This is the accepted manuscript made available via CHORUS. The article has been published as:

Particle-scale structure in frozen colloidal suspensions from small-angle x-ray scattering

Melissa Spannuth, S. G. J. Mochrie, S. S. L. Peppin, and J. S. Wettlaufer Phys. Rev. E 83, 021402 - Published 28 February 2011

DOI: 10.1103/PhysRevE.83.021402

Particle-scale structure in frozen colloidal suspensions from small angle x-ray scattering

Melissa Spannuth*
Department of Geology and Geophysics, Yale University, New Haven, CT 06520, USA

S. G. J. Mochrie

Department of Physics, Yale University, New Haven, CT 06520, USA
S. S. L. Peppin

OCCAM, Mathematical Institute, University of Oxford, St. Giles Road, Oxford OX1 3LB, UK
J. S. Wettlaufer

Department of Geology and Geophysics, Yale University, New Haven, CT 06520, USA

Department of Physics, Yale University, New Haven, CT 06520, USA and Program in Applied Mathematics, Yale University, New Haven, CT 06520, USA

Abstract

During directional solidification of the solvent in a colloidal suspension, the colloidal particles segregate from the growing solid, forming high-particle-density regions with structure on a hierarchy of length scales ranging from that of the particle-scale packing to the large-scale spacing between these regions. Previous work has mostly concentrated on the medium- to large-length scale structure, as it is the most accessible and thought to be more technologically relevant. However, the packing of the colloids at the particle-scale is an important component not only in theoretical descriptions of the segregation process, but also to the utility of freeze-cast materials for new applications. Here we present the results of experiments in which we investigated this structure across a wide range of length scales using a combination of small angle x-ray scattering and direct optical imaging. As expected, during freezing the particles were concentrated into regions between ice dendrites forming a microscopic pattern of high- and low-particle-density regions. x-ray scattering indicates that the particles in the high density regions were so closely packed as to be touching. However, the arrangement of the particles does not conform to that predicted by standard inter-particle pair potentials, suggesting that the particle packing induced by freezing differs from that formed during equilibrium densification processes.

${ }_{16}$ PACS numbers: 82.70.Dd,64.75.Xc

[^0]Interest in directional solidification, or freeze-casting, of suspensions of particles has 18 surged recently owing to the relative versatility, simplicity and cost-efficiency of this pro${ }_{19}$ cess for fabricating complex composite materials [1]. This method has been used to create ${ }_{20}$ materials for applications such as tissue scaffolds [2], biomimetic materials [3], photonic ${ }_{21}$ structures [4], and metal-matrix composites [5]. In addition, directional solidification has 22 been shown to be effective for water purification [6] and occurs naturally when the ground ${ }_{23}$ freezes [7]. In all of these cases, the segregation of particles from the growing solid and the 24 consequent increase of particle concentration in the fluid regions are paramount. In par25 ticular, the structure of the regions of segregated particles is important for performance of ${ }_{6}$ the material in many applications. This structure occurs on a variety of length scales from 7 the relatively large scale of individual regions of segregated particles to the single particle ${ }^{8}$ scale of the packing density of segregated particles. Although most research has focused ${ }^{29}$ on the large-scale structure, the particle-scale structure is key to understanding the particle so rejection behavior and hence predicting the large-scale structure.

In a very dilute suspension, rejection of single particles from a solidfication front is well understood as resulting from fluid flow into the premelted film that separates the particles ${ }_{3}$ from the growing solid (e.g., references [8-10]). In non-dilute suspensions, the same funda${ }_{4}$ mental rejection mechanism is responsible for particle segregation during solidification, but ${ }_{55}$ the comprehensive interaction between the growing solid and the large number of particles ${ }_{36}$ found in non-dilute suspensions is not well understood. Conceptually, rejection increases ${ }_{37}$ the particle concentration in the fluid until the concentration reaches a threshold. Further 8 particle rejection is untenable and the solidification front either becomes unstable or engulfs ${ }^{39}$ particles, or both [11]. The morphology of the instability and the mode of particle incor${ }^{\circ}$ poration creates macro- and microscopic patterns of high- and low-particle-density regions. ${ }_{11}$ Depending upon the freezing conditions, commonly observed patterns include, among oth42 ers, lamellae oriented parallel or perpendicular to the solidification direction, branching or ${ }_{3}$ hexagonal networks of nearly pure solid, and seemingly disordered crack-like patterns (e.g., 4 references [11-17]). Similarities between these patterns and those formed during drying of 45 colloidal suspensions (e.g., reference [18]) or jamming of suspensions flowing through con${ }_{6}$ strictions (e.g., references $[19,20]$) suggest that the physics underlying the colloid behavior ${ }_{7}$ may be similar as well, though the driving forces in each case differ. Thus, knowledge ${ }_{8}$ gained from studying structures in freezing colloidal suspensions may be applicable to dense

49 colloidal suspensions in diverse circumstances.
Presently, there is no theory that can fully predict the morphology or detailed char${ }_{51}$ acteristics of the patterns that form. However, a continuum approach analogous to that ${ }_{52}$ describing binary alloy solidification has been successful in predicting the transition from ${ }_{3}$ particle pushing to particle capture [11, 15, 16]. This description requires information about ${ }_{54}$ the particles near the freezing front, such as the packing density and rate of diffusion in ${ }_{55}$ the suspension. Although these quantities have been modelled assuming that the particles ${ }_{66}$ behave as hard spheres, it is unknown whether this equilibrium approach to the statistical 57 mechanics of the particles is accurate, or whether the forces associated with the solid growth ${ }_{58}$ and concomitant fluid flow affect the particle behavior. Furthermore, a hard sphere pair po9 tential is not a good approximation of the inter-particle interactions for many systems of so interest. Therefore, it is important to understand the particle-scale structure and behavior ${ }_{1}$ in solidifying colloidal suspensions.

62 This type of information is difficult to obtain experimentally because the particle con${ }_{63}$ centrations and materials typically involved make the suspensions opaque to visible light. ${ }_{64}$ In addition, the particles are often too small to observe individually and the structures that ${ }_{65}$ form are three-dimensional. As a result, most studies involve postmortem analysis of sam${ }_{66}$ ples after sublimation of the solid and sintering or other fixing of the particle structure (e.g., ${ }_{6}$ references $[2-4,14,21,22]$). This gives only a two-dimensional view of the three-dimensional ${ }_{68}$ structure, provides only static information about the final particle arrangement, and may 9 be skewed by modification of the structure during sublimation and sintering [23].

A couple of experiments have overcome some of these difficulties by using either a very 1 thin sample cell and transparent materials [24], or applying x-ray techniques (radiography 2 and tomography) to thicker samples [23]. The thin sample chamber produces a quasi-two${ }_{3}$ dimensional system that can be observed with visible light microscopy for sufficiently low ${ }^{4}$ particle concentrations, while x-ray techniques can probe inside visibly opaque samples. x${ }_{5}$ ray tomography can even provide a full three-dimensional reconstruction of the samples. All ${ }_{76}$ allow samples to be viewed during the freezing process, though the long acquisition time for 77 tomography allows only relatively slow solidification rates [16]. Improved x-ray tomography ${ }_{88}$ may relax this restriction [25]. Yet, none of these techniques provide information about the ${ }^{9} 9$ particle-scale structure of the samples. In order to obtain this information, we used small so angle x-ray scattering (SAXS), which provides a Fourier-space representation of the mass

1 distribution within the samples on the scale of one to several times the particle radius. ${ }_{84}$ sufficient light transmission to produce direct images of the samples. The images provide a ${ }_{55}$ basis for interpreting the SAXS intensity data collected before freezing, after melting, and ${ }_{86}$ while the samples were frozen. Most importantly, while frozen the data exhibit features ${ }_{87}$ related to the structure of the regions of segregated particles that formed during freezing. ${ }_{88}$ In particular, we find that the particles are very densely packed, even touching, and their 9 arrangement does not conform to any predicted by standard models of inter-particle intersoctions. Therefore, the freezing process must cause particles to pack together in an unusual 1 manner, possibly by creating inter-particle pressures that cannot be attained in the unfrozen y_{2} solutions. This is an important point that must eventually be accounted for in solidification ${ }_{\text {з }}$ models, but more generally it raises questions about the arrangement of particles in dense 4 suspensions under external forcing.

I. MATERIALS AND METHODS

 137 and $400 \mu \mathrm{~m}$ due to the flexibility of the windows combined with manual positioning of the ${ }_{138}$ cold finger abutting one window.

FIG. 1. (Color online) The image on the left shows the entire sample cell with the sample chamber and cold finger tip enlarged in the top right hand corner. In the lower right hand corner, the schematic diagram shows a plan-view of the cold finger tip with the approximate locations of x-ray data collection $(\mathrm{LE}=$ left edge, $\mathrm{LC}=$ left center, $\mathrm{C}=$ center, $\mathrm{RC}=$ right center, and $\mathrm{RE}=$ right edge).

C. Procedure

The x-ray scattering experiments were performed at beam line 8-ID of the Advanced ${ }_{141}$ Photon Source at Argonne National Laboratory. Details of the beam line are provided by 142 references [29] and [30], but we will summarize the important aspects in this section along 3 with the details of our particular experiment at this beam line.

For the x-ray experiments, the sample cell described above was placed in the beam line, 55 which was evacuated to about 10^{-2} torr. Evacuating the beam line minimizes stray scattering 46 of the x-ray beam from air or water vapor as it approaches the sample and then as the scattered x-rays travel to the detector. The fluid inside the sample chamber remained at 148 atmospheric pressure because it was connected to the ambient atmosphere via the fill lines.

In four separate trials, we investigated four different samples, each prepared in the same ${ }_{150}$ manner and labeled samples $1-4$ in the results below. Each of the samples was frozen by 181 Finally, this curve was normalized by the incident flux, detector efficiency and area, and the 182 solid angle spanned by the detector. In the results presented below, we report the normalized
intensity curve

$$
\begin{equation*}
I_{N}(q)=d \operatorname{Tr} \phi V_{p a r t}(\Delta \rho)^{2} P(q) S(q) \equiv A P(q) S(q) \tag{1}
\end{equation*}
$$

184
where d is the cell thickness, $T r$ is the transmission coefficient, $V_{\text {part }}$ is the average particle volume, and $\Delta \rho$ is the electron density difference between silica and water or ice. The coefficients are grouped together into the amplitude A. We did not normalize by the sample thickness or transmission because, due to the pressure difference a slight curvature was present, so the sample thickness was not known precisely at each sampling position. In what follows, we will refer to the normalized intensity as simply $I(q)$. A more comprehensive background to x -ray scattering can be found in the appendix and the references therein.

II. DIRECT IMAGING

Before delving into the SAXS results, we present direct images of freezing and frozen colloidal suspensions under conditions similar to those used in the x-ray scattering experiments. These images provide a reference for interpreting the features in the SAXS intensity curves.

We used the same sample cell and type of colloidal solutions in the direct imaging experiments as in the SAXS experiments. In addition to colloidal samples, we also observed samples without particles, simply pure deionized water. The cell was situated between the light source and the camera, thus the samples were viewed in transmission. Images were focused onto a CCD detector (Unibrain Fire-i) with a 4x microscope objective lens resulting in an image scale of about $6 \mu \mathrm{~m}$ per pixel.

We froze the samples by lowering the temperature of the cold finger either directly with the TECs or with liquid nitrogen. The samples typically froze at temperatures between $-6^{\circ} \mathrm{C}$ and $-25^{\circ} \mathrm{C}$, though the freezing temperatures of individual samples had a high degree of uncertainty (up to $\pm 2^{\circ} \mathrm{C}$). In all cases, the water was supercooled when ice nucleated, resulting in two stages of ice growth: a rapid stage I with a cellular or dendritic morphology, and a slower stage II with an apparently planar morphology.

During stage I, the low temperature of the sample caused rapid solidification and ice growth into a solution below the melting temperature T_{m}, leading to an unstable solidification front and a cellular or dendritic ice growth morphology [11, 16, 32, 33]. Figure 2

211 shows two sets of images obtained from movies of the sample freezing that illustrate this 212 stage of ice growth in pure water (a) and a colloidal solution (b). The ice growth is cellular

Stage I freezing ended when the entire sample had been warmed to T_{m} through release 9 of latent heat of solidification. After this time, further freezing required further removal of 220 heat from the sample, which was effected by the TECs. We then observed an apparently

FIG. 2. (Color online) These images show two sets of before (time $t=0 \mathrm{~s}$) and after ($t>0 \mathrm{~s}$) snapshots from movies of stage I ice growth. The images in (a) show pure water, whereas those in (b) show a colloidal solution of silica spheres as described above, but with particle radius 142 nm . We note that we did not observe any significant differences in the direct imaging experiments between the behavior of solutions of these larger particles and solutions of the smaller particles (as used in the x-ray scattering). Ice dendrites are visible in both sets: dark in (a) and lighter areas between dark regions of concentrated particles in (b).

FIG. 3. These images show a sequence of snapshots of stage II solidification for a sample of 142 nm particles. In areas where stage II ice has formed the sample appears darker. The stage II ice edge is marked by a dark rim of particles being pushed ahead of the ice, which form a dark spot at the center upon complete solidification.
upon the particle size and the specific intermolecular interactions between the particle and the solid [10]. Using the magnitude of the interaction between glass particles and ice determined by reference [17], we find that the particles should have been rejected from the growing ice during both stages [26]. Indeed, during stage I the particles were rejected into the inter-dendrite regions, and during stage II some of the particles not in the inter-dendrite regions were evidently rejected as dark patches appeared at the center of the cold finger in some samples. However, the particles rejected to the inter-dendrite regions were engulfed by stage II ice growth, perhaps by trapping between the dendrites $[5,16]$ or possibly due to their inclusion in large particle aggregates [26]. Such effects are not included in the model of reference [10], thus highlighting the need for ongoing work. In summary, the process of freezing supercooled colloidal suspensions in our experimental setup results in a linear pattern of high- and low-particle-density regions due to the unstable freezing morphology.

The width of the stripes was typically tens of $\mu \mathrm{m}$; for the sample shown in Fig. 4, initially the light (low density) regions were on average $17 \mu \mathrm{~m}$ across and the dark (high density) regions were on average $28 \mu \mathrm{~m}$ across. However, these patterns and the widths of the respective regions changed as the temperature increased and the samples aged. We observed the evolution of the samples at different temperatures between $-2^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$ over time scales ranging from several hours up to one week. In general, the light areas became more rounded, and the linear dark features tended to merge with each other, their edges becoming simultaneously more sharply defined. Figure 4 contains a sequence of images illustrating this evolution. Our direct observations and dynamic x-ray scattering suggest that this evolution is driven by grain boundary motion due to coarsening of the polycrystalline ice in the samples [34].

Upon melting, we observed that many dark objects up to $100 \mu \mathrm{~m}$ in size sedimented out of the solution. Presumably, these were aggregates of individual particles bound together during the freezing or subsequent evolution processes (images provided in reference [26]).

Finally, we note that all of the observations described above occurred in a qualitatively similar manner despite differences in the initial freezing temperature and how the temperature changed over time after freezing. While lower freezing temperatures resulted in faster solidification velocities [26], and thus presumably differences in particle incorporation as well as the micrometer-scale structure [23], our direct imaging experiments had insufficient resolution to quantify these variations. However, as we will describe in the next section,

FIG. 4. These images show a sequence of snapshots of a frozen solution of 32 nm particles over time with the sample ages and temperatures indicated. The small dark spots near the cold finger are air bubbles. Because the water was not degassed before freezing, air gradually exolves from the ice.
such differences do not significantly affect the particle-scale structure, particularly the interparticle spacing.

In summary, the direct imaging experiments provide general information about the freezing process in our system. After deep supercooling, the initial stage of solidification is unstable with particles being rejected to the regions between ice dendrites to form a linear pattern of high and low particle density. During the second stage of solidification, this pattern is locked in as an apparently planar ice front grows across the cell. As the frozen samples evolve, the high-particle-density regions rearrange due to the motion of grain boundaries from ice crystal coarsening. These observations serve as a framework for understanding the results of the x-ray scattering experiments, which provide quantitative information about the particle-scale structure in these macroscopic features.

III. SAXS RESULTS

The primary result of SAXS is the scattered intensity $I(q)$. Figure 5 shows typical examples of $I(q)$ for a sample before being frozen (circles) and when frozen (squares). The unfrozen data decrease smoothly as q increases, whereas the frozen data have two features: a peak at high q and an upturn at low q. For all temperatures at which the sample was frozen, the intensity maintained the same general form with these two features, though the position and width of the features changed. Upon melting, the scattered intensity reverted to the unfrozen form observed before the samples were frozen, though the details of the shape had changed. These data reflect the structural properties of the samples such as the particle size, shape, and inter-particle spacing. By fitting the intensities to a theoretical model (unfrozen data) and an empirical function (frozen data), we were able to quantify these structural properties and monitor how they evolved as the sample temperature was increased and the samples aged.

A. Unfrozen Intensity

For the unfrozen intensities, we obtained the particle radius, polydispersity, and volume fraction by fitting the data to a function of the form $I(q)=A P(q) S(q)$ from equation 1, 32 where A is a q-independent coefficient signifying the amplitude of the scattering, $P(q)$ is the

FIG. 5. SAXS intensity versus scattering vector taken at the center position from sample 1 before being frozen (circles) and at $T=-2.00^{\circ} \mathrm{C}$ when frozen (squares). The solid curve represents the fit of the unfrozen data to a polydisperse sphere form factor and monodisperse hard sphere structure factor with $R=32.4 \mathrm{~nm}, z=31, A=294, R_{H S}=53.0 \mathrm{~nm}$, and $\phi_{H S}=0.073$ as described in the text. For comparison, the dotted line shows only the form factor with the same parameters as above, but an arbitrary amplitude. For clarity the unfrozen data have been offset from the frozen data by multiplication with a constant coefficient.
${ }_{303}$ particle form factor, and $S(q)$ is the structure factor. Though the particles are not perfectly 4 spherical, we used a standard form factor for polydisperse spheres [35] that depends on the 5 average particle radius R and the polydispersity parameter z. This form factor is based on a Schulz-Zimm distribution of individual particle radii R_{p} in which z describes the width of the distribution. In this case, the mean square deviation is given by $\overline{R_{p}^{2}} /(z+1)$ where $R=\overline{R_{p}}$ [35]. For the structure factor we used a function for monodisperse spheres of radius $R_{H S}$ at volume fraction $\phi_{H S}$ interacting via a hard sphere potential [29]. For each unfrozen data 10 set, the fitting was performed using an iterative grid search method to find the parameters ${ }_{31}$ that minimized the mean squared residual. Due to the large range of intensity values, the 2 logarithm of the data was used to determine the residuals. We also visually inspected each fit to ensure quality. The solid curve in Fig. 5 shows this fit to a typical data set.

Altogether there are five parameters in the fitting equations: the average particle radius ${ }_{15} R$, the polydispersity z, the hard sphere radius $R_{H S}$, the hard sphere volume fraction $\phi_{H S}$, ${ }_{345}$ the upturn is more prominent in the full $I(q)$ because it is enhanced by the large values of

FIG. 6. Measured structure factors versus scattering vector taken at the left edge position from sample 4 at $T=-1.20^{\circ} \mathrm{C}$ (circles) and $T=-0.60^{\circ} \mathrm{C}$ (squares). Solid curves represent the Gaussian fits of the main peak as described in the text. Along the top of the plot, the horizontal axis is labeled in units of $q R$. ${ }_{359}$ modified the form factor by including a fractal cluster term [41] or a q^{-4} dependence [39], 60 but neither improved the fits.

Instead, we fit the main, high q-vector peak with a Gaussian function given by

$$
\begin{equation*}
I(q)=\delta+A \exp \left[-\left(q-q_{p e a k}\right)^{2} / \sigma^{2}\right] \tag{2}
\end{equation*}
$$

where in δ is the q-independent offset, A is the q-independent peak height, $q_{p e a k}$ is the peak location, and σ controls the peak width. In order to obtain reliable fits, we only used data between chosen low- and high- q-vector cutoffs. The low- q-vector cutoff was that scattering vector at which the measured structure factor reached its minimum value. The high- q-vector cutoff was defined as $q=0.14 \mathrm{~nm}^{-1}$. We fit the plain values of $S_{m}(q)$ rather than their logarithm to emphasize fitting of the peak. The fitting was performed using an iterative grid search method to minimize residuals. As with the unfrozen data, we visually inspected the resulting fits to ensure good quality. The solid curves in Fig. 6 illustrate these fits.

We performed this Gaussian fitting on all data sets for which the samples were frozen and examined the resulting fit parameters as a function of temperature (examples are shown in Fig. 7). In general, all data exhibit similar trends, though there is some variation among positions within a given sample and among different samples. This variation is produced by the inherently stochastic nature of the ice nucleation process, the unstable ice growth morphology, and the process of ice crystal coarsening in the polycrystalline ice. These processes lead to spatial variations in the total number of particles contained within the scattering volume and differences in how this number changes with time and temperature. Such variation in particle number primarily affects the fitted values of A and δ.

We find that the peak position and peak width, which represent the predominant interparticle spacing (nearest neighbor distance) and the distribution of inter-particle distances, are fairly constant at $q_{p e a k} \approx 0.123 \mathrm{~nm}^{-1}\left(q_{\text {peak }} R \approx 3.94\right)$ and $\sigma \approx 0.017 \mathrm{~nm}^{-1}$, respectively, though the peak width appears to increase slightly in some cases. This indicates that the average inter-particle distance remained fairly constant while the samples were frozen. The increasing peak width indicates that the distribution of inter-particle distances widened slightly. Surprisingly, variations in ice nucleation temperature, and hence freezing rate, do not translate into variations in particle spacing. The peak amplitude shows a very clear decreasing trend as the temperature increases, while the offset does not exhibit a clear trend. The offset is simply related to the overall amount of scattering, which we expect to change between data sets as particles move into or out of the scattering volume. The decreasing peak amplitude indicates a decrease in the number of nearest neighbors. When combined

FIG. 7. Peak fit parameters versus temperature from the center position of two different samples (circles, sample 1; squares, sample 2). The peak position is in (a), the peak width is in (b), the peak amplitude is in (c), and the peak offset is in (d). 9 tures inferred from the scattering data, are comparable to the smallest details that could be 20 observed in the direct imaging experiments. 452 samples imply that about half of the particles originally in the solution ended up in long-
lived aggregates and subsequently sedimented upon melting of the ice. The aggregates most likely formed in the high particle density regions created by rejection of particles from the ice dendrites. This is supported by the interpretation of the SAXS data collected while the samples were frozen.

The scattered intensity from frozen samples had two primary features associated with structure possessing two distinct primary length scales. The high scattering vector peak corresponds to the inter-particle spacing of colloids within the high density regions and the low scattering vector upturn is related to the size of the high density domains. If we could extend our measurements to lower scattering vectors, we would expect to find that the upturn is in fact a peak and its position would give the size of the high density domains (as in references [50-52]) or the spacing between them. In the present experiments, the minimum q gives a lower bound for the size of these features: $2 \pi / q_{\text {min }}=2 \pi / 0.02 \mathrm{~nm}^{-1}=314 \mathrm{~nm}$, or approximately 10 times the particle radius. Further measurements at lower scattering vectors would also help clarify the medium-scale structure of the high density regions, i.e., the arrangement of particles on length scales greater than that of a single particle, but still within a single high density region. Although the failure of the fractal cluster model to fit the low- q upturn in our data suggests that structure at this scale is not fractal, there are insufficient data to rule this out or to advance other possibilities.

On the other hand, the high scattering vector feature provides more reliable information because the full peak falls within our accessible q-range. This peak reflects how the particles packed as they were rejected during freezing. We can rule out a crystalline arrangement of the particles because the peak is too broad. We did not expect that the particles in the present experiments would pack this way due to their large polydispersity, which is known to inhibit colloidal crystallization [53-55]. In addition, colloidal crystallization is an equilibrium process requiring some amount of time to proceed. Although an ordered particle packing has been observed in at least one directional solidification experiment [4], the densification of the particles upon rejection during freezing in our samples was most likely too rapid to permit this process [56]. Therefore, the particles in the high density regions packed in a predominantly amorphous or random arrangement.

Particles in an amorphous packing, like particles in a colloidal crystal, are characterized by an average inter-particle distance though the variation around this average distance is greater in amorphous packings than in crystalline ones. The position of the SAXS peak is 515 dendrites, the attractive van der Waal's force should have dominated the interaction, allow516 ing the particles to form aggregates. Using the Hamaker constant for fused quartz and a
separation of 0.25 nm (the approximate size of a water molecule), the attraction potential between two particles is estimated to be $-9.4 \times 10^{-20} \mathrm{~J}$, or about $25 k_{B} T$ at $T=0^{\circ} \mathrm{C}$, where k_{B} is Boltzmann's constant [42]. This is sufficient to maintain the aggregates' integrity well above the melting temperature. Alternatively, once the particles were forced into contact they may have fused together chemically or physically due to damage near the inter-particle contacts, which may also have been responsible for the failure of standard structure factors to fit our data. In either case, this suggests that the aggregates were the direct result of particle rejection to the inter-dendrite regions during freezing. Combined with the SAXS results from the solutions when unfrozen, we can then estimate that at least half of the particles in the solution ended up in these high density regions. However, this is a lower bound, and in fact nearly all of the particles may have been caught between the dendrites, but some were individually engulfed by the ice or subsequently stripped from the aggregates by dynamic processes [34].

The strong forcing of the particles by the growing ice during freezing may also be responsible for the failure of standard structure factors to model our scattering data. This failure implies that the particle configuration within the high-particle-density regions was different from those that occur in high density colloidal fluids (c.f. reference [29]), glasses (c.f. reference [60]), or gels (c.f. reference [61]) even though the underlying particle interactions are similar (long-range repulsive or hard sphere interactions and short-range attraction). In particular, the peak in our data generally occurred at higher scattering vectors and was broader and taller than the peak predicted by any of the standard models. This means that our samples tended to be more heterogeneous with respect to the inter-particle spacing and have a greater number of nearest neighbors than expected from these models. Such differences may be related to the forcing present during freezing.

Although much work has been directed at studying the influence of shear flow on structure in various colloidal materials (e.g., references [62-64]), relatively little work has been done on other types of external forcing that are more comparable to what the particles experience during freezing. One example, though, is the experiment of Kurita and Weeks [65]. They examined a layer of randomly close packed, sedimented particles using confocal microscopy and calculated a structure factor from the real-space positions of the particles. Their system had an overall volume fraction of about 0.646 with small, locally ordered regions having ϕ up to about 0.68 and they found that the resulting $S(q)$ had a primary peak near $q R \approx$
3.93 (versus 3.94 for our system). This peak position is higher than expected for hard spheres at these volume fractions, but they did not attempt to fit their structure factor to any models, so differences in the shape are not known. Sedimentation involves a gradual increase in the particle density and compression of the colloidal fluid, similar to what happens during freezing when the growing solid continually squeezes the particles into the shrinking volume of unfrozen liquid. Therefore, we might expect that our samples had a structure with characteristics similar to that of the sedimented layer: very high densities with some local variability. However, the rate of compression during freezing is much higher than in sedimentation, which could lead to more variability in the packing and a broader structure factor peak. In addition, the morphology of ice growth and the kinetics of particle segregation could also lead to more heterogeneity in the packing.

Altogether, our observations have several implications for our understanding of directional solidification of colloidal suspensions. First, models based on the purely statistical mechanical behavior of colloidal solutions, while a reasonable and necessary starting point, are likely not adequate to completely explain the phenomena observed during solidification. That is, the densification that occurs as the solutions freeze is not analogous to that resulting from simply increasing the density of particles in a colloidal fluid. Second, the results add experimental evidence to the common assumption that the colloidal particles close pack upon rejection from the solidification front and suggest that the packing achieved may be the densest possible amorphous packing that can be produced given the particles' distribution of sizes. Furthermore, the high particle density regions appear to be compact (i.e., not fractal) on the scale of several particle diameters. Finally, the observation of particle aggregates whose attractive van der Waal's interaction is sufficient to maintain their integrity after melting suggests the possibility of creating macroscopic freeze-cast materials without the need for special binding or sintering techniques.

In addition, our results may be useful in understanding other systems involving driven, high concentration colloidal suspensions. They suggest that the arrangement of particles at the smallest scales may not conform to predictions based solely on the interparticle interactions. Such differences could potentially influence the flow properties of the material or dynamic behavior of the particles, which are of interest scientifically and for engineering applications. Further study of the structure factor could incorporate hydrodynamic interactions between the particles and the effects of the driving force (such as repulsion from the
${ }_{581}$ ice), as has been done for the well characterized shear flow geometry [64]. Extending such 587 the particles. ${ }_{609}$ suspensions $[66,67]$. Examining samples with a variety of higher and lower initial volume ${ }_{610}$ fractions would help determine the robustness of the close packed arrangement. Similarly,

611 614 a more monodisperse size distribution would interact differently with each other, possibly 615 conforming more closely to one of the standard inter-particle potentials, which would either 616 allow more accurate modelling of the frozen structure or confirm that the freezing process ${ }_{617}$ imposes a unique structure among the particles. Alternately, to focus on the structural 8 evolution over time, experiments could be performed in which the temperature was held 619 constant. ${ }_{623}$ for determination of how the particles are moving, such as distinguishing between diffusive 624 and ballistic motion and measuring the rate of this motion. We have applied XPCS to ${ }_{625}$ examine particles in frozen samples and present those results elsewhere [34]. A second 626 technique is x-ray near field scattering (XNFS), which combines aspects of x-ray scattering 7 and radiography, and also provides structural and dynamic information, though the analysis 628 of the data is more complicated than in SAXS or XPCS [68]. However, XNFS has the benefits 629 of accessing smaller wavevectors than SAXS and permitting observation during freezing. 631 with a data analysis procedure similar to that for standard SAXS [69]. USAXS could 632 clarify the structure at intermediate length scales and possibly identify the length scale 633 associated with the low- q intensity upturn seen in our experiments. By combining SAXS 634 and other x-ray techniques future work will greatly increase our knowledge of the small 635 scale structure resulting from solidification of colloidal suspensions, which in turn will help ${ }_{636}$ enhance understanding of the processes occurring during solidification and allow for better ${ }_{637}$ control of the final solidified product.

ACKNOWLEDGMENTS

We thank S. Narayanan, A. Sandy and M. Sprung for assistance with the SAXS exper${ }_{40}$ iments, and X. Lu, J. Neufeld, E. Thomson and L. Wilen for useful discussions. MS ac-

641 ${ }_{642}$ for support. SGJM thanks the NSF for support via DMR-0906697. SSLP acknowledges ${ }_{643}$ support from the King Abdullah University of Science and Technology (KAUST), Award ${ }_{644}$ No. KUK-C1-013-04. JSW acknowledges support from the NSF Grant No. OPP0440841 ${ }_{645}$ and the US Department of Energy Grant No. DE-FG02-05ER15741. Use of the Advanced ${ }_{647}$ Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02${ }_{648}$ 06CH11357. ${ }_{663}$ rays. It has magnitude q given by $4 \pi / \lambda \sin (\Theta / 2)(\Theta$ is the angle between the incident and 64 scattered radiation) [70]. Frequently in experiments on colloidal suspensions the scattering 665 is expected to be isotropic, so analysis solely in terms of the magnitude of the scattering ${ }_{666}$ vector is acceptable. The intensity as a function of q for identical particles can be expressed 667 as

$$
\begin{equation*}
I(q)=\Phi_{i} E_{\text {det }} \Delta \Omega A_{\text {det }} d \operatorname{Tr} \phi V_{\text {part }}(\Delta \rho)^{2} P(q) S(q) \tag{A.1}
\end{equation*}
$$

${ }_{668}$ where Φ_{i} is the incident x-ray flux, $E_{d e t}$ is the detector efficiency, $\Delta \Omega$ is the solid angle ${ }_{69}$ subtended by the detector, $A_{\text {det }}$ is the area of the detector, d is the sample thickness, Tr is
the transmission coefficient, ϕ is the particle volume fraction, $V_{\text {part }}$ is the volume of a single particle, $\Delta \rho$ is the electron density contrast between the particles and the solvent, $P(q)$ is the form factor, and $S(q)$ is the structure factor [70, 71]. All information about the sample structure is contained within $P(q)$ and $S(q)$.

The form factor $P(q)$ describes the scattering from particles of a given size and shape. It can be calculated based on the distribution of mass within the particles for a variety of shapes (c.f. reference [41]). The structure factor $S(q)$ describes the scattering from spatial correlations among the particle positions [72]. It is the Fourier transform of the radial distribution function, which describes the probability of finding two particles separated by a given distance. Theoretical estimates of structure factors typically rely on radial distribution functions derived for a specified inter-particle interaction, usually pair potentials such as hard spheres or a square well (c.f. reference [41]).

For systems without an a priori model, SAXS data still provide useful information. As the Fourier transform of the mass distribution within the sample, peaks in SAXS data correspond to structures on length scales of roughly $2 \pi / q_{p e a k}[70,73]$. The peak width is related to the variation of this length scale around the primary one with wider peaks corresponding to greater variation. In terms of the particles' radial distribution function, the position of the primary peak in $S(q)$ represents the average distance to a particle's nearest neighbors and the height represents the average number of neighbors. Thus, SAXS provides a way to probe the structure of complex, optically opaque materials.
[1] S. Deville, Adv. Eng. Mater 10, 155 (2008).
[2] Q. Fu, M. N. Rahaman, F. Dogan, and B. S. Bal, J. Biomed. Mater. Res. A 86B, 125 (2008).
[3] S. Deville, E. Saiz, R. K. Nalla, and A. P. Tomsia, Science 311, 515 (2006).
[4] J.-W. Kim, K. Tazumi, R. Okaji, and M. Ohshima, Chem. Mater. 21, 3476 (2009).
[5] G. Wilde and J. H. Perepezko, Mat. Sci. Eng. A - Struct. 283, 25 (2000).
[6] G. Gay and M. A. Azouni, Cryst. Growth Des. 2, 135 (2002).
[7] J. G. Dash, A. W. Rempel, and J. S. Wettlaufer, Rev. Mod. Phys. 78, 695 (2006).
[8] D. R. Uhlmann and B. Chalmers, J. Appl. Phys. 35, 2986 (1964).
[9] M. A. Azouni, W. Kalita, and M. Yemmou, J. Cryst. Growth 99, 201 (1990).

699 [10] A. W. Rempel and M. G. Worster, J. Cryst. Growth 205, 427 (1999).
700 [11] S. S. L. Peppin, M. G. Worster, and J. S. Wettlaufer, Proc. R. Soc. A 463, 723 (2007).
701 [12] S. Taber, J. Geol. 37, 428 (1929).
702 [13] K. Watanabe and M. Mizoguchi, J. Cryst. Gr. 213, 135 (2000).
703 [14] H. Zhang, I. Hussain, M. Brust, M. F. Butler, S. P. Rannard, and A. I. Cooper, Nat. Mater. 4, 787 (2005).

705 [15] S. S. L. Peppin, J. S. Wettlaufer, and M. G. Worster, Phys. Rev. Lett. 100, 238301 (2008).
706 [16] S. Deville, E. Maire, G. Bernard-Granger, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup, and C. Guizard, Nat. Mater. 8, 966 (2009).

8 [17] S. S. L. Peppin, M. J. Spannuth, and J. S. Wettlaufer, J. Stat. Phys. 134, 701 (2009).
709 [18] C. Allain and L. Limat, Phys. Rev. Lett. 74, 2981 (1995).
710 [19] M. D. Haw, Phys. Rev. Lett. 92, 185506 (2004).
711 [20] A. I. Campbell and M. D. Haw, Soft Matter 6, 4688 (2010).
712 [21] N. O. Shanti, K. Araki, and J. W. Halloran, J. Am. Ceram. Soc. 89, 2444 (2006).
${ }_{713}$ [22] T. Waschkies, R. Oberacker, and M. J. Hoffmann, J. Am. Ceram. Soc. 92, S79 (2009).
714 [23] S. Deville, E. Maire, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup, and C. Guizard, J. Am. Ceram. Soc. 92, 2489 (2009).
[24] J. A. Sekhar and R. Trivedi, Mat. Sci. Eng. A - Struct. 47, 9 (1991).
[25] T. Weitkamp, P. Tafforeau, E. Boller, P. Cloetens, J. Valade, P. Bernard, F. Peyrin, W. Ludwig, L. Helfen, and J. Baruchel, Proc. X-ray Optics and Microanalysis 1221, 33 (2010).
[26] M. Spannuth, Structure and Dynamics in Freezing and Frozen Colloidal Suspensions from Direct Imaging and X-ray Scattering, PhD Thesis, Geophysics, Yale University (2010).
[27] W. W. Mullins and R. F. Sekerka, J. Appl. Phys. 35, 444 (1964).
722 [28] L. A. Wilen and J. G. Dash, Phys. Rev. Lett. 74, 5076 (1995).
${ }_{23}$ [29] D. Lumma, L. B. Lurio, M. A. Borthwick, P. Falus, and S. G. J. Mochrie, Phys. Rev. E 62, 8258 (2000).
[30] P. Falus, M. A. Borthwick, and S. G. J. Mochrie, Rev. Sci. Instrum. 75, 4383 (2004).
6 [31] S. Schöder, H. Reichert, H. Schröder, M. Mezger, J. S. Okasinski, V. Honkimäki, J. Bilgram, and H. Dosch, Phys. Rev. Lett. 103, 095502 (2009).
[32] W. W. Mullins and R. F. Sekerka, J. Appl. Phys. 34, 323 (1963).
29 [33] A. A. Shibkov, Y. I. Golovin, M. A. Zheltov, A. A. Korolev, and A. A. Leonev, Physica A

734 [36] A. Vrij, J. Chem. Phys. 71, 3267 (1979).
[37] P. van Beurten and A. Vrij, J. Chem. Phys. 74, 2744 (1981).
[38] K. Dawson, G. Foffi, M. Fuchs, W. Götze, F. Sciortino, M. Sperl, P. Tartaglia, T. Voigtmann, and E. Zaccarelli, Phys. Rev. E 63, 011401 (2000).

8 [39] D. Pontoni, T. Narayanan, J. M. Petit, G. Grübel, and D. Beysens, Phys. Rev. Lett. 90, 188301 (2003).

740 [40] J. B. Hayter and J. Penfold, Mol. Phys. 42, 109 (1981).
${ }_{741}$ [41] J. S. Pedersen, in Neutrons, X-rays and Light: Scattering Methods Applied to Soft Condensed Matter, edited by P. Linder and T. Zemb (North-Holland, 2002) Chap. 16, pp. 391-420.
${ }^{43}$ [42] J. Israelachvili, Intermolecular and Surface Forces, 2nd ed. (Academic Press, 1992).
4 [43] W. O. Roberts, Colloidal Silica: Fundamentals and Applications (Taylor and Francis, 2006).
75 [44] A. P. Philipse and A. Vrij, J. Chem. Phys. 88, 6459 (1988).
[45] A. P. Philipse and A. Vrij, J. Colloid Interf. Sci. 128, 121 (1989).
7 [46] A. Imhof, A. van Blaaderen, G. Maret, J. Mellema, and J. K. G. Dhont, J. Chem. Phys. 100, 2170 (1994).
[47] G. Bryant, S. martin, A. Budi, and W. van Megen, Langmuir 19, 616 (2003).
[48] H. J. Schöpe, O. Marnette, W. van Megen, and G. Bryant, Langmuir 23, 11534 (2007).
[49] G. Nägele, M. Watzlawek, and R. Klein, Progr. Colloid Polym. Sci. 104, 31 (1997).
${ }_{52}$ [50] A. Stradner, H. Sedgwick, F. Cardinaux, W. C. K. Poon, S. U. Egelhaaf, and P. Schurtenberger, Nature 432, 492 (2004).
[51] M. Lattuada, H. Wu, and M. Morbidelli, Langmuir 20, 4355 (2004).
[52] F. Sciortino, S. Mossa, E. Zaccarelli, and P. Tartaglia, Phys. Rev. Lett. 93, 055701 (2004).
[53] S. I. Henderson, T. C. Mortensen, S. M. Underwood, and W. van Megen, Physica A 233, 102 (1996).
[54] S. Auer and D. Frenkel, Nature 413, 711 (2001).
[55] S. Martin, G. Bryant, and W. van Megen, Phys. Rev. Lett. 90, 255702 (2003).
[56] S. Auer and D. Frenkel, Nature 409, 1020 (2001).
${ }_{761}$ [57] K. N. Pham, S. U. Egelhaaf, P. N. Pusey, and W. C. K. Poon, Phys. Rev. E 69, 011503 (2004).

763 [58] W. Schaertl and H. Sillescu, J. Stat. Phys. 77, 1007 (1994).
764 [59] R. S. Farr and R. D. Groot, J. Chem. Phys. 131, 244104 (2009).
765 [60] X. Lu, S. G. J. Mochrie, S. Narayanan, A. R. Sandy, and M. Sprung, Phys. Rev. Lett. 100, 045701 (2008).

767 [61] S. A. Shah, Y.-L. Chen, S. Ramakrishnan, K. S. Schweizer, and C. F. Zukoski, J. Phys.: Condens. Matter 15, 4751 (2003).

769 [62] M. D. Haw, W. C. K. Poon, and P. N. Pusey, Phys. Rev. E 57, 6859 (1998).
770 [63] P. Varadan and M. J. Solomon, Langmuir 17, 2918 (2001).
${ }_{771}$ [64] J. Vermant and M. J. Solomon, J. Phys.: Condens. Matter 17, R187 (2005).
772 [65] R. Kurita and E. R. Weeks, Phys. Rev. E 82, 011403 (2010).
773 [66] C. Körber, G. Rau, M. D. Cosman, and E. G. Cravalho, J. Cryst. Growth 72, 649 (1985).
774 [67] G. Lipp, C. Körber, and G. Rau, J. Cryst. Growth 99, 206 (1990).
775 [68] R. Cerbino, L. Peverini, M. A. C. Potenza, A. Robert, P. Bösecke, and M. Giglio, Nat. Phys. 776 4, 238 (2008).

777 [69] M. Morvan, D. Espinat, J. Lambard, and T. Zemb, Colloid Surface A 82, 193 (1994).
778 [70] P. N. Pusey, in Neutrons, X-rays and Light: Scattering Methods Applied to Soft Condensed 779 Matter, edited by P. Linder and T. Zemb (North-Holland, 2002) Chap. 1, pp. 3-21.

780 [71] B. J. Berne and R. Pecora, Dynamic Light Scattering (John Wiley and Sons, 1976).
781 [72] R. Klein, in Neutrons, X-rays and Light: Scattering Methods Applied to Soft Condensed Mat782 ter, edited by P. Linder and T. Zemb (North-Holland, 2002) Chap. 14, pp. 351-379.

783 [73] H. Wiese and D. Horn, J. Chem. Phys. 94, 6429 (1991).

[^0]: * melissa.spannuth@gmail.com

