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Power-law flow statistics in anisometric (wedge) hoppers

Summer Saraf and Scott V. Franklin∗

Department of Physics, Rochester Institute of Technology, Rochester, NY 14623-5603, USA

We find the probability for N particles to exit an anisometric (having unequal dimensions) hopper
before jamming to have a broad power-law decay with exponent α = −2, in marked contrast to the
exponential decay seen in hoppers with symmetric apertures. The transition from exponential to
power-law is explained by a new model that assumes particle motion is correlated over a distinct
length scale. Hoppers with lengths larger than this length are modeled as a series of adjacent,
statistically independent, “cells”. Experiments with apertures 27-37 particle diameters D long are
well-fit by a 3-cell model, implying that the correlation length is ≈ 9 − 12D.

PACS numbers: 45.70

I. INTRODUCTION

The clogging of particles at a hopper outlet has been
termed “the canonical example of jamming” [1]. It is
a matter of practical import, affecting a wide range of
industries that transport granular media through pipes,
silos, and hoppers [2, 3]. While early research focused
on the steady-state flow rate [4], more recent attention
has turned to the probability that flow stops, i.e. the
transition to the jammed state. The wealth of research
on jamming and the glass transition in various systems
(e.g. [5–8]) has been summarized elsewhere [9–11].

Flow through a hopper stops when an arch, capable
of supporting the weight of the grains above, forms at
the exit aperture. To et al. [12–14] investigated the jam-
ming of two-dimensional systems and measured the rel-
ative probability for an arch consisting of n particles to
form. In a particularly beautiful piece of theory relying
only on the requirement that arches be concave down, To
et al. modeled this probability as a random walk, imply-
ing that the particles independently sampled all possible
locations relative to their neighbors.

Zuriguel et al. [1, 15] measured the probability for
three-dimensional flows to jam as a function of aperture
diameter, independent of arch geometry. The probability
P (N) for N grains to exit the hopper before flow stopped
decayed exponentially with N , which Zuriguel explained
by assuming that the probability p for a particle to exit
was statistically independent from that of other particles.
The probability for N particles to exit is then

P (N) = pN (1 − p) ∝ eN ln p. (1)

p < 1, and so Eq.1 represents an exponential decay.
More recently, Janda et al.[16] connected the probabil-

ity of forming an arch of specific size with the exit-mass
probability distribution function P (N) and also investi-
gated how the mean flow 〈N〉 scaled with aperture diam-
eter. A key finding was the absence of a critical aperture
size above which the mean flow diverges. Rather, 〈N〉
grows with aperture diameter D as 〈N〉 ∝ exp[D2].
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Baxter et al. [17] and Choi et al. [18] tracked individ-
ual particles flowing through two- and three-dimensional
hoppers and observed correlated motion over a well-
defined length scale, with particles remaining in contact
with their neighbors for long periods of time. Choi et al.
compared the correlated motion with that of colloidal
and molecular particles approaching the glass transition.
Confocal microscopy of colloidal glasses [19] and molec-
ular dynamics simulations of molecular glasses [20] have
shown that the cooperative motions involve one dimen-
sional strings of particles. The notion of a critical length
scale of correlated motion becomes important when con-
sidering hopper apertures with different length scales.

FIG. 1: Wedge-hopper geometry. The hopper angle (of the
x-sidewalls) can be varied independently, as can the width of
the exit aperture and depth (in ŷ) of the pile. All reported
experiments are for fixed sidewall angle of 23◦ and d = 1.00±
0.05 cm. The length L varies from 10-31 cm.

II. EXPERIMENTAL RESULTS

Our experiment involves a wedge-shaped hopper, with
geometry shown in Fig. 1, consisting of two 31 cm x 38 cm
Plexiglas sheets that can be angled independently to end
in a rectangular aperture. The thickness d of the exit
aperture can be changed without varying the angle by
sliding one of the sidewalls in the x̂ direction; all reported
results are for d = 1.00±0.05 cm with a sidewall angle of
23◦±1◦. A Plexiglas insert allows us to vary the length L
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FIG. 2: (Color online) The probability for N particles to exit
a wedge-hopper has a broad power-law tail with P (N) ∼ N−2

(dashed line), seen in experiments, Monte Carlo simulation,
and analytic theory. This is in distinct contrast to the distri-
bution function found in conical hoppers, which decays expo-
nentially. Shown are distribution functions for experimental
hoppers of lengths L = 16.2−22.2 cm. Simulation and theory
assume nc = 3 adjacent, statistically independent cells.

in ŷ from of order a few particle diameters to a maximum
of 31 cm, several times the particle diameter.

Acrylic spheres (diameter D = 6 mm, mass m = 0.5 g)
are poured into the hopper while the aperture is blocked
by a flat plate. The plate is then removed and particles
fall onto an Ohaus Digital Balance with a resolution of 0.1
g, sufficient to distinguish the number of individual parti-
cles that fall through the hopper before the pile jams. A
computer detects when the scale reading stabilizes and,
when the weight has been constant for 0.5 seconds, trig-
gers a solenoid valve to quickly open and close, divert-
ing air to a Clippard pneumatic cylinder. The cylinder
acts as an impact hammer, jolting the hopper and re-
initiating particle flow. This process continues until the
hopper has emptied, at which point the last scale read-
ing is discarded (since flow never actually stopped), the
hopper refilled, and the process repeated.

Figure 2 shows the exit-mass probability distribution
function for 4 different aperture lengths: 16.2, 18.0, 19.2,
and 22.2 cm. After an initial plateau, the distribution
falls off as a power law with P (N) ∼ N−2. Each distribu-
tion shown is the result of at least 1500 separate events;
error bars indicate the standard deviation of all events
that fall within the respective (logarithmically spaced)
bin. We have confirmed that the exit-mass distribution
functions obtained are unaffected by the refilling process.
Distributions made from events immediately after refill-
ing, for example, are indistinguishable from those made
from events when the hopper is nearer to being empty.

Zuriguel et al. [1, 15] used air to break up the arch, and
always had at least 1 particle exit. We suspect that the
plateau (P (0) 6= 0) occurs because our impact does not

always break up the arch. Chen et al. [21] reported that
lower magnitude impacts shift the distribution at low N ,
but do not change the scaling at large N .

III. NUMERICAL MODEL

In order to modify Eq. 1 to include anisometric aper-
tures, we recall experiments [17, 18] that found corre-
lated motion in clusters of particles moving through hop-
pers. Assuming that these correlations are “string-like”
we claim that the probability for a correlated string of
particles to exit p is a function of the string orientation
relative to the hopper aperture. Strings aligned along the
length of the aperture (ŷ in Fig.1) have a high probability
of passing through, while those aligned across the width
(x̂ in Fig. 1) have a smaller probability. We relate p to
the ratio of the projected length of the string along the x̂
and ŷ axes with the aperture size in that direction, with
a maximum value of p = 1:

p(θ) = min
(

max
[ lxproj

d
,
lyproj

L

]

, 1
)

(2)

The probability is a maximum p = 1 when lxproj > d

(forming an arch across the short length) or lyproj > L

(spanning the hopper length). The experimentally ob-
served distribution function is an average over the range
of individual string exit probabilities.

An implicit assumption is that the granular strings are
independent of the specific shape of the opening aperture.
That is, the distribution of string size and orientation is
largely determined by the characteristics of the granular
material and not the experimental geometry. New experi-
ments studying the transition from exponential to power-
law statistics are underway to validate this assumption.
For now, we claim only that our results are consistent
with such an assumption, not definitive proof.

We label the probability limits py and px and, for sim-
plicity, assume a uniform distribution of exit probability
probability between px < p < py:

O(p) =
θ(p − px)θ(py − p)

∆p
. (3)

θ(p− px) and θ(px − p) are Heaviside step functions, and
∆p ≡ py − px is a normalizing factor. Averaging over all
the allowable exit probabilities involves the integral

〈P (N)〉 =

∫ py

px

pN (1 − p)O(p) dp. (4)

Isometric (round) apertures correspond to the case
where py = px. The orientational probability O(p) then
approximates a Dirac delta function at px, and so

〈P (N)〉 ≈

∫

pN(1 − p)δ(p − px) dp = pN
x (1 − px) (5)

recapturing the exponential form of Eq. 1.
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We can readily calculate the integral of Eq. 4

∫ py

px

pN(1 − p)O(p) dp =
1

∆p

[

pN+1

N + 1
−

pN+2

N + 2

] ∣

∣

∣

∣

py

px

(6)

Eq. 6 represents a 1/N decay with an exponential cutoff
(since pN = exp[N ln p]). As py → 1, the exponential
cutoff occurs at larger N , eventually disappearing when
py = 1. Physically, py → 1 means that strings always
exit the hopper; intuitively, we associate this with the
aperture length approaching the string length. In this
case, a string aligned with the long edge cannot bridge
the gap between the sidewalls to form an arch. In the
limit of py = 1, Eq. 6 has the asymptotic value of P (N →
∞) ∝ 1/N−2, as seen in experiment (Fig. 2).
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FIG. 3: (Color online) The exit-mass probability distribu-
tion function P (N) shows a transition from exponential to
power-law decay as the upper limit (py in Eq. 4) approaches
1 (reading curves left to right). This corresponds to a hopper
aperture with one length-scale the size of a granular string.
For smaller aperture lengths, the distribution function has the
form of a power-law with an exponential cutoff.

Figure 3 shows the probability distribution for several
values of py approaching 1. The exponential cutoff occurs
at larger values of N for py nearer 1, finally disappear-
ing at py = 1 and leaving behind a power-law decay. The
transition from exponential to power-law distribution oc-
curs as the aperture’s long length approaches the length
scale over which correlated motion occurs [18]. We are
currently conducting experiments with less anisometric
apertures to capture this transition.

To extend the model to longer apertures, we note that
the flow through anisometric hoppers is spatially and
temporally inhomogeneous. It is not uncommon for a
subsection of the hopper to jam, with flow continuing un-
abated through the rest of the hopper. While the global
flow rate decreases, we observed no effect on the local
flow rate, nor did we see any preferential jamming at the
sidewalls; jamming was equally likely to occur in the mid-
dle of the hopper as at the ends. Our data, however, are
not sufficient to draw quantitative conclusions.
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FIG. 4: (Color online) Adapting the model to account for
lengths longer than that of a granular string changes the shape
of the probability distribution function. A plateau forms and,
for increasing number of cells nc, the peak of the distribution
shifts to larger values of N as Nmax ∼ n1.3

c (inset). All dis-
tributions show the characteristic N−2 decay.

The spatial inhomogeneity suggests it appropriate to
model long apertures as a series of nc adjacent “cells”,
each as long as a granular string. The probability for
ni particles to exit the ith cell is given by Eq. 6 with
py = 1, and we assume that the probabilities for different
cells are statistically independent. The average exit mass
probability distribution is calculated by summing over all
the ways that N particles can exit nc cells:

〈P (N)〉 =

N
∑

n1,n2,...=0

nc
∏

i=1

P (ni)δ
(

N −

nc
∑

i=1

ni

)

, (7)

where the delta function forces the sum of the particles
exiting the individual cells to total N : n1 +n2 + . . . = N .

We set px = 0 for computational and analytic simplic-
ity, although there is some justification for this choice
in two-dimensional experiments [12] that found flow to
stop through round apertures when the aperture diam-
eter was approximately 1.5 times the particle diameter.
As a result, P (ni) = [(1 + ni)(2 + ni)]

−1, and we plot
in Fig. 4 the distribution that results from nc = 1, 5,
and 10. The plateau around P (0) gives way to a dis-
tinct peak in the distribution. The location of this peak,
the most likely number of particles to exit, increases as
n1.3

c (Fig. 4(inset)), although the origin of this behavior
is unknown. All distributions show a N−2 decay (dashed
line), consistent with experiment and analytic solution.

Equation 7 can be calculated numerically for low val-
ues of nc; for larger numbers of cells we use a Monte
Carlo simulation. The simulation is actually quite sim-
ple, where each string is modeled by two random num-
bers, the first describing the orientation (and hence jam-
ming probability), the second to determine whether the
string actually jams or not. The simulation runs until all
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cells are jammed and then totals the number of attempts
required to reach the jammed state. We have confirmed
that the two agree for nc < 5 (c.f. Fig. 2).

We vary nc as the lone fitting parameter in our sim-
plified model to best fit the plateau at low N . Figure 2
shows experimental data from wedge hoppers of four dif-
ferent geometries (1 cm x 16.2, 18.0, 19.2, and 22.2 cm),
the Monte Carlo simulation, and the theoretical calcu-
lation (Eq. 7) for nc = 3. Experiment, simulation, and
theory all show a plateau for low exit masses and N−2

decay for large N . The excellent quantitative agreement
of all experimental data with simulation and theory for
nc = 3 implies that the the experimental length of 27-
37 particle diameters corresponds to three “cells”, where
each cell has a length equal to the average length of the
granular strings. We therefore tentatively suggest that
the strings themselves are 9-12 particle diameters long.

IV. CONCLUSIONS

We have experimentally measured a power-law decay
with exponent α = −2 of exit-mass probability in flow
through anisometric wedge hoppers, in distinct contrast
to the exponential decay found in isometric round hop-
pers. We argue that this arises from the orientational
alignment with the aperture of clusters or strings of
granular particles whose motion is correlated. The hop-

per anisometry requires an average over the orientation-
dependent probability for a single string to exit. When
the upper limit of this probability is 1, as it must be
for very long aperture lengths, the exit-mass distribution
assumes a power-law tail.

Motivated by the observed spatial inhomogeneity of
the hopper flow, we extend the model to consider ad-
jacent, statistically independent cells of a well-defined
length. The exit-mass probability can be calculated an-
alytically (for low numbers of cells) or with Monte Carlo
simulation (for larger numbers of cells), and find nc = 3
to give an excellent fit with the experimental data. That
experiments over a range of 27-37 particle diameters D
in lengths are fit by nc = 3 implies an estimate for the
granular string length of 9D − 12D.
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