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We asymptotically calculate the spatially averaged mean first passage time (MFPT) of a diffusing
channel protein in a finite membrane patch containing a small absorbing anchor site. Different two-
dimensional membrane geometries are considered including a circular, a square-shaped, a rectangular
and a cylindrical domain. The asymptotic expressions are found to be in excellent agreement with
results from Monte-Carlo simulations if the radius of the diffusing protein is sufficiently small. For
a larger radius a simple correction to the asymptotic expressions is proposed. We show that the
average MFPT for a circle and a square-shaped domain of the same area are approximately equal as
long as the anchor site is close to the center of the domain. We also discuss how the average MFPT
depends on the aspect ratio of a rectangular and a cylindrical domain. Among such domains with
a fixed area a minimal MFPT is obtained for the square-shaped domain.
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I. INTRODUCTION

Cytosolic calcium ions (Ca2+) play a crucial role in the
regulation of various physiological phenomena, such as
exocytosis, enzyme control, gene regulation, cell growth
and proliferation, and apoptosis [1]. A common source
of cytosolic Ca2+ in many cells is the release of Ca2+

through the inositol 1,4,5-trisphosphate receptor (IP3R)
from intracellular stores, e.g. the endoplasmic reticulum
(ER), in response to the second messenger inositol 1,4,5-
trisphosphate (IP3) [2]. Thus, the spatial distribution of
IP3Rs can be important for the local delivery of Ca2+ to
specific sites within the cell to regulate Ca2+-dependent
subcellular functions [3, 4].

In many cell types IP3R is diffusible within the ER
membrane, and it can dynamically migrate upon cell
stimulation. For example, long term agonist stimulation
in the smooth muscle cell line A7r5 leads to a global re-
distribution of type-1 IP3Rs [5]. In addition to the global
movements of IP3Rs, it has been observed that local clus-
tering of IP3Rs can occur, for example, in the basophilic
cell line RBL-2H3 where IP3R clustering can be rapidly
triggered by activation of the Ca2+ signalling cascade [6],
and IP3R clustering is not dependent on changes in the
structure of the ER [7]. Also, the maturation of oocytes
before fertilization leads to IP3R clustering [8].

The biological consequences of IP3R clustering are
not clear yet. Clustered IP3Rs show a strong stochas-
tic open/close dynamics causing a noisy Ca2+ signal.
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Within a lattice model it has been shown that channel
clusters can generate a stochastic backfiring pattern [9].
Other simulations suggest that the clustering distribu-
tion of IP3Rs may improve the periodicity of local Ca2+

signals [10] and enhance the sensitivity of global Ca2+

signals responding to a weak IP3 stimulus [11]. Based on
global spiking data of four cell types, it was suggested
that Ca2+ spikes are caused by random wave nucleation
events with a regular regime arising from the array en-
hanced coherence resonance effect of IP3R clusters [12].

The dynamical regulation of IP3R clustering has been
investigated only recently. First, it was suggested that
Ca2+ triggered the clustering of IP3Rs [6]. Theoretical
analysis showed that a periodic (Ca2+) signal could lead
to an oscillatory or to a quasi-stationary cluster size dis-
tribution [13]. Later, it was shown that a conformational
change in the IP3R, evoked by IP3, was sufficient to in-
duce clustering [14]. Further experiments indicated that
the depletion of the Ca2+ store may facilitate the clus-
tering of IP3Rs [15]. More recently, with patch-clamp
recordings from the outer nuclear envelope of DT40 cells
expressing rat IP3R1 or IP3R3, it was shown that IP3

causes IP3R rapidly and reversibly to aggregate into
small clusters of about four IP3Rs [16]. However, an-
other study indicated that puff sites represent preestab-
lished stable clusters of IP3Rs and that functional IP3Rs
are not readily diffusible within the ER membrane in SH-
SY5Y, Hela and astrocyte cells [17].

These experiments clearly demonstrate the need to re-
liably estimate the time scale on which clustering occurs.
In general, one can expect an effect of IP3R clustering on
the Ca2+ dynamics when the time scale for clustering and
the time scale for the open/closing dynamics of individ-
ual IP3R channels are comparable. To estimate the time
scale of IP3R clustering we assume that IP3Rs undergo
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Brownian motion on an ER membrane patch containing
an anchor site. This could be, for example, a fixed cy-
toskeletal structure which traps and fixes the IP3R chan-
nels upon encounter. The relevant time scale for cluster-
ing is given by the mean first passage time (MFPT) [18],
i.e. the average time it takes an IP3R channel to reach
a given target site on the membrane for the first time.
In the case that clustering is a purely diffusion-limited
process the MFPT can be calculated in the framework of
the Smoluchowski theory [19].

The MFPT arises in many applications, but explicit
results were mostly restricted to one-dimensional ge-
ometries [20–23]. Recently, first results were given for
the MFPT in more complex geometries including mi-
crodomains [24], two- and three dimensional domains
containing small exit sites [25–28, 30], as well as for reg-
ular lattices [31] and complex networks [32, 33]. Specif-
ically, in a bounded two-dimensional domain containing
a circular trapping region the MFPT can be expressed in
terms of the Neumann function GN as [28, 29]

Tx0
(x) = −|Ω|

D
GN (x; x0) (1)

where x and x0 denote the starting point for the ran-
dom walk inside Ω and the center of the trapping region,
respectively. |Ω| and D correspond to the area of the
domain and the diffusion coefficient, respectively.

In two dimensions the Neumann function has the gen-
eral form

GN (x; x0) = − 1

2π
ln |x − x0| + RN (x; x0) (2)

where RN represents the regular part of GN at x0 which
is uniquely determined by the boundary value problem

∆GN =
1

|Ω| − δ(x − x0), x ∈ Ω

∂nGN = 0, x ∈ ∂Ω (3)
∫

Ω

dxGN = 0 .

Here, ∆ denotes the Laplace operator in two dimensions
and ∂n denotes the derivative in the direction of the out-
ward normal of the respective domain. The spatially
averaged MFPT (T̄ ) of Eq. 1 is then given in terms of
RN (x; x0) as

T̄x0
=

|Ω|
D

(

1

2π
ln

Lc

ε
+ lim

x→x0

RN (x; x0)

)

(4)

where Lc denotes a characteristic length scale of the do-
main Ω and ε is the effective radius of the trapping
region. It accounts for the fact that the diffusing ion
channel (radius rch) is immediately absorbed upon the
first contact with the anchor site (radius ran). Thus
ε = rch + ran. Note that in the continuum description
the diffusing channel is treated as a point particle.

Often, the leading order term in Eq. 4 is sufficient to
estimate the order of magnitude for the average MFPT,

and it only requires knowledge of three parameters: The
total surface area |Ω|, the diffusion coefficient D and the
effective radius of the trapping region relative to the char-
acteristic length scale of the domain ε/Lc. Thus the lead-
ing order term is insensitive to geometrical details of the
underlying domain. If more than one length scale is re-
quired to characterize the shape of the domain, such as
the aspect ratio of a rectangular domain, then the O(1)
term, involving the regular part of the Neumann func-
tion, can become important especially in highly asym-
metric domains [26].

Strictly speaking, the expressions in Eqs. 1, 3 and 4
are valid only in the asymptotic limit ε ≪ Lc, but com-
parison with numerical solutions of the respective par-
tial differential equations gave excellent agreement up to
values of ε/Lc = 0.2 [26, 28]. In the present work, we
compare the asymptotic expression for the spatially aver-
aged MFPT (Eq. 4) with direct Monte Carlo simulations
of a Brownian particle (IP3R channel) in different two-
dimensional domains. We study in detail its dependence
on the size of IP3R channel, the size and the position of
the anchor site, the size of the ER membrane patch, and
different membrane shapes.

We find excellent agreement between the asymptotic
expression in Eq. 4 and stochastic simulations if the O(1)
term is taken into account and the radius of the diffusing
channel (rch) is sufficiently small. For a larger channel
radius a simple correction to Eq. 4 is proposed which
is in very good agreement with the results of stochastic
simulations. We also investigate how the average MFPT
depends on the aspect ratio of a rectangular and a cylin-
drical domain. Among such domains with a fixed area a
minimal MFPT is obtained for a square-shaped domain.

II. SIMULATION METHOD

We consider Brownian diffusion of an IP3R channel in
different two-dimensional ER membrane geometries in-
cluding a circular, a square-shaped, a rectangular and a
cylindrical domain. For the first three domains we use re-
flecting boundary conditions while the cylindrical domain
is modelled as a rectangular domain with periodic bound-
ary conditions along the y-axis and reflecting boundary
conditions along the x-axis.

The IP3R is represented as a small particle with a ra-
dius of rch that diffuses within the ER membrane with
diffusion coefficient D. Based on electron microscopy and
single particle analysis of purified IP3R, the radius of a
channel was estimated in the range 9 nm to 18 nm [34].
Using fluorescence recovery after photobleaching it was
suggested that IP3Rs diffusion within ER membranes is
with a diffusion coefficient D of 0.03-0.04 µm2/s [35] or
0.45 µm2/s [36].

In the simulation, the IP3R channel undergoes a Brow-
nian random walk in both x and y directions. Their po-
sitions are updated at time steps ∆t by adding random
numbers drawn from a Gaussian distribution with zero
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mean [17]. The width (standard deviation) of the Gaus-

sian is
√

2D∆t. In the simulation, we chose the time step
∆t = 5 × 10−5 s. Different time steps have been tested
giving the same results.

We also consider an anchor site or absorbing region
with radius ran in the patch representing a fixed cy-
toskeletal structure to trap the channels. The fixed an-
chor site is designated as IP3R channel trap location.
Here we assume ran is of order of 10 nm [17]. An IP3R
channel moving within a distance of ε = rch+ran will be-
come trapped at the anchor site. To remain compatible
with the assumptions for the derivation leading to Eq. 4,
we assume that trapped channels will neither affect the
trap diameter nor its location. When the channel reaches
the patch boundary within a distance which is less than
rch, reflecting boundary conditions will be used for the
mobile IP3R.

In the simulation, the IP3R channel is located in the
patch randomly at the beginning. Then the channel un-
dergoes a Gaussian random walk with diffusion coefficient
D. The random diffusing time of the channel before col-
liding with the anchor site is calculated. A spatially av-
eraged MFPT is defined as the average of the diffusion
times obtained from 500,000 trials starting at arbitrary
positions in the patch.

III. RESULTS

A. IP3R diffusion in a circular patch

We consider a diffusing particle in a circular domain
of radius R containing a small absorbing circular region
of effective radius ε at the center. The diffusion coef-
ficient of the particle is D. Then the MFPT required
for the particle to hit the absorbing region at the center
when starting at an arbitrary position inside the annulus
ε < r < R is determined by the simple boundary value
problem

∆T = − 1

D
, ε < r < R

T = 0, r = ε (5)

∂rT = 0, r = R

Due to the spherical symmetry the problem can be solved
analytically. We include it here for didactical purpose
since it will serve as a benchmark for more complicated
geometries considered later. The solution of Eqs. 5 gives
the MFPT as

T (r) =
ε2 − r2

4D
+

R2

2D
ln

r

ε
. (6)

Then the spatially averaged MFPT is computed as

T̄circ =
1

π (R2 − ε2)

∫ 2π

0

dϕ

∫ R

ε

T (r)rdr

=
R2

2D
ln

R

ε
− 3

8

R2

D
+ O

(

ε2

R2
ln

R

ε

)

. (7)

In typical applications the contact radius ε is in the
nanometer range whereas diffusion occurs in membrane
patches with a typical length scale in the micrometer
range. In that case terms of O((ε2/R2) ln(R/ε)) and
smaller can be neglected in Eq. 7 and the spatially aver-
aged MFPT is well approximated by

T̄circ ≈
R2

2D
ln

R

ε
− 3

8

R2

D
. (8)

To compare this expression with the general form of
the average MFPT shown in Eq. 4 we rewrite Eq. 8 as

T̄circ ≈
πR2

D

(

1

2π
ln

R

ε
− 3

8π

)

which shows that the regular part of the Neumann func-
tion for a circular domain with a singularity at the origin
is given by RN,circ(0) = −3/8π [37].

Now with the Brownian random walk simulation, we
consider a diffusing IP3R channel in a circular domain of
radius Rcirc with a reflecting boundary and containing
a small absorbing circular region of radius ran at the
center. The radius of the channel is rch and its diffusion
coefficient is D.

First we discuss the first passage time (FPT) for the
channel starting at a given distance r. As shown in Fig-
ure 1A the FPTs exhibit an exponential distribution with
a time constant of T = 41.7s at r = 1µm corresponding
to the MFPT. For the exponential distribution, the stan-
dard deviation of the FPTs is equal to its mean and Eq. 6
yields T = 42.1s with ε = ran + rch and R = Rcirc. Fig-
ure 1B shows excellent agreement of the MFPT between
the stochastic simulation and Eq. 6 as function of the
distance r.

In the following, we focus on the discussion of the spa-
cially averaged MFPT for a channel starting at arbitrary
positions in the patch. As shown in Figure 1C the FPT
still exhibits an exponential distribution with a time con-
stant of T̄ = 40.6s corresponding to the spatially aver-
aged MFPT. For the example given in Figure 1C, using
only the leading order term in Eq. 8 yields a spatially
averaged MFPT of T̄ = 49.1s, while taking into account
the contribution from the second order term in Eq. 8
significantly improves the result to 40.7s.

Figure 2 shows the results of stochastic simulations
for the dependence of the spatially averaged MFPT on
several parameters such as the diffusion coefficient D
(Fig. 2A), the patch radius Rcirc (Fig. 2B), the an-
chor radius ran (Fig. 2C), and the channel radius rch

(Fig. 2D), together with the asymptotic result in Eq. 8
with R = Rcirc. For comparison we have also plot-
ted the leading order term alone (dashed line) in Fig-
ure 2. Figs. 2A-C clearly demonstrate the importance
of the O(1) term in Eq. 4 (∼ RN ) to achieve full agree-
ment between the results from stochastic simulations and
the two-term approximation in Eq. 8 even in the case
ε/R = (rch + ran)/R ≪ 1.

Figure 2D shows marked deviations between the results
of the stochastic simulation and the asymptotic result
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FIG. 1: (Color online) The FPT for a Brownian IP3R channel
in a circular patch with an anchor site at its center. (A)
Exponential distribution of the FPT for a channel starting at
a given distance r = 1µm. (B) The MFPT as a function of
the distance r. Black squares are stochastic simulation data;
Red solid line denotes the theoretical result in Eq. 6 with R =
Rcirc. (C) Exponential distribution of the FPT for a channel
starting at arbitrary positions in the patch. Parameters are
ran = 10nm, rch = 9nm, Rcirc = 1.5µm and D = 0.1µm2/s.
The distribution can be fitted by a straight line with a slope
of 40.6s.

(red curve) in Eq. 8 with R = Rcirc as the radius (rch) of
the diffusing channel protein increases. However, when
the true radius of the domain R is replaced by an effective
radius R = Rcirc−rch, we again find excellent agreement
(green curve) between the results of the stochastic simu-
lation and the asymptotic result in Eq. 8. This suggests
the following interpretation: In contrast to the deriva-
tion of the asymptotic result, the diffusing channel in the
stochastic simulations is not treated as a point particle.
Due to the reflecting boundary condition, it only samples
an area with an effective radius of Rcirc−rch since it never
penetrates the boundary region (Rcirc − rch, Rcirc]. As
Figure 2 D shows this finite size effect becomes noticable
already for comparably small values of rch/Rcirc ≈ 0.01.

B. IP3R diffusion in a square patch

Now we consider a particle diffusing in a square domain
Qε

L with a circular trapping region at the center. Here
Qε

L = QL \ Cε where

QL = {(x, y) : −L ≤ (x, y) ≤ L}

is a square-shaped domain of length 2L and

Cε = {(x, y) : x2 + y2 ≤ ε2}

denotes the circular trapping domain of effective radius
ε < L which is centered at the origin.

FIG. 2: (Color online) Average MFPT for a diffusing IP3R
channel in a circular patch with an anchor site of radius ran

at its center. (A) 1/T̄ as a function of D at rch = 9 nm,
ran = 10 nm and Rcirc = 1.5 µm; (B) T̄ as a function of
Rcirc at rch = 9 nm, ran = 10 nm and D = 0.1 µm2/s; (C)
T̄ as a function of ran at Rcirc = 1.5 µm, rch = 9 nm and
D = 0.1 µm2/s; (D) T̄ as a function of rch at Rcirc = 1.5
µm, ran = 10 nm and D = 0.1 µm2/s. Black symbols are
stochastic simulation data; Red solid lines denote theoretical
results in Eq. 8 with R = Rcirc; Blue dashed lines denote the
leading order term of Eq. 8. The green dash-dotted line in D
denotes the theoretical result in Eq. 8 with R = Rcirc − rch.

Then the MFPT is determined by

∆T = − 1

D
, (x, y) ∈ Qε

L

T = 0, (x, y) ∈ ∂Cε

∂nT = 0, (x, y) ∈ ∂QL.

Due to the different symmetry of the square and the
absorbing circular region this problem can not be solved
analytically. However, we know already that in the limit
ε ≪ L the asymptotic solution has the form (cf. Eq. 4)

T (x, y) = −4L2

D
GN (x, y) + T̄sq

where GN is the Neumann function for the unit square
and the average MFPT is given by

T̄sq =
4L2

D

(

1

2π
ln

L

ε
+

1

12
− 1

2π
lnπ

)

. (9)

Here we have used the known result for the regular part
of the Neumann function for the unit square [26]

lim
(x,y)→(0,0)

RN,sq(x, y) ≈ 1

12
− 1

2π
lnπ.

Figure 3 shows the results of Monte Carlo simulations
for the average MFPT of an IP3R channel diffusing in a
square patch of length Lsq with an anchor site in the cen-
ter and reflecting boundary condition. We investigate the
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FIG. 3: (Color online) Spatially averaged MFPT for a diffus-
ing IP3R channel in a square domain and a square-shaped
cylinder domain. Square symbols are simulation data for
square domain; Star symbols are simulation data for square-
shaped cylinder with Hcyl = πRC = Lsq . (A) 1/T̄ as a func-
tion of D at rch = 9 nm, ran = 10 nm, and Lsq = 1.5 µm; (B)
T̄ as a function of Lsq (or Hcyl) at rch = 9 nm, ran = 10 nm,
and D = 0.1 µm2/s; (C) T̄ as a function of ran at rch = 9 nm,
D = 0.1 µm2/s, and Lsq = 1.5 µm and (D) T̄ as a function
of rch at ran = 10 nm, D = 0.1 µm2/s, and Lsq = 1.5 µm.
Red solid lines correspond to theoretical results in Eq. 9 with
L = Lsq ; Blue dashed lines denote the leading order term of
Eq. 9. The green dash-dotted line in D corresponds to the
theoretical result in Eq. 9 with L = Lsq − rch.

dependence of the average MFPT on several parameters
such as the diffusion coefficient D (Fig. 3A), the patch
half-size Lsq (Fig. 3B), the anchor radius ran (Fig. 3C),
and the channel radius rch (Fig. 3D), respectively. Sim-
ilar as for the circular domain, Figs. 3A-C show excel-
lent agreement between numerical simulations and the
asymptotic result for the average MFPT in Eq. 9 (with
L = Lsq and ε = ran + rch) provided that rch/L < 0.01.
However, Figure 3D also indicates that, to obtain quan-
titative agreement for increasing values of rch, we have
to replace the true length of the square domain L = Lsq

by the effective length L = Lsq − rch in Eq. 9.
Next we compare the average MFPT for a circular and

a square patch having the same total area. For this pur-
pose we set L = R

√
π/2 in Eq. 9 and obtain

Tsq =
πR2

D

(

1

2π
ln

√
πR

2ε
+

1

12
− 1

2π
lnπ

)

=
πR2

D

(

1

2π
ln

R

ε
− 3

8π

(

2

3
ln (4π) − 2π

9

))

≃ Tcirc

since (2/3) ln(4π)−2π/9 ≈ 1. Hence, with respect to the
O(1) expansions in Eqs. 8 and 9 the average MFPT for
a circular and a square domains of the same total area
are basically indistinguishable. We have confirmed this
result by stochastic simulations of the average MFPT for
varying domain sizes as shown in Fig. 4.
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FIG. 4: (Color online) Dependence of the spatially averaged
MFPT on the domain area. Red circle symbols are for circu-
lar domain and black square symbols are for square domain.
Parameters are: rch = 9nm, ran = 10nm and D = 0.1µm2/s.

C. IP3R diffusion in a cylindrical patch

Biologically, the ER is more like a complex tubular
network of small interconnected cylindrical membrane
patches. Therefore, we consider now diffusion of IP3R
channels on a cylindrical domain of height 2H and radius
RC . However, in the simulations we neglect the curva-
ture of the membrane since the size of an IP3R channel
is much smaller than the length and the circumference
of the cylinder. Consequently, the membrane is assumed
to be locally flat which can be modeled as a rectangular
domain with periodic boundary conditions at x = ±πRC

and reflecting boundary conditions at the bottom and at
the top boundaries of the cylinder at y = ±H .

To obtain an expression for the average MFPT for a
cylindrical domain we only have to replace the regular
part of the Neumann function for the square in Eq. 9
with that for a cylindrical domain (height 2H and cir-
cumference 2πRC). In Ref. [26] we have derived two (al-
ternative) expressions for this quantity given by

RN,cyl(0, 0) =
1

2π

(

H

6RC
− ln

H

RC

)

− 1

π

∞
∑

n=1

ln
(

1 − e
−2n H

RC

)

(10)

or

RN,cyl(0, 0) =
1

2π

(

π2RC

6H
− lnπ

)

− 1

π

∞
∑

n=1

ln
(

1 − e−2nπ2 RC

H

)

. (11)

As we have shown in Ref. [26] both expressions represent
the same function. However, the infinite sums possess
a different speed of convergence. While the infinite sum
in Eq. 10 rapidly converges for H ≫ RC the infinite
sum in Eq. 11 converges rapidly in the opposite limit.
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Specifically, for H ≫ RC , the infinite sum in Eq. 10 can
be neglected and the average MFPT for the cylindrical
domain can be approximated as

T̄cyl ≈
4πRCH

2πD

(

ln
H

ε
+

H

6RC
− ln

H

RC

)

(12)

Note that this expression reduces to Eq. 9 if H/RC = π
while keeping H = L fixed. Hence, the average MFPT
for a square-shaped domain and that of an equally sized
cylindrical domain should be equal. This was confirmed
by the stochastic simulations (star symbols) shown in
Fig. 3 where we used Hcyl = πRC = Lsq.

Next we discuss how the average MFPT depends on
the aspect ratio x = H/πRC of the cylindrical domain.
Therefore, the total surface area Acyl is kept constant.
Note that for a fixed area and a given aspect ratio the
height H and radius RC are given by

H =

√

Acylx

2
and RC =

1

2π

√

Acyl

x
,

which allows to rewrite the average MFPT as

T̄cyl =
Acyl

2πD

(

ln

√

Acylx

2ε
+

πx

6
− ln(πx)

)

−Acyl

πD

∞
∑

n=1

ln
(

1 − e−2πnx
)

(13)

using Eq. 10 or

T̄cyl =
Acyl

2πD

(

ln

√

Acylx

2ε
+

π

6x
− ln(π)

)

−Acyl

πD

∞
∑

n=1

ln
(

1 − e−2πn/x
)

(14)

using Eq. 11. Note that these expressions for the average
MFPT are symmetric under the inversion x → 1/x. In-
deed, changing x to 1/x in Eq. 13 yields the expression
in Eq. 14 and vice versa. For a quantitative compari-
son of these expressions with the results from numerical
simulations we used a different number of terms (nmax)
from the infinite sum in Eq. 13 to correctly reproduce the
behavior of the average MFPT for x ≪ 1.

As shown in Fig. 5 a minimal average MFPT is ob-
tained for x = 1, i.e. for H = πRC corresponding to a
square-shaped cylindrical domain. In general, we see a
moderate dependence of the average MFPT on the aspect
ratio. For example, increasing (or decreasing) the aspect
ratio by a factor of 3 increases the average MFPT by ap-
proximately 13%. The asymptotic expression in Eq. 13
nicely fits the results of Monte-Carlo simulations given
by the black symbols.

Since the Neumann function for a rectangular domain
with reflecting walls and that for a cylindrical domain is
the same as long as the singularity is located at the origin
the average MFPT for both domains should also be equal.

51
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63
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 Rectangle Simulation
 Eq.13 with nmax=5
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FIG. 5: (Color online) Dependence of the average MFPT on
the aspect ratio x = H/πRC of a cylindrical domain (or on
the ratio of x =width/length for a rectangular domain) with
an anchor site (ran = 10nm) at the center. The area of the
respective domain is kept fixed at A = 9µm2. Green star
symbols represent simulation data for the cylindrical domain,
black square symbols represent simulation data for the rect-
angular domain. The red curve corresponds to the theoretical
result (Eq. 13) with nmax = 5, D = 0.1µm2/s and ε = 19 nm.

To confirm this we plot in Fig. 5 the dependence of the
average MFPT on the ratio between the width and the
length of a rectangular domain with reflecting boundary
conditions. Similarly as for the cylindrical domain, a
minimal average MFPT is obtained when the aspect ratio
equals one, i.e. for a square-shaped domain.

D. The case of an off-center anchor site

In the cases investigated so far the anchor site was
always located at the center of the domain. Now we con-
sider the situation when the anchor site is shifted away
from the center by a distance d.

In principle, all one has to know is the regular part
of the Neumann function for the respective domain, but
with the singular point x0 (cf. Eq. 3) shifted off the cen-
ter. However, already for the case of a rectangular do-
main the explicit expression for the Neumann function
with an off-center singularity is very clumpsy [38]. There-
fore, to illustrate the general procedure we consider only
the case of a circular domain with an off-center absorbing
region. In that case the Neumann function (for the unit
disk) has the explicit representation [37]

GN (x, x0) =
1

2π

(

− ln |x − x0| − ln

∣

∣

∣

∣

x |x0| −
x0

|x0|

∣

∣

∣

∣

)

+
1

2π

[

1

2

(

|x|2 + |x0|2
)

− 3

4

]

.

Here, x denotes the normalized distance by R. The reg-
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ular part of GN is defined as (cf. Eq. 2)

RN (x, x0)

= GN (x, x0) +
1

2π
ln |x − x0|

=
1

2π

[

− ln

∣

∣

∣

∣

x |x0| −
x0

|x0|

∣

∣

∣

∣

+
1

2

(

|x|2 + |x0|2
)

− 3

4

]

.

Hence, the average MFPT for an anchor site at an
arbitrary point inside a circular domain becomes

T̄circ(x0)

=
πR2

D

(

1

2π
ln

R

ε
+ lim

x→x0

RN (x, x0)

)

=
R2

2D

(

ln
R

ε
−
(

3

4
+ ln

∣

∣

∣

∣

x0 |x0| −
x0

|x0|

∣

∣

∣

∣

− |x0|2
))

.

Without loss of generality we assume that anchor site
is shifted along the x-axis, i.e. x0 = (a, 0) = (d/R, 0).
Then the expression for the average MFPT simplifies to

T̄circ(a) =
R2

2D

(

ln
R

ε
− 3

4
−
(

ln
∣

∣a2 − 1
∣

∣− a2
)

)

(15)

which reduces to Eq. 8 in the limit a → 0.
The results of the stochastic simulations in Figure 6

show very good agreement with Eq. 15. For comparison
we have also performed simulations in a square-shaped
domain with reflecting boundary conditions and in a do-
main with cylindrical topology where Lcyl = πRC , all
having the same area. They indicate that the average
MFPT becomes sensible for the shape of the domain as
the absorbing anchor site is shifted towards the domain
boundary. Specifically, marked deviations between the
average MFPT for the circular and the square-shaped
domain occur when d/Lsq > 0.6.

IV. DISCUSSION AND CONCLUSIONS

In this paper we combine asymptotic analytical meth-
ods with Monte Carlo simulations to discuss the Brown-
ian movement of calcium ion channels (IP3Rs) on a mem-
brane patch of the endoplasmic reticulum (ER) contain-
ing a small absorbing anchor site to trap the channel.
We find excellent agreement between the asymptotic ex-
pressions and stochastic simulations if the O(1) in Eq. 4,
coming from the regular part RN of an associated Neu-
mann function, is taken into account and the radius of
the diffusing channel (rch) is sufficiently small.

As the channel radius increases one has to take into ac-
count that the diffusing channel only samples an effective
area when reflecting boundary conditions are applied.
Based on this observation we suggest a simple correc-
tion to the asymptotic expression for the average MFPT
when the channel radius increases. Specifically, at large
channel radius, the characteristic length of the domain
Lc should be replaced by the effective length Lc − rch in

0.0 0.3 0.6 0.9 1.2 1.5
50

60

70

80
 Circle
 Square
 Cylinder
 Eq.15

 

  

 T 
(s

)

d ( m)

FIG. 6: (Color online) Dependence of the average MFPT on
the distance d of the anchor site from the patch center for dif-
ferent domain shapes. Red circles represent simulation data
for the circle patch with R = 1.69 µm; black squares rep-
resent simulation data for the square patch (all boundaries
reflecting) with Lsq = 1.5 µm; green stars represent simula-
tion data for the cylindrical patch with Lcyl = 1.5µm = πRC .
Here rch = 9 nm, ran = 10 nm and D = 0.1 µm2/s.

Eq. 4 keeping the functional form of the expression for
the average MFPT the same.

Both asymptotic results and Monte Carlo simulations
show that the average MFPT for a circular and a square-
shaped domain of the same total area are indistinguish-
able if the anchor site remains within half a characteristic
length scale from the domain center (Fig. 6). This sug-
gests that in symmetric domains, which are characterized
by only one length scale, the average MFPT is insensi-
tive to the particular shape of the domain boundary if the
trapping site is sufficiently close to the domain center.

However, when the domain is asymmetric, as in the
case of a rectangular or a cylindrical domain, the average
MFPT depends on the aspect ratio between the charac-
teristic length scales of the respective domain. As a re-
sult, one can observe a difference in the average MFPT,
compared to a square-shaped domain of the same area,
even when the anchor site is located at the origin. Chang-
ing the aspect ratio can only increase the average MFPT
compared to a square-shaped domain of the same area
for which the average MFPT assumes a minimum.

In the present study we focused on the spatially aver-
aged MFPT of a small diffusing channel protein towards
a small absorbing anchor site in different two-dimensional
geometries which was motivated by the observed cluser-
ing of IP3R calcium channels diffusing within a finite ER
membrane patch. However, we would like to mention
that our results may also be useful to estimate the av-
erage MFPT of channel proteins or receptor molecules
on other membrane structures or quasi two-dimensional
cellular organelles. The inverse of the average MFPT
can be used as an estimate for the diffusion-limited rate
constant to describe the association between a diffusing
channel protein and a preestablished static trapping site
such as an IP3R cluster.
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