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We carry out a finite size scaling analysis of the jamming transition in frictionless bi-disperse
soft core disks in two dimensions. We consider two different jamming protocols: (i) quench from
random initial positions, and (ii) quasistatic shearing. By considering the fraction of jammed states
as a function of packing fraction for systems with different numbers of particles, we determine the
spatial correlation length critical exponent ν ≈ 1, and show that corrections to scaling are crucial for
analyzing the data. We show that earlier numerical results yielding ν < 1 are due to the improper
neglect of these corrections.
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Glassy behavior in condensed matter and granular sys-
tems remains a topic of considerable controversy. In this
context, the jamming of hard or soft core particles at zero
temperature has been the focus of much recent effort. As
the packing fraction φ of a granular material increases,
the system undergoes a sharp jamming transition from a
fluid-like state to a rigid but disordered solid state [1]. It
has been proposed that this T = 0 transition is described
by a critical point, with scaling behavior similar to that
at a continuous phase transition as found in equilibrium
systems [2]. A key signature of a continuous transition is
a correlation length ξ that diverges at the jamming φJ ,
ξ ∼ |φ−φJ |−ν . Determination of the critical exponent ν
is thus a key goal in establishing and characterizing the
critical nature of the jamming transition.

While it has been suggested that the value of ν is inde-
pendent of the dimensionality of the system, or the spe-
cific force law between particles [3], the precise numerical
value of ν varies widely throughout the literature. From
theoretical consideration of soft vibrational modes in the
jammed solid, Wyart et al. [4] argued for ν = 1/2. Nu-
merical simulations of vibrational modes led Silbert et
al. in two (2D) and three (3D) dimensions [5] to pos-
tulate diverging transverse and longitudinal correlation
lengths with exponents νT ≈ 0.24 and νL ≈ 0.48 respec-
tively. k-core percolation models, in mean field theory,
also yield [6] two exponents ν∗ = 1/4 and ν# = 1/2,
while a field theoretic approach [7] to jamming in 2D
gave ν = 1/4. Simulations by Drocco et al. [8] of a trace
particle dragged through an incipient 2D jammed liquid
resulted in a value ν = 0.71±0.12, while from a numerical
finite size scaling analysis of mechanically stable states in
2D and 3D O’Hern et al. [3] found ν = 0.71 ± 0.08. A
scaling analysis of velocity correlations in simulated 2D
shear driven flow by two of us [9] previously reported that
ν = 0.6± 0.1. Hatano [10] obtained ν = 0.73± 0.05 from
simulations of shear relaxation in 3D, while relaxation of
random initial states to mechanical equilibrium in 2D led

Head [11] to ν = 0.57± 0.05. Heussinger and Barat [12]
estimate ν = 0.8− 1.0 from displacement correlations in
a 2D system under quasistatic shearing, while Heussinger
et al. [13] find a dynamic correlation length in 2D with
exponent ν = 0.9. Establishing the precise value of ν
and determining whether all these correlations lengths
are the same thus remains a crucial theoretical objective.

In this work we present a detailed finite-size-scaling
analysis of the jamming transition in frictionless bi-
disperse soft core disks in 2D. Only through such a scaling
analysis can one hope to clearly establish the singular be-
havior of the system in the limit of infinite size, and the
value of critical exponents. An advantage of the finite-
size-scaling method is that it allows one to compute the
exponent ν of the most divergent length scale without
the need to explicitly calculate the correlation length ξ
itself.

We consider two different jamming ensembles: (i)
quench from random initial positions (RAND), and (ii)
quasistatic shearing (QS) [12]. By considering the frac-
tion of jammed states f as a function of packing fraction
φ for systems with different numbers of particles N , we
demonstrate that the correlation length critical exponent
in both ensembles is ν ≈ 1. We further show that correc-
tions to scaling are crucial for understanding our data,
and argue that earlier numerical results yielding ν ≈ 0.7
are due to the improper neglect of these corrections. Our
results suggest that corrections to scaling may be im-
portant in other scaling analyses of critical behavior at
jamming, for example in rheological behavior.

Our model is a 50:50 bi-disperse mixture of disks with
diameters in the ratio 1.4 [3]. Particles interact with a
soft core harmonic repulsion,

V (rij) =
{
ε(1− rij/dij)2/2 for rij < dij
0 for rij ≥ dij

(1)

where rij is the distance between the centers of two par-
ticles i and j, and dij is the sum of their radii. Length



2

is in units such that the smaller diameter is unity, and
energy is in units such that ε = 1. A system of N disks
in an area A thus has a packing fraction (density)

φ = Nπ(0.52 + 0.72)/(2A) . (2)

We define our two ensembles as follow. (i) RAND:
This is the ensemble introduced by O’Hern et al. [3].
We start with a fixed number of particles, N , at density
φ, in a square box with periodic boundary conditions.
Particles are put at random initial positions, and then a
conjugate gradient method is used to relax the system to
the nearest local energy minimum. The minima resulting
from many such initial configurations (we use typically
10000 for each value of φ) defines the ensemble. (ii) QS:
At a fixed N and φ, we start the system in a random
initial configuration, and then apply a small shear strain
step ∆γ using Lees-Edwards boundary conditions [14].
A conjugate gradient method then relaxes the system to
the nearest local energy minimum, before the system is
strained again by ∆γ. The set of states obtained after the
energy minimization, after a long total strain γ, defines
the ensemble. We choose the strain step small enough
that our results do not depend on the value of ∆γ. For
our biggest systems we use ∆γ = 10−5. We average over
10 − 20 independent runs, each sheared a total strain
γ ∼ 4− 8; for our smaller sizes, we use γ up to 200.

In both ensembles, we stop the energy minimization
when one of the following conditions is met (i) the rela-
tive decrease in the energy after 50 iterations is smaller
than 10−10, or (ii) the average energy per particle is
E/N < 10−16. In the latter case, we consider the re-
sulting configuration to be unjammed. The key quantity
in our analysis will be the fraction of jammed states in
the ensemble at a given value of density, f(φ). We have
verified that the energy bound (ii) gives a clear separa-
tion between the jammed and unjammed states up to
the largest system size we have studied. Further details
of our numerical procedures may be found in Ref. [15].

In Fig. 1 we present our results for f(φ) for systems
of varying number of particles N for both RAND and
QS. We see that f(φ) sharpens up and approaches a step
function in the limit N →∞; this singularity in f(φ) as
N → ∞ is characteristic of a quantity that has scaling
dimension zero. We would thus expect, to leading order,
the finite-size-scaling behavior,

f(φ,L) = F
(
δφL1/ν

)
where δφ ≡ φ− φJ , (3)

φJ is the jamming density in the thermodynamic limit
N → ∞, ν is the correlation length critical exponent,
and L ≡

√
N is a measure of the linear size of the sys-

tem. A key prediction of Eq. (3) is that at φ = φJ , curves
of f(φ,L) for different L should all intersect, having the
common value F(0); plotting f(φ,L) vs δφL1/ν , curves
of different L should collapse to a common scaling curve.
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FIG. 1: (color online) Fraction of jammed states f vs packing
fraction φ, for systems with number of particles N . (a) is the
RAND ensemble, (b) is the QS ensemble. Insets show a blow
up of the region where curves for different N intersect.

However careful inspection of our results in Fig. 1 (see in-
sets) show that there is no common intersection point for
the f(φ,L). This observation leads us to conclude that,
for the sizes studied here, corrections to scaling must be
included in our analysis.

We can include such corrections to scaling by general-
izing Eq. (3) to,

f(φ,L) = F0

(
δφL1/ν

)
+ L−ωF1

(
δφL1/ν

)
. (4)

In the renormalization group framework for equilibrium
critical phenomena, such corrections to scaling arise from
a Taylor series expansion of the free energy in the leading
irrelevant scaling field, whose scaling dimension is −ω
[16]. We will define fc ≡ F0(0) as the critical value of
the jamming fraction at φJ in the limit L→∞.

One of the consequences of Eq. (4) is that the func-
tions f(φ,L) approach the L→∞ limiting step function
at different rates, depending on the value of f . If we
define φf̄ (L) as the value of φ where f(φ,L) = f̄ , then
sufficiently close to φJ we can expand the scaling func-
tions in Eq. (4) to linear order in δφ to obtain,

φf (L) = φJ − L−1/ν
[
c0δf − (c1 − c2δf)L−ω

]
, (5)
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FIG. 2: (color online) φf (L) vs L for different values of f for
(a) RAND and (b) QS. Values of f increase from bottom to
top.

where c0, c1, c2 are constants and δf ≡ f − fc.
In Fig. 2 we plot φf (L) vs L for several values of f .

To interpolate between our data points so as to define
the values φf (L), we use the following procedure. We
transform to a new variable F ≡ ln[f/(1 − f)] and fit
F (φ) to a fifth order polynomial over the range |F | ≤ 5.
The result gives the solid lines in Fig. 1. We see that
as f increases, φf (L) becomes non-monotonic, a clear
signature of the change in sign of the leading term L−1/ν

in Eq. (5) as f increases above fc. We see that φJ ≈
0.8415 for RAND, while φJ ≈ 0.843 for QS.

We consider next a determination of the exponent ν
via Eq. (5). To eliminate the imprecisely known value of
φJ , and to reduce the contribution from the correction
to scaling given by c1, we consider the difference,

w(L) ≡ φf2(L)− φf1(L) = aL−1/ν
(
1 + bL−ω

)
, (6)

where both a and b are proportional to f2−f1. We choose
f1 and f2 symmetrically about fc (with fc as determined
below), and plot w(L) vs L for RAND and QS in Fig. 3.
We expect the correction term ∼ L−ω to get smaller, and
become negligible, as L increases. We therefore ignore
the correction term and fit the data to w ∼ L−1/ν to get
the solid line in Fig. 3. The insets show the resulting
value of 1/ν as we drop successively smaller system sizes
from the fit, fitting systems of size Nmin to Nmax (Nmax =
16384 for RAND, Nmax = 4096 for QS, L =

√
N). As

expected, the value of 1/ν saturates to a constant as Nmin

increases and the effects of the correction term become
negligible. We find from these fits the values 1/ν = 0.93±
0.02 for RAND, and 1/ν = 0.91±0.02 for QS. If we then
fit the data for all sizes to the full Eq. (6), including
the correction term, we get values of 1/ν consistent with
those above, however the estimated error in ω is too large
to determine ω to any accuracy.

To determine ω, and get a more accurate value for
φJ , we use the following procedure. We fit the re-
sults for φf (L) of Fig. 2 to a single power law φf (L) =
φJ − cL−1/νeff . Since φf (L) has such a single power law
behavior only at fc, we expect that the χ2 of the fit will
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FIG. 3: (color online) Width w(L) ≡ φf2(L)−φf1(L) vs L for
(a) RAND and (b) QS. We choose f1 and f2 symmetrically
about fc; for RAND f1 = 0.7, f2 = 0.9; for QS f1 = 0.5,
f2 = 0.7. Straight line is a fit to w ∼ L−1/ν including all
data. Insets show the fitted value of 1/ν as the minimum size
system included in the fit, Nmin, is varied.

be smallest when f = fc. The fitted parameters at this
fc then determine φJ and the exponent 1/νeff = 1/ν+ω.
We show the results of such fits in Fig. 4, where we
fit to system sizes Nmin to Nmax, for the four differ-
ent cases Nmin = 48, 64, 96, 128. We see that as Nmin

increases, the low-f side of the minimum in χ2 gets in-
creasingly shallow. This is not surprising since the size of
the correction term, and hence its effect on the fits, gets
progressively smaller as N increases. Nevertheless we
find quite stable values of the fitted parameters as Nmin

varies. we find fc = 0.78± 0.02, φJ = 0.84177± 0.00001,
1/ν + ω = 1.7 ± 0.1 for RAND, and fc = 0.60 ± 0.03,
φJ = 0.8432±0.0001, 1/ν+ω = 1.85±0.03 for QS. Com-
bining with our earlier results for 1/ν we get ω = 0.8±0.1
for RAND and ω = 0.94 ± 0.05 for QS. The solid lines
in Fig. 2 result from fits to Eq. (5) where we have fixed
1/ν and 1/ν+ω to the values found from the analyses of
Figs. 3 and 4.

It is interesting to compare our results against the fi-
nite size scaling analysis of O’Hern et al. [3], who con-
sidered the RAND ensemble. In that work, the authors
considered the distribution P (φ,L) = df(φ,L)/dφ, the
probability density for a system of size L to have its
particular jamming density at φ. By considering how
the location φ0(L) of the peak in P (φ,L) approached its
L → ∞ limit φJ , the authors defined the critical expo-
nent “ν” by, φJ − φ0 ∼ L−1/“ν”, and found the value
“ν” = 0.71 ± 0.08. In terms of our analysis, we see that
φ0 is the same as our φf0 , where f0 locates the steep-
est slope of f(φ,L), and “ν” is just our νeff . In light of
corrections to scaling, we see that “ν” should not be iden-
tified as the correlation length exponent; it is an effective
exponent that arises from fitting φ0 to single power law,
when the true behavior as in Eq. (5) is governed by two
different power laws with exponents 1/ν and 1/ν + ω. If
we take f0 = 0.5, our Fig. 4c for the case Nmin = 64 gives
1/νeff = 1.32, or νeff = 0.76, in good agreement with the
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FIG. 4: (color online) Results from fitting data of Fig. 2 to

φf (L) = φJ − cL−1/νeff , using system sizes Nmin to Nmax.
We show results for Nmin = 48, 64, 96, 128. Panels (a)-(c) are
for RAND, panels (d)-(f) are for QS. (a), (d) is the χ2/dof of
the fit (dof = number of data points minus number of fitting
parameters); the minimum of χ2/dof locates fc, which then
determines φJ , as shown in (b), (e), and the value of 1/νeff =
1/ν + ω, as shown in (c), (f). Insets show the dependence of
the fitted parameters on the value of Nmin.

value found by O’Hern et al.
O’Hern et al. similarly define the full width at half

maximum of P (φ,L), w(L), and find the scaling w ∼
N−Ω ∼ L−2Ω, with Ω = 0.55± 0.03 or 2Ω = 1.10± 0.06.
With suitable choices of f1 and f2, this w is the same as
our w of Eq. (6), and hence we expect for asymptotically
large N (where corrections to scaling become negligible)
to find 2Ω = 1/ν. If we assume a Gaussian form for
P (φ,L) then the full width criterion corresponds to f1 =
0.124 and f2 = 0.876. Computing this w and fitting using
sizes N = 64 to 4096, the same range as O’Hern et al., we
get 2Ω = 1.035± 0.002, in agreement with O’Hern et al.
within their estimated errors. However if we use up to
our largest size N = 16384, then increase Nmin, we find
Ω to systematically decrease, becoming 2Ω = 0.97± 0.01
when Nmin = 2048. Our result remains larger than the
1/ν = 0.93 found in Fig. 3, perhaps because f1 is so far
from fc that additional corrections to scaling arise from
non-linearities in the scaling functions. Thus we conclude
that it is O’Hern et al.’s 1/(2Ω) that is asymptotically the
correlation length exponent ν, rather than their “ν” (our
νeff), and that their value for 2Ω is larger than our 1/ν
due to their more limited range of sizes and their neglect
of corrections to scaling.

In other recent work [17], it is found that corrections
to scaling must similarly be included to properly describe
the critical scaling of rheology under applied shear strain
rate γ̇, for rates of the size typically used in simulations.
The value φJ = 0.8415 for shear driven jamming that was
reported in earlier work by two of us [9], is lower than the
corresponding φJ = 0.8432 found for QS here, due the

neglect in that work of corrections to scaling. Similarly,
the low value ν = 0.6 reported in that work also results
from the earlier failure to include corrections to scaling.
We expect that other numerically reported values of φJ
and ν may similarly be inaccurate due to the neglect of
corrections to scaling in the analysis.

To conclude, we have demonstrated that, for the sizes
N typically used in simulations, including corrections to
scaling is crucial for a proper description of the critical
behavior at jamming, in both RAND and QS ensembles.
Although we know no apriori reason why this should be
so, it is interesting to note that corrections to scaling
are similarly important in spin glass problems, another
system in which the “ordered” state appears spatially
random [16]. Within our estimated accuracy we find the
correlation length exponent ν and the correction to scal-
ing exponent ω to be roughly equal for the two ensem-
bles. We find ω = 0.89± 0.12, and 1/ν = 0.92± 0.02, or
ν = 1.09± 0.02. While the estimated statistical error in
ν is small [18], our range of system sizes L is not suffi-
ciently large for us rule out the possibility that systematic
errors, for example from additional or higher order cor-
rections to scaling, could slightly alter the value of these
exponents to ν = ω = 1.
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