. But since h = 0, the surface

area (or differential volume) of the overlapping cavity is much smaller over the entire range

of integration than that of the fully spherical cavity. The interplay of these two effects yields

W (λ, h = 0) > W (λ, h→ ∞) for λ < 0.55σ and W (λ, h = 0) < W (λ, h→ ∞) at larger

radii. Hence, Us or the depletion potential, is negative for λ > 0.55σ. (While Us < 0 is

an “energetically” favorable depletion potential, knowledge of just the sign of Us alone is

insufficient to determine whether the depletion force is attractive or repulsive. Of course,

with Us → 0 as h→ ∞, knowing that Us < 0 at a finite value of h implies that an attractive

force had to have developed at some value of h, though not necessarily at the given h of

interest. By the same argument, Us > 0 requires that a repulsive depletion force arose at

some h, which is the case for λ < 0.55σ. Note that for these small cavities, h can become

negative before the cavity itself intersects the actual hard wall, located at h = −σ/2. As

these small cavities are moved such that their equivalent hard-sphere comes into contact

with the wall, the depletion potential is found to become negative.)

For h = 0.25σ, the trend is qualitatively identical, with Us = 0 at λ = 0.88σ and

Us < 0 thereafter. The persistence of W (λ, h = 0.25σ) > W (λ, h→ ∞) to a higher value

of λ than at h = 0 is due to the larger surface area of the cavity for a given λ when

h = 0.25σ as compared to when h = 0. At h = 0.5σ, the situation is more complex

as W (λ, h = 0.5σ) intersects W (λ, h→ ∞) twice. For λ < 0.5σ, Us < 0 owing to the

smaller value of G (λ, 0.5σ) as compared to G (λ) over this interval. For 0.5σ < λ < 1.17σ,

W (λ, h = 0.5σ) > W (λ, h→ ∞) or Us > 0 due to the much larger value of G over this
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interval. Finally, for λ > 1.17σ, W (λ, h = 0.5σ) again becomes less than W (λ, h→ ∞),

or Us < 0. Although G (λ, 0.5σ) is still consistently larger than G(λ) for these radii, the

different geometric terms appearing in Eq. 41 lead to the appearance of a negative depletion

potential. Overall, we find for h = 0.5σ that the depletion potential begins with a negative

value at λ = 0, becomes positive as the radius is increased, only to become negative again

as λ is further increased.

In Figs. 15 and 16, we return to cases that show a single intersection of W (λ, h) and

W (λ, h→ ∞). At h = 0.75σ, the two work functions intersect at λ = 0.74σ, below which

W (λ, h = 0.75σ) < W (λ, h→ ∞). Us and the depletion potential are, therefore, negative

for λ < 0.74σ at h = 0.75σ. This is entirely due to G (λ, 0.75σ) being smaller than G (λ) over

most of this interval. Thereafter, the surface area/differential volume term is dominant and

overcomes the (positive) difference between G and G. For h = 1.25σ, the trend is reversed

in that W (λ, h = 1.25σ) > W (λ, h→ ∞) up to their intersection point at λ = 0.85σ.

This occurs despite the oscillations in G (λ, 1.25σ) about G (λ). Thus, Us is positive up

to 0.85σ and negative thereafter. For h = 3σ, there is no discernible difference between

W (λ, h = 3σ) and W (λ, h→ ∞) up to λ = 0.625σ, which follows from the near equality of

G and G over the same interval. For 0.625σ < λ < σ, W (λ, h = 3σ) > W (λ, h→ ∞) or

Us > 0. Afterwards (not shown in the plot of W ), Us < 0 for σ < λ < 3σ and Us < 0 for

λ > 3σ. Hence, the depletion potential Us is, with increasing λ, first negative, then positive,

again negative, and again positive.

We can use the results above to assemble the depletion potential profile of a particular

λ for successive values of h. For example, if we select λ = 1.25σ (which corresponds to a

hard-sphere of diameter 1.5σ), Us is negative for h = 0, 0.25σ, and 0.5σ, becomes positive

for h = 0.75σ and 1.25σ, and becomes negative (with a small magnitude) for h = 3σ. (Us

eventually decays to zero at large enough h.) In turn, as follows from the sign changes in

Us, the depletion force, or −∂Us/∂h, also changes sign at various h, exhibiting an attractive

region for small and large values of h and a repulsive region at intermediate separations.

This section demonstrates a particular advantage of SPT in describing the depletion

potential (or depletion force). Some other methods generate the depletion potential by

determining directly the equilibrium arrangement of hard-sphere particles outside of a cavity.

While the source of the depletion force is seen via the local arrangement of particles, the

physics leading to the depletion potential are somewhat obscured (that is how and why the
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arrangement of particles about the cavity changes as the cavity radius is altered). SPT,

on the other hand, provides a description of depletion effects that already relies upon those

physical and geometric arguments that describe how the average density of hard-sphere

particles on the surface of the cavity varies as the cavity center moves away from the wall. As

such, SPT more clearly demonstrates that the transitions between attractive and repulsive

depletion forces is strongly influenced by the interplay between geometry and the variations

of the local density around the cavity.

VI. CONCLUSIONS

We have presented a fully generalized form of I-SPT that can accurately predict up

to moderate bulk densities the reversible work of inserting a cavity of any radius located

at any distance from a hard wall. This new version of I-SPT relies upon a number of

newly identified conditions, based again on physical and geometric arguments, each of which

provides additional insights into the behavior of hard particle fluids near planar surfaces as

well as improving the accuracy of earlier versions of I-SPT. Despite its overall success,

deviations from simulation results become apparent at bulk densities exceeding ρσ3 = 0.7.

Such deviations are consequences of the inherent difficulties in accurately approximating

the central I-SPT function G (λ, h) at the point where the cavity just ceases to intersect the

z = 0 plane, i..e, λ = h. Accurate information about this location, or G (h, h), is a crucial

ingredient in the interpolation scheme needed to represent G (λ, h) over those cavity sizes

and positions where neither exact relations nor thermodynamic arguments can be invoked

to describe the surface-averaged local density of hard particles in contact with the cavity

surface. While our introduced surface thermodynamic formalism for approximating G (h, h)

is quite accurate at low to moderate bulk densities, improvements at higher densities are

certainly needed and will be the focus of future work in I-SPT.

As noted earlier, the further development of I-SPT was not the only purpose of our

current work. With an improved version of I-SPT now available, and in particular a version

that can describe all cavities at any distance from the hard wall, we can now employ I-SPT

to study the behavior of the line tension of cavities that intersect a planar surface. Recently,

the proper boundary thermodynamic relations needed to determine the line tension of hard

particle fluids was derived[29], and the generalized version of I-SPT provided here will now
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provide the required inputs needed to estimate this important thermodynamic property.

In addition, I-SPT relations were used to predict the depletion potential and depletion

force between a hard-sphere solute and a hard wall. As we hoped to have demonstrated,

I-SPT is well suited to studying depletion interactions, and provides interesting physical

and geometric insights into the origin of depletion effects. Specifically, the interplay be-

tween G (λ, h) and the bulk SPT G(λ), which is influenced by the variations in the local

density around each cavity, as well as the differences between the differential volumes of the

intersecting cavity and the cavity growing far away from the wall, was shown to give rise

to the oscillatory nature (attractive and repulsive) of depletion interactions. The accuracy

of these predicted depletion potentials, however, needs to be more fully tested. A detailed

comparison with depletion interactions determined via molecular simulation is certainly re-

quired.

Finally, I-SPT has so far been specifically tailored to describe hard-particle fluids confined

by hard, structureless walls. The methods presented here are nevertheless readily extendable

to nonplanar geometries, such as curved surfaces or surfaces with given microstructures. For

these cases, the resulting equations may not be superficially simple. Yet, I-SPT does offer

advantages over other methods when analyzing these more complex surface geometries.
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Appendix: Approximation of G(h, h) via Boundary Thermodynamics

In this appendix, we present the derivation of our chosen approximation of G(h, h) given

in Eq. 34. From Widom’s potential distribution theorem[49, 50], one may write

ρ (r1)

ρ (r2)
= exp

[

Wσ (r2) −Wσ (r1)

kT

]

(42)

where Wσ (r) is the reversible work of inserting a hard-sphere of diameter σ and ρ (r) is the

ensemble-averaged density of the same hard-spheres, both at position r. Equation 42 follows

from the uniformity of the chemical potential for an equilibrium system, which accounts for
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the local variation of density within an inhomogeneous fluid[49, 50]. Let us now set r1 as a

position on the surface of a cavity of radius λ centered at z = h, i.e., r1 = (λ, θ, h) using the

coordinate system of Fig. 1, and r2 as a yet unidentified position rref . Using SPT notation,

Eq. 42 becomes

G (λ, θ, h) =
ρ (rref)

ρ
exp

[

Wσ (rref) −Wσ (λ, θ, h)

kT

]

(43)

After entering Eq. 43 into Eq. 10 with λ = h, we obtain

G(h, h) =
ρ (rref)

2ρ

∫ π

0

exp

[

Wσ (rref) −Wσ (h, θ, h)

kT

]

sin θdθ (44)

which is nearly identical to Eq. 34. As it stands, Eq. 44 is formally exact.

Since Wσ is not available in general, we require some suitable approximation thereof for

use in Eq. 44. Using the analogy between a hard-sphere and a cavity, Wσ may be thought of

as the work of growing a cavity of radius σ (a “σ-cule”[1]) centered at the specified position,

followed by insertion of the actual hard-sphere at that position. Thus, using boundary

thermodynamic concepts that lead to Eq. 26 and are present in every form of SPT, Wσ may

be expressed as[37]

W (λ, θ, h) = p∆V (λ, θ, h) +
∑

i

γi∆Ai (λ, θ, h) +
∑

j

τj∆Lj (λ, θ, h) (45)

In Eq. 45, ∆V is the fluid volume that must be emptied of other hard-sphere centers,

the ∆Ai are the surfaces that must be created or destroyed, and the ∆Lj are the linear

interfaces that must be created or destroyed while growing the cavity. Furthermore, p is the

fluid pressure, γi is the surface (or boundary) tension of the ith surface, and τj is the line

tension of the jth line interface. Figure 17(b) illustrates the geometric terms (save for the

∆Lj) for three different hard-spheres/cavities. As noted in the figure, cavities at different

positions have different numbers of interfaces.

We may make a simplification to Wσ by ignoring the contribution of linear terms, while

still including all the interfacial terms. The line tension terms are, of course, necessary for

a proper description of the cavity, but are known to be small contributions compared to the

pressure and surface terms[37]. Hence, we drop the linear interface terms and approximate

Wσ by

Wσ (λ, θ, h) ≈ p∆V (λ, θ, h) +
∑

i

γi∆Ai (λ, θ, h)

≈ p∆V (λ, θ, h) + γσ∆Aσ (λ, θ, h) + γλ∆Aλ (λ, θ, h) + γ∞∆Aw (λ, θ, h) (46)
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where the second line separates the sum over γi∆Ai into the possible surface terms. As

illustrated in Fig. 17(a), there are three surfaces of importance, the curved surface of radius

σ (blue), ∆Aσ, created by the insertion/growth of the σ-cule, the erased curved surface

of radius λ (green), ∆Aλ, and the erased portion of wall area (red), ∆Aw. Each area has

an associated surface tension that depends on the radius of curvature of the particular

surface. The subscript on each γ indicates the radius (and dividing surface[61]) at which

that surface tension is evaluated. Figure 17 reveals that ∆Ai is sometimes zero, depending

on the position of the σ-cule. For the case of λ = h (as shown in Fig. 17), all ∆V and ∆Ai

may be computed analytically (see Ref. [45]) and we only need p and γi. To obtain those

thermodynamic properties, we again use the CS-SPTM version of SPT[42] since it predicts

p and γi with high accuracy.

All that remains is the appropriate selection of rref . Since ρG (λ, θ, h) is not generally

available, we can select a position with z = 0, so that the reference hard-sphere is in contact

with the confining hard-wall. If this position is far from the cavity of radius λ, the local

density at rref is equal to p/kT . Finally, with the selection of this reference position and

using Eq. 46 for Wσ, we arrive at Eq. 34. The integral may be separated into two parts,

one that may be computed analytically and the other that must be computed numerically.

For further details, consult Ref. [45].

The limit of G (h, h) for h→ ∞ is available from inspection of Eq. 46 with the aid of Fig.

17. As h → ∞, the work associated with creating a σ-cule cavity that does not intersect

the z = 0 plane will become identical to Wσ (rref), since the surface of the cavity of radius

h is effectively planar, meaning the integrand of Eq. 34 is equal to unity. Furthermore, the

domain of θ over which the σ-cule cavity intersects the z = 0 plane (where Wσ 6= Wref)

becomes increasingly small, so that the non-overlapping domain is the dominant contribution

to G (h, h). Therefore, the integral portion of Eq. 34 approaches the value of 2, or G (h, h) →
p/ρkT for h → ∞. Estimated limits on derivatives of G at λ = h are also available from

Eqs. 34 and 46 (see Appendix B of Ref. [45]).

The procedure in this appendix that is used to generate G (h, h) is similar to that used by

Heying and Corti[40] to generate a sixth condition for SPT, though with some important dis-

tinctions. In their paper describing SPT6, the term equivalent to Wσ (r) was approximated

by ρkT∆V (r), which is really a zeroth-order ideal gas approximation. Our approxima-

tion of Wσ, which incorporates both pressure and surface tension terms, is a higher-order
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approximation that should represent Wσ more accurately than the ideal gas expression.
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FIG. 1: Coordinate system used to describe cavities near a hard wall. The cavity (represented by

the dot-dash line) of radius λ is centered at z = h. (a) identifies a cavity centered at h < 0, while

(b) identifies h > 0. In both, the z-axis originates a distance σ/2 from the hard wall, where σ is

the diameter of a HS solvent particle (represented by the solid circles; the centers of the HS solvent

particles cannot access the region for which z < 0). θ measures the angle originating from a line

perpendicular to hard wall and colinear with the cavity center. φ describes the rotation around

this line. Since the fluid is isotropic in the x- and y-directions, the system is symmetric about φ.
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FIG. 2: Plot of G (λ) (a cavity in a bulk fluid, or h → ∞) for reduced densities
(

ρσ3
)

between 0.2

and 0.7. The numeric label above each line indicates the reduced density of the plotted line.
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FIG. 3: Plot of G (λ, h) for h = 0 (a hemispherical cavity), for reduced densities
(

ρσ3
)

between 0.2

and 0.7. The numeric label above each line indicates the reduced density of the plotted G (λ, h).

We note in particular that the initial value of G (λ, h) is p/ρkT , as is the value of G (λ, h) as

λ → ∞.
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FIG. 4: Work of cavity insertion, W (λ, h) /kT , for h = 0 (a hemispherical cavity), plotted for

ρσ3 = 0.3, 0.5, and 0.6. The solid lines are theoretical predictions from I-SPT and the filled circles

are calculations from MC simulation. Numeric labels above each data set indicate the reduced

density.
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FIG. 5: Plot of G (λ, h) for h = 0.25σ, for reduced densities
(

ρσ3
)

between 0.2 and 0.7. The

numeric label above each line indicates the reduced density of the plotted line.
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FIG. 6: Work of cavity insertion, W (λ, h) /kT , for h = 0.25σ, plotted for ρσ3 = 0.3, 0.5, and 0.6.

The solid lines are theoretical predictions from I-SPT and the filled circles are calculations from

MC simulation.
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FIG. 7: (Color online) Plot of G (λ, h) for h = 0.75σ, for reduced densities
(

ρσ3
)

between 0.2 and

0.7. The numeric label above each line indicates the reduced density of the plotted line. Solid

lines are G from exact and interpolated calculations. Dashed lines are G over σ/2 < λ < 3σ

for ρσ3 = 0.6 and 0.7 estimated from simulation measurements of W (λ, h) (shown in Fig. 8 for

ρσ3 = 0.6).
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FIG. 8: Work of cavity insertion, W (λ, h) /kT , for h = 0.75σ, plotted for ρσ3 = 0.3, 0.5, and 0.6.

The solid lines are theoretical predictions from I-SPT and the filled circles are calculations from

MC simulation.
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FIG. 9: (Color online) Plot of G (λ, h) for h = 1.25σ, for reduced densities
(

ρσ3
)

between 0.2 and

0.7. The numeric label above each line indicates the reduced density of the plotted line. Solid

lines are G from exact and interpolated calculations. Dashed lines are G over σ/2 < λ < 3σ for

ρσ3 = 0.6 and 0.7 estimated from simulation measurements of W (λ, h) (shown in Fig. 11 for

ρσ3 = 0.6).
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FIG. 10: Plot of G (λ, h) for h = 3σ, for reduced densities
(

ρσ3
)

between 0.2 and 0.7. The numeric

label above each line indicates the reduced density of the plotted line.
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FIG. 11: Work of cavity insertion, W (λ, h) /kT , for h = 1.25σ, plotted for ρσ3 = 0.3, 0.5, and 0.6.

The solid lines are theoretical predictions from I-SPT and the filled circles are calculations from

MC simulation.
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FIG. 12: Work of cavity insertion, W (λ, h) /kT , for h = 3σ, plotted for ρσ3 = 0.3, 0.5, and 0.6.

The solid lines are theoretical predictions from I-SPT and the filled circles are calculations from

MC simulation.
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FIG. 13: (Color online) Plot of G (λ, h) for h = 0, 0.25σ, 0.5σ and h → ∞ at ρσ3 = 0.6. Solid

lines indicate G (λ, h), and the value of h for each line is noted. G (λ, h → ∞), identical to G (λ),

is plotted with the dotted line.
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FIG. 14: (Color online) Plot of W (λ, h) for h = 0, 0.25σ, 0.5σ and h → ∞ at ρσ3 = 0.6. Solid

lines indicate W (λ, h), and the value of h for each line is noted. W (λ, h → ∞), identical to the

bulk SPT W (λ), is plotted with the dotted line.
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FIG. 15: (Color online) Plot of G (λ, h) for h = 0.75σ, 1.25σ, 3σ, and h → ∞ at ρσ3 = 0.6. Solid

lines indicate G (λ, h), and the value of h for each line is noted. G (λ, h → ∞), identical to G (λ),

is plotted with the dotted line.
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FIG. 16: (Color online) Plot of W (λ, h) for h = 0.75σ, 1.25σ, 3σ, and h → ∞ at ρσ3 = 0.6. Solid

lines indicate W (λ, h), and the value of h for each line is noted. W (λ, h → ∞), identical to the

bulk SPT W (λ), is only barely visible on the plot, as it nearly identical to W (λ, h = 3σ) for the

plotted domain.
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FIG. 17: (Color online) Illustration to aid the explanation of the boundary thermodynamic ap-

proximation of Wσ. In (a), a cavity of radius λ = h (dot-dash line) is centered at z = h and two

hard-sphere particles are placed at distinct positions on the cavity surface and their equivalent

σ-cule cavities are shown with dashed lines. A third hard-sphere and its σ-cule are placed at the

reference position, which is assumed to be sufficiently far from the cavity such that the cavity of

radius λ no longer influences the local fluid. In (b), the hard-sphere particles are removed and

the volumes and surfaces associated with the creation of the σ-cule at each position are noted.

Insertion of each σ-cule requires the evacuation of a region of volume ∆V and the creation of a

surface of area ∆Aσ with radius of curvature σ, noted in blue. σ-cule in contact with the cavity of

radius λ require the destruction of some part of the cavity’s surface, ∆Aλ which is noted in green.

Some σ-cules also destroy part of the wall surface area, ∆Aw, which is noted in red.
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