aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Quantum molecular dynamics simulations of transport
properties in liquid and dense-plasma plutonium
J. D. Kress, James S. Cohen, D. P. Kilcrease, D. A. Horner, and L. A. Collins
Phys. Rev. E 83, 026404 — Published 16 February 2011
DOI: 10.1103/PhysRevE.83.026404


http://dx.doi.org/10.1103/PhysRevE.83.026404

EY 10695

Quantum molecular dynamics simulations of transport properties

in liquid and dense-plasma plutonium

J. D. Kress,! James S. Cohen,' D. P. Kilcrease,! D. A. Horner,! and L. A. Collins'

I Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Abstract

We have calculated the viscosity and self-diffusion coefficients of plutonium in the liquid phase
using quantum molecular dynamics (QMD) and in the dense-plasma phase using orbital-free molec-
ular dynamics (OFMD), as well as in the intermediate warm dense matter regime with both meth-
ods. Our liquid metal results for viscosity are about 40% lower than measured experimentally,
whereas a previous calculation using an empirical interatomic potential (modified embedded atom
method) obtained results 3 to 4 times larger than the experiment. The QMD and OFMD re-
sults agree well at the intermediate temperatures. The calculations in the dense-plasma regime
for temperatures from 50 to 5000 eV and densities about 1-5 times ambient are compared with
the one-component plasma (OCP) model, using effective charges given by the average-atom code
INFERNO. The OCP/INFERNO model results agree with the OFMD to within about a factor
of two, except for the viscosity at temperatures less than about 100 eV where the disagreement is
greater. A Stokes-Einstein relationship of the viscosities and diffusion coefficients is found to hold
fairly well separately in both the liquid and dense-plasma regimes.

[LANL publication number: LA-UR~10-07728]

PACS numbers: 52.25.Fi,52.65.Yy,52.27.Gr



I. INTRODUCTION

Plutonium (Pu) ranks as the heaviest naturally occurring element, given its presence in
trace amounts within uranium ores. It has several atypical properties when compared to
standard metals [1, 2]. Plutonium has a very low melt temperature (913 K) and contracts
while melting, a property shared with water and some semimetals, has poor electrical and
thermal conduction characteristics, but has good elastic compressibility. Six allotropes exist
in the solid form that exhibit a variety of different structures and properties. For example,
the o phase expands much faster than iron on heating while the 6 phase contracts. These
peculiarities can be attributed to the location of Pu at a transition point between itinerant
and localized 5f electrons. The unusual behavior of the substance does not cease at melt.
As a liquid, plutonium has a high surface tension and one of the largest viscosities of any
metal, although in actual flow its mass somewhat ameliorates this distinction. While most
noted in its role in nuclear explosions, plutonium has many applications, e.g. supplying the
heating element in radioisotope thermoelectric generators used in remote sensing stations
and deep-space craft such as Cassini and forming a principal component in closed fuel cycles
for fast nuclear reactors as part of advanced energy initiatives [1].

In contrast to the the extensive experimental, theoretical, and computational efforts to
elucidate the material properties of the solid allotropes [3], the liquid phase has remained
relatively unexplored except around the melt temperature, due to its highly reactive, cor-
rosive, and radioactive nature. Measurements [4] of the shear viscosity exist up to 1500 K
as well as of various optical properties [5]. In addition, the viscosities of some liquid Pu
alloys, including U-Pu, have been determined [4, 6, 7]. A few theoretical studies exist; for
example, simulations with the modified embedded-atom method (MEAM), which utilizes
an angle-dependent empirical interatomic potential, appear for liquid plutonium [8] as well
as nickel [9], but only near melt.

Given the paucity of information above melt, we have employed molecular dynamics sim-
ulation techniques to determine the transport properties, both diffusion and viscosity, of
Pu from the liquid, through the warm, dense matter (WDM) regime, to the plasma over a
broad range of temperatures [up to 5 keV] and compressions [1-5 times solid]. The WDM
regime, although somewhat ill-defined, spans a range of densities between 1/100 and 100

times solid and temperatures from about 1 eV to several hundred eV and marks a region



that resembles a soup of various particle types including atoms, ions, free electrons, and even
molecules in a highly transient state for which a quantum mechanical treatment obtains.
As the temperature rises and ionization increases, the particle interactions become more
classical, signaling the beginning of a conventional plasma environment. To examine this
broad range of conditions, we applied quantum molecular dynamics (QMD) and orbital-
free molecular dynamics (OFMD) simulations, both of which treat the electrons quantum
mechanically and the nuclei classically. The QMD method employs a finite-temperature
Kohn-Sham density-functional theory. QMD simulations of shear viscosity first appeared
over a decade ago for liquid Al [10] and a liquid Fe/S alloy [11] at conditions found within
the Earth’s core. The large computational requirements of QMD generally restrict its ap-
plications to relatively low temperatures. Through the use of gradient-corrected, non-local
kinetic energy functionals, orbital-free density-functional calculations [12] have accurately
simulated solids, like Al and Si, at room temperature. For this study, we restrict the OFMD
to a semiclassical formulation at the Thomas-Fermi-Dirac level, which permits its extension
to much higher temperatures and densities. Previous investigations on such diverse systems
as hydrogen [13, 14], iron [15], gold [16], and lithium hydride [17] have demonstrated that
for static (equation-of-state), transport, and optical properties the semi-classical OFMD
generally agrees well with QMD in intermediate temperature and density regimes and can
effectively reach very high temperatures (~ 5 keV). We also investigate the validity of the
Stokes-Einstein relationship between diffusion and viscosity as well as compare our results
with the one-component-plasma (OCP) model, using effective charges obtained with the
code INFERNO [18].

The remainder of the paper is organized as follows: Section II describes the QMD and
OFMD methods, the prescriptions for determining the transport coefficients, and the modi-
fied OCP model; Section III presents the results and discussion of the various findings; and

Section IV concludes with a brief summary.



II. FORMALISM
A. Quantum molecular dynamics

The QMD simulations employed the Vienna ab-initio Simulation Package (VASP) [19-
21], in which the electrons are treated fully quantum mechanically using a plane-wave finite-
temperature density-functional-theory (FTDFT) description. The electron-ion interaction
is represented by a projector augmented wave (PAW) pseudopotential. The ions are evolved
classically according to the forces due to the electron density and the ion-ion repulsion.
The molecular dynamics is performed in the isokinetic ensemble. The system is assumed
to be in local thermodynamic equilibrium with the electron and ion temperatures equal
(T. = T; = T). In our simulations, the electron temperature is fixed, and the ion temperature
is kept at this value through simple velocity rescaling (Woodcock thermostat) [22].

At each time step t for a periodically-replicated cubic cell of length L and volume L3
containing N, active electrons and N; ions in fixed spatial positions R(t), we first perform
a FTDFT calculation within the Kohn-Sham (KS) construction [23] to determine a set of

electronic state functions [V, k(r,t)|i = 1, N;| and eigenenergies ¢; i at each k-point k,
HysWin(r,t) = €1 Wi k(r, 1) (1)

where in atomic units
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with electron number density

ne(r) = Z fil Wi(r, )] (3)

for the occupation number f; determined by a Fermi-Dirac distribution at a prescribed
electron temperature T,. The terms in Eq. (2) represent the kinetic energy, the external or
electron-ion interaction, the Hartree contribution to the electronic energy, and the exchange-
correlation potential, respectively.

The ions are then advanced with a velocity Verlet algorithm, based on the forces due
to the other ions and electronic density, to obtain a new set of positions and velocities.

Repetition of these two steps propagates the system in time yielding a trajectory consisting



of the positions and velocities [R(t), V()] of the ions and a collection of state functions
[V, x(r, )] for the electrons.

All our simulations employed only I" point (k =0) sampling of the Brillouin zone and 54
atoms (IV;) in the cubic cell (with atomic number density n; = N;/L?). The mass density
is calculated using atomic weight A=244 g/mol for Pu. We solve the KS equations within
the generalized gradient approximation (GGA) [24] and describe the plutonium-electron
interaction with a PAW potential for sixteen active electrons with a maximum energy cutoff
of 254 eV. A sufficient number N, of bands was included such that the occupation of the
highest band was less than 1072, Trajectories were evolved with time steps of 2.5 or 5.0 fs.

Plutonium metal has earned a reputation for being the most complex and anomalous
element in the periodic table. The d-phase (fcc structure), which transforms from ~-phase
at T'= 593 K, has an astounding 25% larger atomic volume than the ground state a-phase
(monoclinic structure, py = 19.82 g/cm?, V = 19.46 A° /atom [25] ). The electronic structure
for solid Pu at T" = 0 K encompasses both localized and itinerant 5f electrons. The state
of affairs for electronic structure calculations for solid Pu has been recently summarized
by Rudin [3]. Non-spin-polarized DFT in the GGA yields structural data for a-Pu in
good agreement with experiment. To successfully describe hypothetical (not experimentally
observed) §-Pu at 7' = 0 K requires enhancements to non-spin-polarized DFT/GGA, such
as the mixed level models [26] and dynamic mean field theory [27]. Similar success can be
obtained when spin-polarized DFT/GGA is used to introduce magnetic moments. The spin
polarization emulates the effects of electron-electron correlation in localized 5f states. An
anti-ferromagnetic spin density describes [28] the equilibrium volumes and bulk modulus of
0-Pu well. For example, V' = 23.2 Ag/atom vs. V =24.93 Ag/atom, the value obtained [25]
from the analysis of the experimental thermodynamical data for the six crystalline phases
of Pu. This result predicted by simulation has sparked a vigorous debate as no magnetic
moment has been observed [29] for §-Pu. However, when the 6-Pu is “melted” in the
QMD simulations, we find that the resulting short-range disorder in the fluid and the finite
temperature electrons (FTDFT) yield a non-magnetic ground state for temperatures above
T = 0.15 eV. Thus for consistency in the comparisons, we use non-spin-polarized DFT for

all of the QMD simulations in the present work.



B. Orbital free molecular dynamics

In OFMD simulations [15, 30-32], the kinetic energy of the electrons is treated in a
semiclassical approximation, up to first order in the partition function of the electrons. The
orbital-free procedure treats all electrons on an equal footing, albeit approximately, with no
distinction between bound and ionized electrons. The orbital-free electronic free energy at
ion positions R is given by

F[Rn] = [ar (ne<r><1>[ne<r>] ig (@l (r)

/drv@xt //d dr '"e‘r_;ﬂ T) | Fyln]

where 3 = 1/kgT (kg is the Boltzmann constant) and [, is the Fermi integral [33] of order

(4)

v. The screened potential ®[n.(r)] is related to the electronic density n.(r) by [32]

W\Q/; I3 (@[ne(r)]): (5)

charge conservation constrains the integral [drn.(r) to be equal to the total electronic

ne(r) =

charge.

The first integral in Eq. (4), which depends only on the local electronic density n. in
the true spirit of the Hohenberg-Kohn theorem [34], is the well-known finite-temperature
Thomas-Fermi expression [35]. The exchange-correlation term F,.[n.] is expressed in the
local density approximation of Perdew and Zunger [36, 37]. For this study, we omit the von
Weiszicker correction and work in a Thomas-Fermi-Dirac form using the formula proposed
by Perrot [38] to represent the kinetic-entropic part. The divergence of the electron-nucleus
potential is regularized at each thermodynamic condition through a procedure that closely
follows the production of the norm-conserving pseudopotential for QMD [16]. The cutoff
radius is chosen to be 30% of the Wigner-Seitz radius, sufficient to prevent overlap of the
regularization spheres. The number of plane waves describing the local electronic density is
then adjusted to converge the thermodynamic properties to within less than 1%.

At each time step, the electronic free energy is minimized in terms of the local electronic
density. The ions are propagated as in the QMD method with the same number of atoms, N;
= 54. Upon input of the mass density, the volume of the cubic simulation cell is determined
from the atomic weight (A=244) for Pu. The time steps, determined from the thermal
velocity of the nuclei and the Wigner-Seitz radius [39], varied from 2.5 fs at the highest
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temperature (5 keV) to 5.0 fs at the lowest temperature (50 eV) with a maximum of 20,000
steps.

C. Transport properties

The self-diffusion coefficient D can be computed from the trajectory (so-called equilibrium

molecular dynamics, EMD) by the mean-square displacement

D= {[Ri(t) - RO (6)

or by the velocity autocorrelation function

_ %/OOO (Vi(t)-V,(0)) dt , (7)

where R; (V;) is the position (velocity) of the i® nucleus. These two formulations of the
self-diffusion coefficients are formally equivalent in the long-time limit. We have generated
trajectories of sufficient temporal length to reach times such that the velocity autocorrelation
function becomes zero and contributes no further to the integral, and the mean-square
displacement away from the origin consistently fits to a straight line. Since the values
obtained from these two approaches generally lie within one percent of each other, we report
only one value.
The shear viscosity

n = lim 7(t), (8)

is computed from the autocorrelation function (Green-Kubo relation) of the off-diagonal

component of the stress tensor [40],

- / (Po(0) Pio(t)) dt'. (9)

The precision is somewhat improved by averaging the results for the five independent off-
diagonal components of the stress tensor, Py, Py., Poy, (Pyx — Pyy)/2, and (P, — P..)/2.
Unlike the self-diffusion coefficient, which involves only single-particle correlations and
attains significant statistical improvement from averaging over the particles, the viscosity
depends on the entire system and therefore requires very long trajectories in order to achieve
the desired statistical accuracy. We have previously found [17] that empirical fits to the in-

tegrals of the autocorrelation functions can substantially shorten the length of the trajectory
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required. In turn, extrapolation of the fits to ¢ — oo can more effectively determine the
basic dynamical properties. The partial integrals of the off-diagonal stress-tensor autocor-
relation function 7(t), Eq. (9), have been fit to an arbitrary functional form A[l — e~ (+)"],
where A and 7 are free parameters with A giving the desired property in the ¢ — oo limit
and the power n is either 1 (exponential) or 2 (gaussian). Fitting to this form at short-time
integrations produces reasonable approximations to 7. This fitting procedure also serves to
damp long-time fluctuations.

The fractional statistical error in computing a correlation function C' from molecular-

dynamics trajectories [41] is given by

AC | 21
— 1
C ,—rtraj ’ ( 0)

where Ti,,j is the length of the trajectory and 7 is the correlation, or e-folding, time of the

function, calculated from the fit or from interrogations of the function itself. In the present
work, we generally fit over the interval [0,7] or [0,27] for n = 1 or n = 2, respectively.
This interval emphasizes the fit in the region where the function varies most quickly; as
t increases, the statistics become poorer since there are fewer time origins to sum over
when constructing the autocorrelation function [40]. The computed statistical error in the
viscosity is 10% or less, but a total uncertainty of ~ 20% is estimated by experience due
to the fitting procedure and extrapolation to infinite time. The statistical error in the self-
diffusion coefficient is smaller than for viscosity since the particle average gives an additional
1/+/Nj factor.

To aid in the analysis of the simulation results, we will consider three simple mod-
els/phenomenological forms for describing transport: kinetic theory, the Arrenhius equation,
and the Stokes-Einstein relation. For the kinetic theory of hard spheres, a model that is
most appropriate for dilute atomic and molecular gasses, Dyg oc n; "TY/2 and nyg oc T2,

The Arrenhius equation describes the general behavior of a quantity as function of the

temperature over a certain range as
A(T) = Age BalksT (11)

where F 4 represents an activation energy for the initiation of the process, Aq is a pre-factor

setting the magnitude, and kg is the Boltzmann constant. This expression has found broad



application to a variety of processes from diffusion to the viscosity of liquid metals [42] such
as U, Au, and Pb, as well as chemical rates.
The Stokes-Einstein relation gives a connection between the diffusion and shear viscosity

though an expression
Dn
k B T’/LZ 1/3

with C'sg, a constant and Fsg, a shorthand notation for the relationship between the trans-

Fsg|D,n) = = Csg, (12)

port coefficients. Various prescriptions [43] exist for determining the constant Cgg. From
the original derivations based on the motion of a test particle through a solvent, C'sg ranges
from 1/67 (0.053) [44] to 1/47 (0.080) [45] depending on the limits of the slip coefficient
from infinity (stick) to zero (slip) respectively. On the other hand, Chisolm and Wallace
[46] determined an empirical value of 0.18 £+ 0.02, in a global fit to 21 metal species from a
theory of liquids near melt. We shall examine to what extent these phenomenological forms

represent the behavior of Pu over the various regimes we explore.

D. INFERNO/OCP model

The classical one component plasma (OCP) presents a idealized model in which point
ions interact through the Coulomb potential within a neutralizing background of electrons.
Large-scale molecular dynamics and Monte Carlo simulations of the OCP [47-52] have
demonstrated that many of the basic properties such as diffusion and viscosity can be rep-
resented in terms of a single quantity, the plasma coupling coefficient I', defined by the ratio

of the potential to kinetic energy,
Z%e?
B CI,]{?BT’

‘= (47?7“)1/3 14

is the ion-sphere radius, and n; = p/M is the number density for ions of mass M and

(13)

where Ze is the ion charge,

mass density p . Systems in which the ratio exceeds unity (I' > 1) are designated as
strongly coupled with the particle interactions dominating the thermal motion. The fits
of the dynamical properties in terms of I' range in complexity from a simple power law to

elaborate functions of power series. For example, Hansen et. al. [52] give
D

= 295013 15
" (15)




with
w, = (47n;/M)2 Ze (16)

the ion plasma frequency. Even this simple form masks a complex dependence on the
density and temperature as evinced through the ionic parameters a, I', and w,. For the Pu
temperature and density ranges investigated in this paper, we employ the more complicated
fits of Daligault [51] for D and of Bastea [47] for n. A more comprehensive study of the
various OCP calculations and fits appears in our earlier paper on DT mixtures [14].

The OCP model applies strictly to a fully-ionized system; however, for the temperatures
and densities in this study, plutonium (Z = 94) remains only partially ionized. Therefore,
modifying the charge in such a manner as to reflect the ionization degree may permit an
extension of the OCP formulas to cooler realms. A reasonable choice involves replacing Z
in Eq. (13) with an effective charge Z determined from a more realistic representation of
an atom within the plasma [53]. For this task, we employed the computer code INFERNO
[18], which solves the Dirac equation in a self-consistent-field approximation assuming a
finite temperature and an average atom. Continuum states are treated on the same basis
as bound states, and “continuum lowering” is automatically included. The high-density
limit is essentially the Thomas-Fermi-Dirac model, and the low-density limit yields ions in
equilibrium with free electrons. The effective charge given by INFERNO is shown in Fig. 1
as a function of temperature for the three representative densities. As expected, Z increases
with increasing temperature; however, the curves for different densities cross as a function of
temperature exhibiting the importance of both pressure and temperature on ionization. We
emphasize that, for the remainder of the paper, we shall employ the label “INFERNO/OCP”
to designate that the OCP viscosities and diffusion coefficients have been calculated with Z
replaced by Z to allow for partial ionization effects.

As T' gives an indication of the relative importance of particle interactions and motion,
the electron Fermi degeneracy parameter © gauges the importance of quantum effects. This

parameter is defined as the ratio of the temperature to the nonrelativistic Fermi energy as

O = kgT/Ep (17)
where )
3m2n,)?/3

By = BT 18

F 2me, (18)
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with n. and m, the electron number density and electron mass respectively. For © < 1, the
system becomes degenerate, and quantum mechanics begins to play an increasingly impor-
tant role in the modeling of the system. We caution though that I" basically characterizes a
classical system and © derives from a non-interacting model of the electrons, and therefore

both should be viewed as semi-quantitative guides.

ITII. RESULTS AND DISCUSSION
A. Liquid plutonium

In Fig. 2, we compare the experimentally-measured [4, 6] viscosity of liquid plutonium
with results from our QMD simulations (N;=54) and the previous MEAM calculations [8]. A
liquid density of py, =17.4 g/cm? was used in the QMD simulations at all four temperatures.
This scaled QMD density accounts in some measure for the difference between DFT and
acutal Pu measurements. Using the ratio of the thermodynamic to QMD atomic volumes for
§-Pu yields a scaled QMD density of 16.2 g/cm?, close to the range of reported experimental
values for liquid Pu at melt [16.3-16.7 g/cm?] and at 1223 K [16.19 g/cm?]. By comparison,
the MEAM simulations predict a density of 17.29 g/cm? at a melting temperature of 918 +5
K. The empirical MEAM potential enables simulations of a larger number of atoms in a
cell than QMD, and MEAM calculations were performed with both equilibrium molecular
dynamics (EMD) and nonequilibrium, shear-driven molecular dynamics (NEMD). The two
approaches agreed in the limits in which the NEMD was extrapolated to zero shear rate
and the EMD was extended to long times. We note that, for a Leonard-Jones fluid, no size
dependence for the calculated shear viscosity was found [54] for N; > 27. A spot check
for OFMD simulations of uranium at ambient density for temperatures ranging between
200 and 1000 eV showed a sensitivity of 11% or less between samples of N; = 54 and 75
(such a difference can be attributed to the fitting procedure discussed above). Referring
to Fig. 2, the QMD results are about 40% lower than the experiment while the MEAM
results are 3-4 times higher than the experiment, making the MEAM viscosities 4 to 7
times larger than the QMD. In both cases, the differences with the experimental values are
considerably larger than the theoretical error bars (no error bars were given in the report

of the experiment). As can be seen from the points falling approximately on a straight line
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in the semilogrithmic plot, the results of both calculations, as well as the experiment, are
fit fairly well by an Arrhenius form. For the Arrhenius parameters, the agreement between
experiment vs. QMD is quite good: E4 =-0.13 vs. -0.11 eV and Ay = 1.09 vs. 0.98 mPa-sec.
In comparison, for the MEAM simulations: E4 = -0.2 eV and Ay = 1.8 mPa-sec.

No experimental results exist for the diffusion constants of plutonium. The results of the
present QMD calculation and the MEAM (done with EMD only) calculation are shown in
Fig. 3. The QMD diffusion constants are about three to seven times larger than the MEAM
values. Again, both are well fit by an Arrhenius form. The Arrhenius parameters for the
QMD and MEAM are respectively E4 = 0.13 and 0.37 eV; Ay = 9.4 x 107 and 2.5 x 10~*
cm?/sec. Thus the QMD results decay more slowly with temperature as compared to the

MEAM results.

B. Plutonium in the intermediate regime

In the previous section, we examined the behavior of plutonium at liquid densities and
temperatures up to 1500K. We now raise the temperature while remaining near liquid density
(~ 20 g/cm?) in order to enter the warm dense matter regime. For plutonium in the range of
1to 5 eV, I' ranges from about 550 to 150 and © varies from about 0.015 to 0.06, with both
calculated using Z = Z. Thus the medium becomes both strongly coupled and degenerate
with quantum mechanical effects expected to play a major role. The QMD and OFMD
results for D and 7 are shown in Figs. 4 and 5 as a function of temperature for two densities:
(1) pr. = 17.4 g/cm?, the “DFT-scaled” liquid density, for QMD (see earlier discussion) and
(2) 1.5 pr, = 26.2 g/cm? for both QMD and OFMD.

We first examine the QMD results at liquid density, p,. The diffusion coefficient shows a
monotonic rise with increasing temperature although with some changes of slope. However,
the viscosity displays a clear change in character as a function of temperature. Just above the
melting temperature, the viscosity decreases with increasing 7" with an Arrhenius behavior
(~ e Bn/ksT with E, < 0) typical of a liquid metal, whereas at higher temperatures, the
viscosity steadily rises with temperature, resembling the behavior of a hard-sphere fluid or
a partially-ionized one-component plasma. This behavior occurs in other systems, even for
the simplest case of hydrogen [55], and represents a shift from processes dominated by the

potential interactions to those controlled by the kinetics. The diffusion coefficient has only
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a kinetic component related to the correlations in position or velocity while the stress tensor
contains contributions both from the motion and potential interactions of the particles.
Therefore, the change in the nature of the fluid as the temperature rises becomes more
apparent in the viscosity. This competition leads to a distinct minimum in the viscosity at
around 1"~ 0.4 eV.

In addition, this transition regime provides an excellent testbed for comparing the QMD
and OFMD approaches. Due to the number of active electrons and the increasing number
of states required for the diagonalization of the KS equations, the QMD becomes computa-
tionally prohibitive above about 5 eV with our choice of parameters. On the other hand, the
need to represent detailed quantum mechanical interactions begins to wane as the temper-
ature rises so that the OFMD at the TFD level gains greater validity. To this end, we have
compared the QMD and OFMD at the higher density (1.5 p1), as displayed in Figs. 4 and
5. The results for the two formulations between 2 and 4 eV agree closely to within the sta-
tistical error bars for both D and 7. While comparison over a wider regime in temperature
and density as with DT [14] and iron [16] would provide additional confirmation, the close
correspondence in magnitude and behavior tends to corroborate the OFMD approximation
and its extension to higher densities and temperatures.

In Fig. 6, we plot the Stokes-Einstein expression Fsg[D,n] as a function of temperature,
using the diffusion coefficients and viscosities from the OFMD at 1.5p; and the QMD at
pr, and 1.5p,. Within the expected fitting error of ~ 20% for determining viscosity from
the simulations, the QMD and the OFMD results show relatively good agreement and are
bounded by the classical values of Csg from below and the Chisolm-Wallace liquid metal
value from above. The function Fsg[D,n| for the QMD at the lower density (py) evinces a
sharp decline at the lowest temperatures. The near linear rise of the diffusion coefficient with
temperature in this region basically cancels the temperature dependence of the denominator,
leaving the behavior of Fsr dominated by the viscosity and thus reflecting its sharp decline
at low temperature as shown in Fig. 5. As discussed above, this sharp bend in the viscosity
with temperature reflects a change from potential to kinetic dominated regimes. This steep
decline is exaggerated by the point at 900 K. If we disregard the value at 900 K near the
experimental melting point, then the QMD results between T"= 1100 and 40000 K for both
densities are close to a constant value of C'sp= 0.11 £ 0.01. Omitting the lowest temperature

seems reasonable since the melting temperature for Pu as predicted by QMD is not known,
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as too many atoms would be required to perform a moving interface [56] melting simulation
with a reasonable amount of computational resources. The OFMD results for the higher

density also remain almost constant with C'sg ~ 0.1.

C. Plutonium in the dense-plasma regime (above 50 eV)

The self-diffusion coefficient D and the shear viscosity n are shown in Figs. 7 and 8§,
respectively, for plutonium at temperatures between 50 eV and 5 keV and densities between
20 and 100 g/cm? or approximately solid density to five times compressed. Both transport
properties increase with temperature in this range. The diffusion coefficient decreases with
increasing density while the viscosity increases with increasing density.

The Stokes-Einstein relation of D and 7, given by Eq. (12), is shown in Fig. 9. The
quantity Fsg is only weakly dependent on temperature and density, with an average value
around 0.075. This value is larger than the stick value of 1/67 (=0.053) but close to that for
slip 1/47 (=0.080) for a Brownian fluid. It is smaller than found for plutonium in the liquid
or WDM regimes (see previous sections). We note that Fgg is much more nearly constant
as a function of density and temperature than found in our recent study [14] on the DT
mixture in the WDM regime.

The INFERNO/OCP model results are shown as dashed curves in Figs. 7, 8, and 9 for
comparison with the OFMD calculations. With Z calculated with INFERNO, I ranges from
26 to 71 for the temperatures and densities considered. At solid density the INFERNO/OCP
results are within about 40% of the OFMD results at the calculated temperatures, the
OFMD being the smaller for both diffusion and viscosity. In the higher density cases (3
and 5 times solid density), the agreement is similar to that at high temperatures; however,
the INFERNO/OCP results deviate from the OFMD results with a different slope at the
lower temperatures. The INFERNO/OCP values of Fsg, shown in Fig. 9 by the open data
points, are larger than given by the OFMD calculations but show the same tendencies with
temperature and density.

Some simplified models or limiting cases, such as the hard-sphere approximation, predict
power-law dependences on temperature and density. Though such formulas are certainly
oversimplified, we have attempted to fit our numerical data on viscosity 7 and self diffusion

D in the whole temperature and density range using similar forms but different exponents.
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The resulting least-squares fits are

Dg; = apT®(p/po)® cm?/sec (19)
with ap = 0.000239 £ 0.000022, bp = 0.548 £ 0.014, and cp = —0.383 = 0.023, and

nee = a, T (p/po)™ mPa sec (20)

with a, = 3.13 £ 0.26, b, = 0.360 £ 0.010, and ¢, = 0.780 = 0.034, where T is in eV and p
is in g/cm3. The fit of the viscosity is shown in Fig. 10. These simple formulas fit all the
calculated points to within ~ 30%, except for those at T=50 eV and p/py = 1. The fits
improve as T increases. For T" > 300 eV, the deviations of the fits from the data are less

than 10%. The temperature and density scaling of Fsp [Eq. (12)] predicted by the least-

T—0.092 0.064

square fits is nearly constant, weakly scaling as and p”*** respectively. Though the
deviations of the fits from the actual data are sometimes greater than the statistical errors,

the fits should be satisfactory for many purposes.

IVv. SUMMARY

We have calculated the self-diffusion coefficients and viscosities of plutonium from lig-
uid to dense plasmas states by employing two quantum mechanical molecular dynamics
approaches: (1) a finite-temperature density functional theory in the Kohn-Sham formu-
lation and generalized gradient approximation (QMD); and (2) an orbital-free method at
the Thomas-Fermi-Dirac level (OFMD). For reference, we also employed a one component
plasma (OCP) model with an effective charge determined from the average-atom program
INFERNO.

For the liquid state, we found the QMD viscosity was lower by about 40% than experiment
[4] and lower by by a factor of 4 to 7 than molecular dynamics simulations using a modified
embedded atom method (MEAM) [8]. Both the viscosity and diffusion coefficients exhibit
Arrhenius behaviors with the QMD activation energy for the viscosity agreeing well with
experiment but about 40% lower than the MEAM calculation. At intermediate temperatures
(1-5 V), the QMD and OFMD results for diffusion and viscosity agree to within ~ 20%.
The viscosity has a minimum at 7" =~ 0.4 eV, corresponding to the transition from a liquid

into the warm, dense matter regime. For dense plasmas conditions (7" = 50 eV to 5 keV,
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p = 1 — 5 times solid density), both the diffusion coefficient and viscosity increase with
increasing temperature. With increasing density, the diffusion coefficient decreases while
the shear viscosity 7 increases.

A Stokes-Einstein relation between the viscosity and diffusion coefficient holds reasonably
well for both the WDM and dense plasma regimes although with different constants: C'sg ~
0.13 and 0.075, respectively. In the dense plasma regime, the transport properties of the
modified OCP agree with the OFMD to within ~ 40% at solid density (~ 20 g/cm?) but
show greater departures at higher densities and lower temperatures. A simple analytic fit

of the calculated diffusion coefficient and viscosity is provided.
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TABLE I: QMD results for liquid plutonium (p = 17.4 g/cm?, scaled to correspond to experiment)
self-diffusion coefficients and viscosities. The error bars are statistical only. Numbers in brackets

represent powers of ten.

T (K) 7 (mPa s) D (cm?/s)
900 3.83+0.15 1.8[-5]
1100 2.91 4+ 0.12 2.1[-5]
1300 2.74 £ 0.11 2.8[-5]
1500 2.11 + 0.08 3.6[-5]
2001 1.24 £ 0.05 1.2[-4]
6847 1.37 £ 0.07 2.3[-4]

10212 1.75 +£0.09 2.8[-4]

12766 1.94 + 0.08 3.3[-4]

TABLE II: QMD results for plutonium self-diffusion coefficients and viscosities at p = 26.1 g/cm?.

The error bars are statistical only. Numbers in brackets represent powers of ten.

T (eV) n (mPa s) D (cm?/s)
0.50 3.6+0.2 9.5[-5]
1.00 43+0.3 1.6[-4]
1.50 48+0.3 2.0[-4]
2.00 5.5 4+ 0.2 2.6[-4]
2.34 5.5+0.3 3.1[-4]
3.00 5.8 + 0.2 3.5[-4]
3.50 6.2+ 0.3 4.0[-4]
4.00 6.7+0.3 4.3[-4]
4.50 6.5+0.5 4.9[-4]
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TABLE III: OFMD results for plutonium self-diffusion coefficients and viscosities at p = 26.1

g/cm3. The error bars are statistical only. Numbers in brackets represent powers of ten.

T (eV) n (mPa s) D (cm?/s)
2.00 7.34+0.3 2.0[-4]
3.00 6.3+0.3 3.0[-4]
4.00 6.0 £ 0.2 3.9[-4]
5.00 6.3+ 0.3 4.3[-4]
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TABLE IV: Self-diffusion coefficients D and viscosities 7, determined by OFMD, and the values of

7, determined by Inferno, used in the OFMD calculations. p; = 20 g/cm?®.

P/, T (eV) n (mPa s) D (cm?/s) Z
1 20 8.3 0.00293 12.24
1 100 12.1 0.00389 17.59
1 200 15.5 0.00518 24.51
1 300 23.3 0.00594 30.66
1 500 29.1 0.00735 40.01
1 600 30.6 0.00786 43.76
1 650 33.5 0.00818 45.19
1 700 36.6 0.00851 47.04
1 750 34.9 0.00864 48.54
1 800 35.8 0.00886 50.14
1 1000 42.0 0.00993 55.03
3 20 22.8 0.00140 17.04
3 100 32.1 0.00215 21.16
3 200 45.7 0.00303 25.39
3 300 54.1 0.00371 28.84
3 500 68.8 0.00436 38.02
3 750 87.3 0.00558 46.00
3 1000 95.3 0.00640 51.49
3 5000 163.9 0.01710 83.60
4 5000 190.5 0.01490 83.07
5) 200 71.9 0.00236 28.24
5 300 81.6 0.00291 30.75
5 500 101.6 0.00372 37.48
5) 750 124.7 0.00448 45.35
5) 1000 149.3 0.00513 50.87
5 5000 234.3 0.01350 82.30
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FIG. 1: (Color online) Effective charge Z for plutonium determined by the code INFERNO [18]. Z
is shown as a function of temperature for densities 20 (p;), 60, and 100 g/cm?, denoted by circles,

squares, and diamonds, respectively.
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FIG. 2: (Color online) Shear viscosity of liquid plutonium as a function of inverse temperature:
experimental results (diamonds, no error bars were given) [4]; present QMD calculations (circles,
with statistical error bars); MEAM calculations [8] by equilibrium molecular dynamics (EMD, solid
squares) and by nonequilibrium molecular dynamics (NEMD, open squares). The straight lines

are exponential (Arrhenius) fits to the data points.
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FIG. 3: (Color online) Diffusion coefficient of liquid plutonium as a function of inverse temperature:
present QMD calculations (circles) and MEAM calculations with equilibrium molecular dynamics

(squares) [8]. The straight lines are exponential (Arrhenius) fits to the data points.
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FIG. 4: (Color online) Diffusion coefficients of plutonium as a function of temperature in the
WDM regime, calculated by the QMD method for densities of 17.4 g/cm? (py; solid circles) and
26.1 g/cm? (1.5 pr; open circles) and by the OFMD method at density 26.1 g/cm? (1.5p1; open

squares). The straight line segments between data points are provided to guide the eye only.
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FIG. 5: (Color online) Viscosities of plutonium as a function of temperature in the WDM regime,
calculated by the QMD method for densities of 17.4 g/cm3 (p; solid circles) and 26.1 g/cm? (1.5
pL; open circles) and by the OFMD method at density 26.1 g/cm?® (1.5 pr; open squares). The
straight line segments between data points are provided to guide the eye only and the error bars

are statistical only.

27



0.20 I — I I —

0.15

1/3

Dn/kgTn:

0.10

0.05 stick =

0_00\\\|\ i I R |
T (eV)

FIG. 6: (Color online) Stokes-Einstein relation Fsr as a function of temperature for the diffusion
coefficients and viscosities shown in Figs. 4 and 5. The error bars are statistical only, and the
straight line segments between data points are provided to guide the eye only. The flat lines show
the constant values of Csg for stick (solid) and slip (long dashed) boundary conditions as well as
the empirical result of Chisolm and Wallace [46] (short dashed). The designations of the curves

are the same as in Figs. 4 and 5.

28



0.030
0.025

0.020

0.015

0.010

0.005 -

D (cm?/s)

OCP is dashed

0.001 LA 11 |2 Lol
10 10°
T (eV)

FIG. 7: (Color online) Self-diffusion coefficients of dense-plasma plutonium, calculated by OFMD,

3

as a function of temperature for densities 20 (p1), 60, and 100 g/cm®. The dashed lines connect

points calculated by the INFERNO/OCP model.
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FIG. 8: (Color online) Shear viscosities of dense-plasma plutonium, calculated by OFMD, as a
function of temperature for densities 20 (p1), 60, and 100 g/cm3. The dashed lines connect points

calculated by the INFERNO/OCP model.
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FIG. 9: (Color online) Stokes-Einstein relation Fsp as a function of temperature for the diffusion
coefficients and viscosities shown in Figs. 7 and 8. The closed symbols are the results of the
OFMD calculations and the open symbols are the results of the INFERNO/OCP model. The flat
lines show the constant values of Stokes-Einstein for stick (solid) and slip (long dashed) boundary

conditions as well as the empirical result of Chisolm and Wallace [46] (short dashed).
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